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Abstract

Effective projection-based cross-lingual word
embedding (CLWE) induction critically relies
on the iterative self-learning procedure. It
gradually expands the initial small seed dictio-
nary to learn improved cross-lingual mappings.
In this work, we present CLASSYMAP, a
classification-based approach to self-learning,
yielding a more robust and a more effective in-
duction of projection-based CLWEs. Unlike
prior self-learning methods, our approach al-
lows for integration of diverse features into
the iterative process. We show the benefits of
CLASSYMAP for bilingual lexicon induction:
we report consistent improvements in a weakly
supervised setup (500 seed translation pairs)
on a benchmark with 28 language pairs.

1 Introduction and Motivation

Cross-lingual word embeddings (CLWEs), that
is, representations of words in a shared cross-
lingual vector space, enable multilingual model-
ing of meaning and facilitate cross-lingual transfer
for downstream NLP tasks (Ruder et al., 2019).
One of their primary use cases is bilingual lexi-
con induction (BLI), that is, learning translation
correspondences across languages which benefit
the development of core language technology also
for resource-poor languages and domains (Adams
et al., 2017; Smith et al., 2017; Heyman et al., 2018;
Hangya et al., 2018; Vulić et al., 2019).

Earlier work focused on joint CLWE induction
from bilingual corpora, relying on word- (Kle-
mentiev et al., 2012; Gouws and Søgaard, 2015),
sentence- (Zou et al., 2013; Hermann and Blunsom,
2014; Coulmance et al., 2015; Levy et al., 2017), or
document-level supervision (Søgaard et al., 2015;
Vulić and Moens, 2016). However, recent focus is
predominantly on post-hoc alignment of indepen-
dently trained monolingual word embeddings: the

∗Equal contribution.

so-called projection-based or mapping approaches
(Mikolov et al., 2013; Conneau et al., 2018; Joulin
et al., 2018; Artetxe et al., 2018b; Patra et al., 2019).
Such methods are particularly suitable for weakly
supervised learning setups: they support CLWE
induction with only as much as few thousand word
translation pairs as the bilingual supervision.1

One critical component of weakly supervised
projection-based CLWEs is a self-learning proce-
dure that iteratively refines the initial seed dictio-
nary to learn projections of increasingly higher
quality. This process leads to substantial improve-
ments of the initially mapped space, especially
with smaller seed dictionaries (Artetxe et al., 2017;
Vulić et al., 2019). However, current self-learning
procedures are still rather basic, typically rely-
ing only on direct extraction of (mutual) nearest
neighbors from the current shared space (Conneau
et al., 2018; Artetxe et al., 2018b; Glavaš et al.,
2019). In this work, we propose a more sophis-
ticated self-learning procedure for weakly super-
vised projection-based CLWE methods, and show
its benefits for a wide range of language pairs.

We frame self-learning as iterative classification-
based process, which yields several benefits over
the previously used self-learning mechanisms. 1)
It enables integration of a variety of heteroge-
neous features at different levels of granularity (e.g.,
word-level vs. orthographic features); some trans-

1In the extreme, fully unsupervised projection-based
CLWEs extract such seed bilingual lexicons from scratch on
the basis of monolingual data only (Conneau et al., 2018;
Artetxe et al., 2018b; Hoshen and Wolf, 2018; Alvarez-Melis
and Jaakkola, 2018; Chen and Cardie, 2018; Mohiuddin and
Joty, 2019, inter alia). However, as shown in recent com-
parative empirical analyses (Glavaš et al., 2019; Vulić et al.,
2019), using seed sets of only 500-1,000 translation pairs,
with all other components equal, always outperforms fully
unsupervised methods. Therefore, we focus on a more natural
weakly supervised setup (Artetxe et al., 2020) instead, i.e., we
assume the existence of at least 500 seed translations for each
language pair in consideration.
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lation cues (e.g., subword-level overlap) have been
ignored by previous self-learning approaches. 2) It
allows us to control for the reliability of translation
pairs considered as candidates for the dictionary
updates in the current iteration. Effectively, this
helps reduce noise in the process as the training
dictionary grows. 3) As suggested by prior work
on classification-based BLI (Irvine and Callison-
Burch, 2017; Heyman et al., 2017), framing the
actual BLI task as a classification problem results
in further gains in the final BLI performance.

We extensively evaluate our classification-based
self-learning procedure, termed CLASSYMAP, on
the standard BLI data set (Glavaš et al., 2019)
spanning 28 pairs of diverse languages. The in-
tegration of the proposed self-learning method into
VECMAP (Artetxe et al., 2018b), a state-of-the-art
projection-based CLWE framework, yields substan-
tial gains over previous self-learning procedures.2

We demonstrate that the improvements are indeed
achieved through the synergy of diverse features
used by the classifier. We also demonstrate fur-
ther BLI improvements when we treat BLI as a
supervised classification-based task.

2 Classification-Based Self-Learning

Projection-Based CLWE Methods (linearly)
align independently trained monolingual word em-
beddings X1 of the source language L1 and X2

(target language L2), using a seed word translation
dictionary D (Mikolov et al., 2013; Artetxe et al.,
2018a). Working in weakly supervised setups, we
assume the existence of some translation pairs (≈
500 pairs) in D. Let X1,D ⊂X1 and X2,D ⊂X2

refer to the row-aligned subsets of monolingual
embedding spaces containing vectors of translation
pairs from D. Those are used to learn orthogo-
nal transformations T1 and T2 that define the final
shared cross-lingual space Wcl = W1∪W2, where
W1 = X1T1 and W2 = X2T2.

Our departure point is a standard self-learning
setup from related work (Artetxe et al., 2018b; Con-
neau et al., 2018), outlined in the following. At
each iteration k, the dictionary D(k) is first used
to learn the joint space W

(k)
cl = W

(k)
1 ∪W

(k)
2 .

2We use VECMAP due to its very competitive and ro-
bust BLI performance according to the recent comparative
studies (Glavaš et al., 2019; Vulić et al., 2019; Doval et al.,
2019). We note that our methodology is equally applicable
to other projection-based methods that employ self-learning
e.g., (Conneau et al., 2018; Mohiuddin and Joty, 2019), and
our preliminary results with other methods suggest the similar
benefits stemming from the classification-based approach.

Algorithm 1: Classification-based self-learning
X1, X2 ← monolingual embeddings of L1 and L2

D← initial word translation dictionary
C ← TrainClassifier(D)
W1, W2 ← AlignEmbeddings(X1,X2, D)
for each of n iterations do

D1,2 ← nn(W1, W2); D2,1 ← nn(W2, W1)
D′ ← (D1,2 ∩D2,1) \D
Sort D′ descending by frequency
D′′ ← first P elements of D′

Generate scores for each pair in D′′ using C
Sort D′′ descending by score
Add first K elements of D′′ to D
C ← TrainClassifier(D)
W1, W2 ←
AlignEmbeddings(X1,X2, D)

return: W1 (and/or W2) and C

The nearest neighbours in W
(k)
cl are then used to

extract the new dictionary D(k+1). Previous work
typically relies on a variant of mutual nearest neigh-
bours in the aligned embedding space of the current
iteration to select likely translation candidates for
the next. However, as hinted by Lubin et al. (2019),
that procedure still results in many noisy candi-
dates inserted in the extended seed sets, and the
error may get amplified over subsequent iterations.

New Self-Learning Procedure. Therefore, we
propose a more versatile self-learning process. We
train a supervised classifier in each iteration: given
a word pair, it produces a probability score denot-
ing to which extent the pair is a correct translation
pair. The classifier can be fed a wide range of
features on the character, subword, and word level.

We apply the classifier in two ways. First, at it-
eration k the classification scores are used to select
likely translation candidates which are added to
the dictionary D(k+1) for iteration k + 1. Second,
similar to Heyman et al. (2017), at test time we use
the classifier scores to rerank translation candidates
produced by 1) finding nearest neighbours in the
final aligned embedding space and 2) considering
orthographically similar candidates.3 A high-level
overview of the proposed classification-based self-
learning procedure is outlined in Algorithm 1.

Self-Learning: Components. For implement-
ing the AlignEmbeddings operation (see Algo-
rithm 1) we rely on the VECMAP4 system (Artetxe
et al., 2018b) in its supervised variant. The nn

3We later show in §3 that both usages are beneficial for
BLI. The former yields improved CLWEs directly. We plan to
probe the usefulness of the CLWEs in other tasks beyond BLI
in future work. The latter (reranking) step, on the other hand,
is tied to the BLI task in particular. For this reason we later
report all BLI results both with and without reranking.

4https://github.com/artetxem/vecmap

https://github.com/artetxem/vecmap
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function returns word pairs that are nearest neigh-
bours in a given aligned embedding space. The
TrainClassifier functionality can be instan-
tiated using any standard classification framework.
In this work, we opt for a simple a multi-layer
perceptron with a single hidden layer.

A very important design choice concerns gener-
ating negative training examples for the classifier.
All word pairs in the dictionary at current iteration
D(k) are used as positive examples. For each posi-
tive pair (s, t), we generate two negative examples:
1) (s, x), where x is sampled uniformly from No

target words which are orthographically (measured
by edit distance) most similar to s; 2) (s, y), where
y is sampled uniformly from Nc target words clos-
est (by cosine) to s in the current space W

(k)
cl .

This strategy performed considerably better than
randomly generating negative examples. The intu-
ition is as follows: at test time the classifier must op-
erate on word pairs that are generated using nearest
neighbour search. Such word pairs are not random,
but are rather very close in the aligned embedding
space and are often orthographically similar. Thus,
this strategy for generating negative samples makes
the train conditions for the classifier better reflect
the test conditions.

Features. The classification-based approach al-
lows for the integration of a wide spectrum of di-
verse features that capture different word transla-
tion evidence. We outline the sets of features used
in this work, computed for each word pair (s, t).

F1. Edit distance – Levenshtein and Jaro-Winkler
distance between s and t (Cohen et al., 2003). Fol-
lowing Heyman et al. (2017) we also include nor-
malized edit distance, log of the rank of t in a list
sorted by edit distance with respect to s, as well as
a product of these two values.

F2. Cosine similarity of s and t in W
(k)
cl (at iter k).

F3. Aligned embeddings of s and t, PCA-reduced
to 10 dimensions (20 features in total).
F4. Normalized n-gram overlap (Šarić et al., 2012);
F5. Character n-grams – we extract all character n-
grams and use χ2 feature selection to select the 10
most indicative ones. The intuition is to allow the
model to recognize indicative prefixes or suffixes.
F6. Subword-level similarity – we use multilin-
gual subword embeddings (SWEs) based on BPEs
(Heinzerling and Strube, 2018). We add the follow-
ing features: i) we average the BPEs of s and t and
calculate cosine similarity of the resulting vectors,

ii) the pairwise maximum cosine similarity of all
pairs of SWEs (one from s and the other from t),
and iii) the Earth Mover’s distance between the two
sets of SWEs (Kusner et al., 2015).

F7. Frequencies – we provide the rank of the word
in a list of all words sorted by frequency. The ranks
are normalized by the number of words.

At test time, if we use the classifier to perform the
final reranking, we take for each source word s
a set of candidate target word translations as the
union of 1) the top Nro target word neighbours of
s by edit distance, and 2) the top Nrc target word
neighbours of s by cosine in the final aligned Wcl.
We then score the Nro +Nrc candidates using the
classifier from the last self-learning iteration.

3 Experiments and Results

3.1 Experimental Setup

Monolingual Vectors and BLI Data. Following
prior work (Artetxe et al., 2018b; Glavaš et al.,
2019), we start from monolingual fastText vectors
trained on full Wikipedias for each language (Bo-
janowski et al., 2017); vocabularies are trimmed to
the 200K most frequent words. We evaluate on the
standard BLI dataset from Glavaš et al. (2019): it
comprises 28 language pairs with a good balance
of typologically similar and distant languages: En-
glish (EN), German (DE), Italian (IT), French (FR),
Russian (RU), Croatian (HR), Turkish (TR), and
Finnish (FI). As our focus is on weakly supervised
setups, we use only 500 translation pairs as our
initial seed dictionary. We report BLI performance
using the standard Precision@1 (P@1) measure.

Classifier Details. We use the Adam optimizer
(Kingma and Ba, 2015) and regularize the model
via `2-penalty on the weights and early stopping on
10% of held-out data. Early stopping is performed
for each language pair separately, while other hy-
perparameter values are found by grid search5 max-
imizing a three-fold cross-validation score on the
training data for a randomly selected language pair
(EN–HR), and reused in all other experiments.

Hyperparameters. We find values for other hy-
perparameters on held-out data for a randomly
chosen language pair: EN–HR. Unless otherwise
stated, we fix them to the following values for all
other experiments and language pairs. In Algo-

5Hidden layer sizes explored are 3, 5, 10, 20, 25 and
regularization strengths are 0.0001, 0.01, and 1. The values
selected by grid search were 25 and 1, respectively.
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rithm 1, P = 1000, K = 500, n = 30. Fur-
ther, we sample 2 negative examples per each pos-
itive example from the sets of size No = Nc = 5.
Nro = Nrc = 3 when doing the final reranking.
We note that more careful tuning of these values
could lead to further improvements in results.

Baselines. We compare to the VECMAP system
(Artetxe et al., 2018b) in its semi-supervised variant
as a robust and highly competitive self-learning
framework (Glavaš et al., 2019; Vulić et al., 2019).

3.2 Results and Discussion

The main results over a representative selection
of language pairs and setups are provided in Ta-
ble 1. Full results over all 28 pairs are pro-
vided in Appendix A. The results indicate sev-
eral important findings. First, classification-based
self-learning is more powerful than the standard
VECMAP self-learning: we observe gains on 22/28
pairs using CLASSYMAP without the final rerank-
ing step, even without language pair-dependent
fine-tuning. Second, framing BLI as a classifica-
tion task leads to further gains: we report improve-
ments on 25/28 pairs using CLASSYMAP with the
final reranking step over both supervised and semi-
supervised VECMAP variants. Using reranking
with CLASSYMAP seems useful across the board.6

As a side finding, our results also revalidate
the evident usefulness of the self-learning proce-
dure for weakly supervised setups in general (Vulić
et al., 2019): the average P@1 score across All
languages of a supervised VECMAP method based
on the same initial dictionary, but without any self-
learning, is only 0.111, while we report the average
of 0.365 (with final reranking) in Table 1.

Importantly, the gains seem more pronounced
for more ”difficult”, typologically dissimilar, and
morphologically rich language pairs such as TR–
RU or DE–TR, than for similar languages such
as IT–FR, with more isomorphic monolingual
spaces (Søgaard et al., 2018). To analyze this
further, we have run additional experiments on
the BLI evaluation sets of Vulić et al. (2019)
comprising more typologically distant language
pairs7, with similar conclusions. For instance,

6We have also probed a variant where we learn a classifier
for the final reranking step on top of VECMAP’s output after its
self-learning procedure. However, as suggested by the results
in Table 1, this leads to drops in performance compared to
standard semi-supervised VECMAP. We speculate that this is
due to higher levels of noise in the final VECMAP dictionary.

7github.com/cambridgeltl/panlex-bli

VECMAP (sup) VECMAP CLASSYMAP

TR-HR .030 .160/.171 .200/.227
DE-TR .050 .207/.203 .221/.268
TR-FI .034 .200/.176 .217/.235
TR-RU .028 .123/.152 .162/203
FI-HR .049 .249/.195 .252/.278
DE-HR .058 .229/.206 .246/.268
DE-RU .111 .193/.208 .212/.239
EN-X .177 .357/.325 .375/.401
No EN .089 .310/.286 .322/.353
All .111 .321/.296 .334/.365

Table 1: P@1 BLI scores for a selection of language
pairs. We also perform the average scores over pairs
that include English (EN-X) and those that do not (No
EN), as well as the averages for all pairs (All). The
a/b score format denotes a score without (a), and
with the final reranking step (b). All improvements of
CLASSYMAP with reranking over the strongest base-
line (i.e., VECMAP with self-learning) are significant
(p<0.05) according to the non-parametric shuffling test
(Yeh, 2000) with the Bonferroni correction.

with 500 seed pairs CLASSYMAP with reranking
scores 24.6 P@1 for Estonian-Esperanto and 16.6
for Hungarian-Basque. The strongest baselines
achieve P@1 of 20.0 and 13.8, respectively. In sum,
our classification-based approach holds promise to
guide future work especially on distant pairs.

Step Size and the Number of Iterations. We now
analyze how two vital components of self-learning
impact the final BLI scores: 1) the number of added
dictionary entries per iteration (i.e., step size, see
Table 3), and 2) the number of iterations (Figure 1).
For brevity, we run the analyses on several “diffi-
cult” language pairs: DE–RU, TR–FI, HR–FR, and
EN–FI. The results suggest that the step size has
only moderate impact on the final scores, and is lan-
guage pair-dependent. However, all three options
improve over the baseline self-learning method,
and final reranking is again useful across the board.
According to Figure 1, the optimal number of iter-
ations is also pair-dependent: TR–FI performance
steadily increases over time, while DE–RU hits the
peak after only 5 iterations and steadily declines
afterwards. This finding calls for a more careful
tuning of this parameter in future work.

Feature Ablation Analysis. We also perform an
ablation analysis, reported in Table 4. Overall, the
results suggest that different features contribute to
the final performance. This corroborates our hy-
pothesis that one of the main advantages of the
classification-based approach is its ability to fuse
different translation evidence. However, there are
cases (e.g., using BPE for DE–RU or TR–FI) where

github.com/cambridgeltl/panlex-bli
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500 1k 3k 5k

DE–RU .111 / .193 / .212 / .239 .232 / .191 / .224 / .249 .301 / .194 / .244 / .277 .303 / .192 / .262 / .290
EN–FI .081 / .238 / .299 / .350 .219 / .238 / .313 / .363 .320 / .238 / .318 / .362 .352 / .240 / .330 / .370
HR–FR .053 / .352 / .363 / .411 .178 / .351 / .368 / .406 .325 / .352 / .376 / .420 .353 / .359 / .372 / .417
TR–FI .034 / .200 / .217 / .235 .111 / .197 / .234 / .249 .213 / .197 / .246 / .266 .242 / .198 / .258 / .274

Table 2: Performance for varying initial dictionary sizes (500, 1k, 3k, 5k seed translation pairs). The numbers
in each entry delimited with ’/’ are P@1 scores of 1) supervised VECMAP, 2) VECMAP with self-learning, 3)
CLASSYMAP without reranking, and 4) CLASSYMAP with reranking, respectively.

(a) Without reranking (b) With reranking

Figure 1: BLI performance (P@1) of CLASSYMAP for varying numbers of self learning iterations.

Entries added DE–RU TR–FI HR–FR EN–FI

18x500 .219/.242 .215/.228 .362/.391 .298/.313
36x250 .220/.244 .217/.227 .363/.416 .295/.312
60x150 .220/.242 .220/.225 .352/.403 .314/.318

Table 3: P@1 BLI scores when varying the number
of new dictionary entries added per iteration (i.e., itera-
tions × entries). The a/b score format denotes a score
without (a), and with the final reranking step (b).

Feature Sets DE–RU TR–FI HR–FR EN–FI

F1 + F7 .232/.182 .202/.147 .335/.223 .268/.172
+ F2 .231/.231 .194/.195 .350/.366 .280/.281
+ F3 .247/.260 .199/.204 .333/.365 .284/.292
+ F6 .244/.249 .191/.186 .348/.377 .280/.292
+ F4 + F5 .258/.255 .205/.211 .344/.376 .306/.301

Table 4: Feature ablation. n = 10. We experiment
with Edit dist. (F1), frequencies (F7), cosine (F2), PCA
(F3), BPE (F6), and n-grams (F4 + F5) .

a feature set can negatively affect performance.
In sum, this small ablation study warrants finer-
grained and language pair-dependent feature selec-
tion in future work.

Seed Dictionary Size. We also provide additional
results when varying the size of the initial seed
dictionary in Table 2. The main finding is that,
while the absolute BLI scores are naturally higher
with larger seed dictionaries, CLASSYMAP re-
mains useful even with much larger dictionary
sizes (check the results with 3k and 5k seed pairs).
CLASSYMAP with reranking remains the strongest
BLI method, corroborating our previous findings.

4 Conclusion and Future Work

We introduced CLASSYMAP, a novel classification-
based approach to self-learning, which is a crucial
component of projection-based cross-lingual word
embedding induction models in low-data regimes.
We reported its usefulness and robustness across a
wide spectrum of diverse language pairs in the BLI
task, confirming the usefulness of learning classi-
fiers both as part of the self-learning procedure as
well as for the final word retrieval in the BLI task.

This proof-of-concept work opens up a wide
spectrum of interesting avenues for future research,
including the use of more powerful classifiers,
more sophisticated features (e.g., character-level
transformers), and fine-grained linguistic analyses
on the importance of disparate features over differ-
ent language pairs. One particularly exciting direc-
tion is the application of our classification-based
self-learning framework on top of the most recent
methods that induce bilingual spaces via non-linear
alignments (Glavaš and Vulić, 2020; Mohiuddin
and Joty, 2020). The code is available online at:
https://github.com/mladenk42/ClassyMap.
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Württemberg Stiftung (AGREE grant). We thank
the reviewers for their insightful suggestions.

https://github.com/mladenk42/ClassyMap


6920

References

Oliver Adams, Adam Makarucha, Graham Neubig,
Steven Bird, and Trevor Cohn. 2017. Cross-lingual
word embeddings for low-resource language model-
ing. In Proceedings of EACL, pages 937–947.

David Alvarez-Melis and Tommi Jaakkola. 2018.
Gromov-Wasserstein alignment of word embedding
spaces. In Proceedings of EMNLP, pages 1881–
1890.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of ACL, pages
451–462.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018a. Generalizing and improving bilingual word
embedding mappings with a multi-step framework
of linear transformations. In Proceedings of AAAI,
pages 5012–5019.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018b. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of ACL, pages 789–798.

Mikel Artetxe, Sebastian Ruder, Dani Yogatama,
Gorka Labaka, and Eneko Agirre. 2020. A call for
more rigor in unsupervised cross-lingual learning.
In Proceedings of ACL.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the ACL,
5:135–146.

Xilun Chen and Claire Cardie. 2018. Unsupervised
multilingual word embeddings. In Proceedings of
EMNLP, pages 261–270.

William W. Cohen, Pradeep Ravikumar, and Stephen E.
Fienberg. 2003. A comparison of string distance
metrics for name-matching tasks. In Proceedings
of the International Conference on Information In-
tegration on the Web, pages 73–78.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
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A BLI Results for All 28 Language Pairs

VECMAP (supervised) VECMAP (SL) VECMAP (SL+R) CLASSYMAP (SL) CLASSYMAP (SL+R)

EN–DE .238 .466 .392 .451 .460
EN–TR .076 .247 .253 .273 .333
EN–FI .081 .238 .203 .299 .350
EN–HR .072 .213 .189 .238 .271
EN–RU .135 .203 .222 .230 .266
EN–IT .325 .552 .480 .542 .546
EN–FR .314 .582 .536 .573 .580
DE–TR .050 .207 .203 .221 .268
DE–FI .070 .240 .194 .265 .297
DE–HR .058 .229 .206 .246 .268
DE–RU .111 .193 .208 .212 .239
DE–IT .196 .464 .397 .475 .466
DE–FR .143 .465 .426 .461 .484
TR–FI .034 .200 .176 .217 .235
TR–HR .030 .160 .171 .200 .227
TR–RU .028 .123 .152 .162 .203
TR–IT .061 .296 .290 .297 .334
TR–FR .047 .307 .323 .316 .369
FI–HR .049 .249 .195 .252 .278
FI–RU .064 .263 .217 .280 .302
FI–IT .066 .318 .317 .328 .376
FI–FR .059 .322 .315 .330 .384
HR–RU .076 .305 .265 .312 .347
HR–IT .078 .366 .332 .361 .415
HR–FR .053 .352 .325 .363 .411
RU–IT .130 .402 .343 .409 .438
RU–FR .106 .407 .370 .417 .442
IT–FR .367 .633 .583 .630 .633

EN–X .177 .357 .325 .372 .401
No EN .089 .310 .286 .322 .353
All .111 .321 .296 .334 .365

Table 5: P@1 BLI scores for all 28 language pairs. We report scores of 1) VECMAP in the supervised setting
without self learning, 2) VECMAP and CLASSYMAP with only self learning but without reranking (SL), and 3)
VECMAP and CLASSYMAP with both self learning and reranking (SL+R). All models start with the same seed set
of 500 word translation pairs.


