
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6870–6886
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6870

Generalized Entropy Regularization or:
There’s Nothing Special about Label Smoothing

Clara MeisterQ Elizabeth SaleskyZ Ryan CotterellD,Q
QETH Zürich ZJohns Hopkins University DUniversity of Cambridge

clara.meister@inf.ethz.ch esalesky@jhu.edu

ryan.cotterell@inf.ethz.ch

Abstract

Prior work has explored directly regularizing
the output distributions of probabilistic models
to alleviate peaky (i.e. over-confident) predic-
tions, a common sign of overfitting. This class
of techniques, of which label smoothing is one,
has a connection to entropy regularization. De-
spite the consistent success of label smoothing
across architectures and datasets in language
generation tasks, two problems remain open:
(1) there is little understanding of the underly-
ing effects entropy regularizers have on mod-
els, and (2) the full space of entropy regulariza-
tion techniques is largely unexplored. We in-
troduce a parametric family of entropy regular-
izers, which includes label smoothing as a spe-
cial case, and use it to gain a better understand-
ing of the relationship between the entropy of a
trained model and its performance on language
generation tasks. We also find that variance
in model performance can be explained largely
by the resulting entropy of the model. Lastly,
we find that label smoothing provably does
not allow for sparse distributions, an undesir-
able property for language generation models,
and therefore advise the use of other entropy
regularization methods in its place. Our code
is available online at https://github.com/
rycolab/entropyRegularization.

1 Introduction

When training large neural networks with mil-
lions of parameters, regularization of some form
is needed to prevent overfitting, even when large
amounts of data are used; models for language
generation are no exception. In probabilistic mod-
eling, e.g. when the final layer of the neural net-
work is a softmax, overfitting often manifests it-
self in overconfident placement of most of the
probability mass on a few candidates, resulting in
peaky (low-entropy) probability distributions over
the vocabulary. Specifically for language gener-
ation tasks, this behavior leads to the output of
repetitive or frequently occurring but unrelated text,

which is detrimental to the generalization abilities
of the model (Chorowski and Jaitly, 2017; Holtz-
man et al., 2020). A natural regularizer to consider
is, therefore, one that penalizes overconfidence,
encouraging higher entropy in the learned distri-
bution. Indeed, the literature has ascribed gains
of ≈ 1 BLEU point in machine translation to label
smoothing, one such technique (Chen et al., 2018).

Despite the clear relationship between low en-
tropy and overfitting, only a handful of distinct
entropy regularizers have been explored. To fill
this gap, we introduce generalized entropy regu-
larization (GER), a unified framework for under-
standing and exploring a broad range of entropy-
inducing regularizers. GER is based on the skew-
Jensen family of divergences Jα,G (Nielsen and
Boltz, 2011) and thus may be generalized to any
Bregman divergence through the choice of genera-
tor function G. For the negative entropy generator
function, GER recovers label smoothing (Szegedy
et al., 2015) as α→ 1, and the confidence penalty
(Pereyra et al., 2017) as α→ 0. We provide formal
properties of GER in §3, proving these special-case
equivalences among other characteristics of GER.
We then use GER to examine the relationship be-
tween entropy and the evaluation metrics in two
language generation tasks: neural machine transla-
tion (NMT) and abstractive summarization.

GER encompasses a large family of regularizers,
which allows us to directly compare label smooth-
ing to other forms of entropy regularization. By
studying the relationship between different regular-
izers on the performance of natural language gen-
eration (NLG) systems, we can better understand
not just when but also why label smoothing aids
language generation tasks. Through our analysis,
we gain the following insights:

(i) With tuning of the regularizer’s coefficient,
any choice of α can yield similar perfor-
mance, i.e. there is nothing special about label
smoothing. In fact, our results suggest that la-

https://github.com/rycolab/entropyRegularization
https://github.com/rycolab/entropyRegularization

6871

bel smoothing (α→ 1) makes it more difficult
to tune the regularizer’s coefficient.

(ii) Label smoothing assigns infinite cost to sparse
output distributions, which may be an undesir-
able behavior for language generation tasks.

(iii) There is a strong (quadratic) relationship be-
tween a model’s performance on the evalua-
tion metric and its (average) entropy, offering
a hint as to why these regularizers are so ef-
fective for NLG.

In summary, entropy-inducing regularizers are a
boon to probabilistic NLG systems, which bene-
fit from higher entropy output distributions. La-
bel smoothing works because it forces the model
towards a higher-entropy solution, but we recom-
mend the confidence penalty and other entropy reg-
ularizers (α < 1) for reasons (i) and (ii) above.

2 Preliminaries

In this work, we consider conditional probability
models pθ(y | x) for natural language generation;
such models assign probability to a target sequence
y ∈ Y given a source sequence x. Specifically,
our target sequence y = 〈y1, . . . , yn〉 of arbitrary
length n is a sequence of target words1 yi from
our vocabulary Y . The set of all complete target
sequences, which are padded with distinguished
beginning- and end-of-sentence symbols, BOS and
EOS, is then defined as Y := {BOS ◦y ◦ EOS | y ∈
Y ∗}. For language generation tasks, pθ(y | x) is
typically a neural network with parameters θ; this
network is often trained to approximate p̃(y | x),
the empirical distribution (i.e. the distribution of
the data). Here, we focus on locally normalized
models; in such models pθ(y | x) is factored as:

pθ(y | x) = pθ(y1 | x) · · · pθ(yn | x,y<n) (1)

where pθ(yi | x,y<i) is defined by a softmax over
the output of the final fully connected layer of the
network. Generation is performed using greedy
search, beam search or a sampling scheme. Of the
candidate sequences generated, the one with the
highest probability under the model pθ is returned
as the model’s prediction.

One way of selecting the parameters θ is to min-
imize the KL-divergence between the empirical

1Targets yi may also be characters or subwords; our exper-
iments use byte-pair encoding (Sennrich et al., 2016)

distribution and the model. This yields the cross-
entropy loss (plus an additive constant):2

L(θ) = KL(p̃ || pθ) (2)

= H(p̃, pθ)︸ ︷︷ ︸
cross-entropy loss

− H(p̃)︸︷︷︸
constant w.r.t. θ

(3)

However, fitting a model that perfectly approx-
imates the empirical distribution is, in general,
fraught with problems (Hastie et al., 2001). The
goal of learning is to generalize beyond the ob-
served data. Exactly fitting the empirical distri-
bution, often termed overfitting, is therefore not
an ideal goal and for language generation models
specifically, does not go hand-in-hand with the abil-
ity of a model to generate desirable text (Bengio
et al., 2015). Consequently, it is advisable to mini-
mize a regularized objective to prevent overfitting:

L(θ) + βR(θ) (4)

whereR(θ) is a regularizer defined over the model
with “strength” coefficient β > 0.

2.1 Entropy Regularization

Overfitting can manifest itself as peakiness in
pθ (Williams and Peng, 1991; Mnih et al., 2016;
Pereyra et al., 2017). In other words, pθ overcon-
fidently places most of the probability mass on
very few candidates. While this overconfidence
improves training loss, it hurts generalization. En-
tropy regularization is one technique that directly
combats such overconfidence by encouraging more
entropic (less peaky) distributions.

The entropy of the model pθ is defined as

H (pθ) := −
∑
y∈Y

pθ(y) log pθ(y) (5)

where we remove dependence on x for notational
simplicity. However, the sum in eq. (5) over Y gen-
erally renders its computation intractable.3 Instead,
regularization is performed on the conditional dis-
tribution over Y ∪ {EOS} at each time step, which
can be interpreted as an approximation of the true
model entropy. For ease of notation, we define a
higher-order function Df over our training corpus
C consisting of 〈x,y〉 pairs that maps a function f

2H(p, q) := −
∑
z∈Z p(z) log q(z) is cross-entropy and

H(p) := H(p, p) = −
∑
z∈Z p(z) log p(z) is the Shannon

entropy, for which log = log2 and Z = supp(p).
3The notation used by Pereyra et al. (2017) is imprecise.

6872

Training Method Loss Function Alternate Formulation

Cross Entropy L(θ) = H(p̃, pθ) = KL(p̃ || pθ) + H(p̃)

Confidence Penalty, DJ0 LCP(θ) = L(θ) + β DKL(pθ || u) = L(θ)− β DH(pθ) + C

Label Smoothing, DJ1 LLS(θ) = L(θ) + β DKL(u || pθ) = L(θ) + β DH(u, pθ) + C

Generalized Entropy Regularization, DJα LGER(θ) = L(θ) + β DJα(u || pθ) —

Table 1: Loss functions and their alternate formulations for different training methods; the latter three are entropy
regularization techniques that augment the standard loss function in row 1. C denotes a constant with respect to θ.

over distributions p, q as follows below:

Df (p || q) = (6)∑
〈x,y〉∈C

|y|∑
t=1

f(p(· | x,y<t) || q(· | x,y<t))

The function Df allows us to describe in notation
how entropy regularization is typically employed
in the training of language generation systems.4

Label Smoothing. Label smoothing, first
introduced as a regularizer for neural networks
by Szegedy et al. (2015), is so named because the
technique smooths hard target distributions. One
such distribution, the empirical distribution, is
encoded as a set of one-hot vectors (hard targets)
where for each data point, the correct label (e.g.,
vocabulary index of a word) has value 1 and
all other labels have value 0. Label smoothing
with strength coefficient γ is an add-γ smoothing
scheme on the distribution over labels at every
time step. Interestingly, minimizing the cross
entropy between this modified distribution and
the model pθ is equivalent to adding the weighted
KL divergence between the uniform distribution
and the model pθ in our original objective function
with the same strength coefficient:

L(θ)LS
γ := (1− γ)L(θ) + γ DKL(u || pθ) (7)

While the loss function is often scaled as above,
it is nonetheless equivalent to L(θ)LS

β = L(θ) +

β DKL(u || pθ);5 we use this form for consistency.

Confidence Penalty. The confidence penalty,
empirically explored in the supervised learning set-
ting by Pereyra et al. (2017), aims to penalize a
low-entropy model. This is done by subtracting a
weighted term for the entropy of the model’s pre-

4Note that the standard loss function in eq. (3) can be
written in this form when computed over C, i.e. KL(p̃ ||
pθ) = DKL(p̃ || pθ), since the reference y is the only value
in supp(p̃).

5up to multiplicative factor (1− γ) when β = γ/(1− γ)

diction pθ(·) from the loss function, thereby encour-
aging a more entropic model. This is equivalent to
adding the KL divergence between the model pθ

and the uniform distribution:

L(θ)CPβ := L(θ) + β DKL(pθ || u) (8)

While Pereyra et al. (2017) found that label smooth-
ing performed better than the confidence penalty
for NMT, they only searched coarsely over a small
range of β’s for both regularizers. Our findings in
§4 suggest an alternate conclusion.

3 Generalized Entropy Regularization

The positive effect of both label smoothing and
the confidence penalty on model performance in
language generation tasks motivates further explo-
ration of entropy-promoting regularizers. To this
end, we construct a parameterized family of regu-
larizers with label smoothing and the confidence
penalty as special cases. We discuss the formal
properties of a subset of this family, providing up-
per and lower bounds for it. We show divergence
only occurs in one case for this subset (α → 1),
which directly implies that no sparse solution exists
when label smoothing is used as a regularizer.

3.1 A Family of Entropy Regularizers

We derive a family of regularizers from the skew-
Jensen divergence Jα,G (Nielsen and Boltz, 2011),
which is defined below as:

Jα,G(q || pθ) :=
1

α(1− α)

(
(1− α)G(q) + αG(pθ)

−G((1− α)q + αpθ)
)

(9)

for a strictly convex generator function G : Ω −→
R and α ∈ (0, 1) where Ω is a closed convex set. In
this paper, we restrict Ω to be the (|Y |+1)-simplex.
Note that Jα,G(q || pθ) 6= Jα,G(pθ || q) in general,
although this is true for some choices of G and α.

We define the generalized entropy regularizer as
R(θ) = DJα,G(u || pθ) where u is the uniform

6873

Figure 1: Different divergence measures between u,
the uniform distribution and p, a probability distribu-
tion over a Bernoulli random variable X . Note that the
confidence penalty is equivalent to KL(p || u) = J0

and label smoothing is equivalent to KL(u || p) = J1

(see §3.1). We include entropy H(p) and Eu(u || p) =
Jα,G(u || p) for α = 0.5 and G(p) = ||p||22.

distribution.6 These regularizers promote entropy
because they push the model pθ towards u, which is
the maximum-entropy distribution with an entropy
of log(|Y |+1). Throughout the rest of this paper,
we primarily use the generator function7 G(p) =
−H(p). We use Jα as shorthand for Jα,−H.

We note Jα is equivalent to quadruple the Jensen–
Shannon (JS) divergence and asymptotically ap-
proaches the Kullback–Leibler (KL) divergence for
certain values of α. Specifically, we have:

lim
α→0

Jα(q || pθ) = KL(pθ || q) (10)

lim
α→1

Jα(q || pθ) = KL(q || pθ) (11)

J1/2(q || pθ) = 4 · JS(q || pθ) (12)

We prove these relationships in App. A and App. B.
For ease, we define J1 := limα→1 Jα and J0 :=
limα→0 Jα. We note the following two equiva-
lences for these special cases.

Proposition 1. ∇θJ1(u || pθ) = ∇θH(q, pθ). In
words, the gradient of the loss with GER as α→1
is equivalent to the gradient of the loss augmented
with label smoothing.

Proposition 2. ∇θJ0(u || pθ) = ∇θH(pθ). In
words, the gradient of the loss with GER as α→ 0
is equivalent to the gradient of the loss augmented
with the confidence penalty.

See App. C and App. D for proofs.

6Distributions other than u may also be used. See §5.
7We also experiment with G(z) = ||z||22.

Figure 2: Jα(u || p) as a function of α for u, the uni-
form distribution, and p, a probability distribution over
a 3-way categorical random variable, where for (a) p =
(0.0001, 0.49995, 0.49995) (b) p = (0.15, 0.15, 0.7)
and (c) p = (0.25, 0.25, 0.5). There is no standard
trend for Jα as purely a function of α ∈ (0, 1).

3.2 Formal Properties of Jα

When fitting a model pθ, we generally optimize
the inclusive KL, i.e. KL(p̃ || pθ), so that, among
other reasons, pθ has support everywhere that p̃ has
support. However, it is unclear what relationships
we want to encourage between the model pθ and
the uniform distribution u during regularization as
complete support of u implies no word can ever
have non-zero probability. Here we explore formal
properties of Jα as a regularizer to gain insight into
how, as a function of α, these regularizers affect
the learned distribution.

Magnitude. Figure 1 shows the different diver-
gence measures between u and pθ. We see that
J1 = KL(u || pθ) (label smoothing) is much
larger than J0 = KL(pθ || u) (confidence penalty)
at values of pθ farther from u. This indicates that
J1 would be a stronger regularizer than J<1, i.e. pe-
nalize values of pθ far from u more heavily, given
the same strength coefficient β. Note that it is not
always the case that J<1(u || p) ≤ J1(u || p) for
fixed p. We can, however, bound Jα from above
and below by other quantities.

Proposition 3. The divergence Jα(u || p) is not a
monotonic function of α for all distributions p.

A proof by counter example is shown in Figure 2.

Proposition 4. For fixed p, Jα has bounds:
0 ≤ Jα(u || p) ≤ KL(u || p) + KL(p || u).

See App. E for a proof.

Sparsity. Sparsity is generally a desirable trait
in probabilistic models; specifically for structured
prediction, it leads to improvements in performance
and interpretability (Martins et al., 2011; Niculae

6874

WMT’14 De-En IWSLT’14 De-En MTTT Fr-En
α β Ĥ BLEU α β Ĥ BLEU α β Ĥ BLEU

No Regularization – 0 0.11 31.1 – 0 0.1 35.7 – 0 0.15 35.2
Label Smoothing DJ1 (γ=0.1) 1 0.11 0.23 31.3 +0.2 1 0.11 0.18 36.9 +1.2 1 0.11 0.18 36.5 +0.8
Label Smoothing DJ1 1 0.35 0.38 31.7 +0.6 1 0.50 0.40 37.2 +1.5 1 0.693 0.47 37.5 +2.3
Confidence Penalty DJ0 0 0.28 0.55 31.6 +0.5 0 0.76 0.81 37.5 +1.8 0 0.95 0.86 37.4 +2.2
GER DJα 0.7 0.65 0.47 32.0 +0.9 0.5 1.00 0.56 37.5 +1.8 0.85 0.52 0.37 37.6 +2.4

Table 2: BLEU scores and normalized entropy Ĥ(pθ) on the test sets for WMT’14 De-En, WMT’14 De-En, and
MTTT Fr-En. Results include baseline models with no (entropy) regularization and standard label smoothing
with γ=0.1 (equivalent to β ≈ 0.11). We report scores from the best model found (on validation set) for DJ0

,
DJ1

, and DJα
over all α, β pairs. BLEU standard deviation across random seeds was typically < 0.1 and always

< 0.16.8 Results for MTTT Ja-En and convolutional architectures can be found in App. H.

et al., 2018). For example, Martins and Astudillo
(2016) showed the benefits of using sparsemax,
which induces sparsity in an output distribution or
attention layer, for natural language inference tasks.
There are also intuitive reasons for allowing pθ to
be sparse. Part of modeling language generations
tasks is learning when particular sequences cannot,
or at least should not, occur (e.g. are grammatically
or syntactically incorrect). In these cases, a model
should be able to assign 0 probability mass to that
sequence. However, there is no sparse optimal
solution pθ when using label smoothing as the label
smoothing loss function becomes divergent if pθ

does not assign probability mass ∀y ∈ supp(u).

Proposition 5. Jα(u || p) is finite for any p ∈ Ω
and any α < 1. As α → 1, Jα(u || p) diverges iff
∃y ∈ supp(u) for which p(y) = 0.

See App. F for a proof.

4 Experiments

We evaluate our family of entropy regularizers on
two language generation tasks: machine translation
and abstractive summarization. We then analyze
trends in model performance as a function of α and
model entropy9 and explore how this entropy af-
fects other properties of language generation mod-
els. In the following experiments, each model is
trained using eq. (4) where R(θ) = DJα(p̃ || pθ).
We conduct searches over α and β using Bayesian
optimization (Snoek et al., 2012) to find the combi-
nation of regularizerDJα and strength coefficient β

8We have α ≈ 1 as an exception; the standard deviation is
slightly higher for larger values of β.

9Model entropy is estimated as an average of the en-
tropies of distributions at each time step during decoding,
i.e. Ĥ(pθ) = DH(pθ). Entropy is normalized by the maxi-
mum possible entropy for the given vocabulary size (log |Y |)
in all figures and tables to control for the fact that languages
have vocabularies of different sizes.

that lead to the lowest loss on the development set
for the respective task.10 We additionally do a more
fine-grained grid search over β for J0 (confidence
penalty) and J1 (label smoothing) for completeness.
All other model hyperparameters are held constant.
We run experiments on multiple architectures and
across several data sets to ensure trends are general.

4.1 Neural Machine Translation
We explore performance of the regularizer DJα

on NMT systems using three language pairs and
corpora of two different sizes on the following
tasks: WMT’14 German-to-English (De-En)
(Bojar et al., 2014), IWSLT’14 German-to-English
(De-En) (Cettolo et al., 2012), and Multitarget TED
Talks Task (MTTT) French-to-English (Fr–En) and
Japanese-to-English (Ja-En) tasks (Duh, 2018). For
the larger WMT data set, we train fewer models
using coarser-grained α and β ranges. We perform
experiments for both Transformers (Vaswani et al.,
2017) and convolutional sequence-to-sequence
models (Gehring et al., 2017).

For reproducibility and comparability, we use
the data pre-processing scripts provided by fairseq
(Ott et al., 2019) and follow recommended hyper-
parameter settings from previous work (Vaswani
et al., 2017; Gehring et al., 2017) for baseline mod-
els. We use SacreBLEU (Post, 2018) to calculate
BLEU scores (Papineni et al., 2002). Specific data
pre-processing steps and model hyperparameter
details are provided in App. G. Decoding is per-
formed with length-normalized beam search with
a beam size of 5 unless otherwise stated. Early
stopping was used during training; model parame-

10We only report results with generator function G = −H
as results using G(z) = ||z||22 were consistently worse and
often did not improve on the baseline; these results may be
seen in App. H.

6875

Figure 3: Model entropy Ĥ(pθ) vs. BLEU on IWSLT’14 German to English (De-En) and Multitarget TED Talks
Task French to English (Fr-En) using a Transformer architecture; each point is a fully trained model, regularized
with DJα

for varying α and β. Label smoothing at standard γ = 0.1 and no (entropy) regularization are marked.

α β Ĥ(pθ) ROUGE-L
No Regularization – – 0.08 40.5
Confidence Penalty DJ0 0 0.15 0.19 40.9 +0.4
Label Smoothing DJ1 1 0.1 0.2 40.9 +0.4
GER DJα 0.5 0.35 0.19 40.8 +0.3

Table 3: ROUGE-L on test set for CNN/DailyMail ab-
stractive summarization task. Note that we replicate
their reported result (achieved with label smoothing).

ters were taken from the checkpoint with the best
validation set BLEU.

Results of our experiments are shown in Table 2
and Figure 3. We see the same relation between
model entropy and BLEU with both Transformer
and convolutional architectures and between differ-
ent language pairs. We show results for the Trans-
former architectures inline as they are the current
standard for many NLP tasks; results for convo-
lutional architectures are in App. H. Our results
show better performance is achieved with values of
α and β other than those that correspond to label
smoothing with γ = 0.1, which is the commonly
used value for the strength coefficient (Vaswani
et al., 2017; Edunov et al., 2018). Moreover, the
relationship between model entropy and evaluation
performance is strong, following the same trend for
all values of α, which suggests tuning a model for
a specific entropy rather than α, β may be a better
method in practice. We discuss trends in §4.3.

4.2 Abstractive Summarization

We fine-tune BART (Lewis et al., 2019) on the
CNN/DailyMail abstractive summarization task

(Hermann et al., 2015) with regularizer DJα . Data
pre-processing and other hyperparameter settings
follow Lewis et al. (2019). Results in Table 3 show
that optimal values of ROUGE-L (Lin, 2004), the
evaluation metric, can be achieved by regularizing
with DJα for different values of α. Notably, the
entropy is virtually the same for the models that
achieve top performance, demonstrating the closer
relationship of performance with model entropy
than with α, discussed further in §4.3.

4.3 Significance of α and Model Entropy

We look at the strength of the relationship between
the evaluation metrics and both α and the model’s
entropy. Figure 3 shows a quadratic relationship be-
tween model entropy and BLEU. On the other hand,
the relationship between α (coloring of points) and
BLEU is not an obvious one; the best performing
models are regularized with various values of α.

As correlation only tells us about linear relation-
ships, we report mutual information to measure
the strength of the relationship between α, model
entropy, and BLEU. Mutual information shows
the proportion of entropy of a variable that is “ex-
plained” by another and is often used as a general-
ized correlation measure i.e. for nonlinear relation-
ships (Song et al., 2012). We see in Figure 4 that
model entropy has a much stronger relationship
with BLEU than α. Indeed, the normalized mutual
information (NMI) between α and BLEU is ≈ 0.05
compared to ≈ 0.25 between model entropy and
BLEU—implying that any flavor of entropy regular-
ization can lead to similar performance.

While the relationship between α and BLEU is

6876

Figure 4: Entropy H(·), Conditional Entropy H(· | ·)
and Mutual Information I(·; ·) for BLEU with alpha (α)
and model entropy, respectively. Model entropy ex-
plains a greater portion of variability in BLEU than α
does. Non-parametric estimates are used for all values
(Beirlant et al., 1997). Data from IWSLT’14 De-En
Transformer models.

weak, it is still statistically significant. Some ev-
idence for this exists in Figure 3 where a closer
examination reveals that each level of α has a
similar quadratic trend, albeit with a different
offset. Specifically, the performance of models
trained with DJα for α ∈ [0.75, 1] (which includes
label smoothing) starts to degrade at lower lev-
els of entropy than models trained with DJα for
α ∈ [0, 0.25] (confidence penalty). As quantitative
validation of this observation, we (i) run a condi-
tional independence test to see whether BLEU and
α are conditionally independent given model en-
tropy and (ii) look at the range of β for which DJα

leads to good performance for different α.

Conditional Independence. If α and BLEU are
conditionally independent it implies that the value
of α does not supply any additional information
about the value BLEU given model entropy, i.e. α
does not matter when using the regularizer DJα .
We use a Monte Carlo permutation test where the
null hypothesis is that no relationship between α
and BLEU exists.11 However, this test rejects the
null hypothesis with p-value < 0.05, supporting
the alternate hypothesis that α and BLEU are not
conditionally independent.

Tuning β. On the tasks for which we trained
> 60 models, we take the subset of models for
which performance is within ≈ 1% (< 0.4 BLEU)
of the best overall model. We then look at the range
of β used with the regularizer DJα for these mod-
els. The range of β that meets the above criterion is

11The underlying distributions of random variables are as-
sumed to be Gaussian. See Legendre (2000) for more details.

Figure 5: Each line represents the range of β for which
DJα

leads to performance within ≈ 1% (< 0.4 BLEU)
of the best overall model for the task. For α close to
1, (which includes label smoothing) DJα has a smaller
optimal range, and so is harder to tune.

Sparsity Threshold

e−10 e−15

Label Smoothing DJ1 38%± 0.01% 0.0%± 5e-5%

Confidence Penalty DJ0 54%± 5e-3% 0.7%± 4e-4%

Table 4: Percentage of words with< ε probability mass
at different values of ε (below which we consider as
functionally 0) for models trained with DJ1 and DJ0 .
To control for entropy, all models used in the calcula-
tion have entropy within the same 1%.

much larger for α close to 0 than for for α close to
1 (see Figure 5). We contend this implies that DJα

is easier to tune (i.e. it is more robust) for α ≈ 0
while for α ≈ 1, DJα is relatively sensitive to β.

4.4 Sparsity

We take a subset of models trained with regular-
izers DJ0 and DJ1 and examine the sparsity of
pθ. Results in Table 4 support our formal analysis
regarding the sparsity of DJ0 and DJ1 in §3.2; DJ1

steeply penalizes sparsity while DJα for α < 1
allows words to be assigned probability ≈ 0.

4.5 Sequence Likelihood

We look at how the probability (under pθ) of the
reference sequence on the test set changes with
model entropy. While higher entropy in models
trends positively with downstream evaluation met-
rics (Figure 3), experiments show they often lead
to lower log-likelihood of the reference sequence.
Both of these observations have been made for
models trained with label smoothing in previous
works (Ott et al., 2018; Müller et al., 2019).
However, log-likelihood alone does not tell a
complete story. During decoding, we search for the

6877

Figure 6: Average ranking in pθ of words in the refer-
ence sequence on the test set for IWSLT ’14 (De-En)
plotted against model entropy. Overall trends show
a decrease in the ranking of the reference for models
with more entropy regularization. Notably, the refer-
ence is generally ranked higher for models regularized
with DJα

for α ≈ 0 than for α ∈ [0.25, 1).

most probable sequence relative to other candidate
sequences. This implies that a more relevant calcu-
lation would be that of the overall ranking in Y of
the reference sequence or of the log-likelihood of
the reference sequence relative to the most probable
sequence. Since the former is typically impossible
to calculate exactly due to the size of Y , we
approximate it by looking at the average ranking
in Y of each word in the reference sequence.

In Figure 6, we see that higher-entropy models
generally rank the reference sequence lower than
lower-entropy models; this result is surprising
because higher-entropy models generally perform
better on downstream evaluation metrics, e.g.
BLEU. Notably, this decrease in ranking is less
prominent for models regularized with α ≈ 0. In
Figure 8, we see that while lower-entropy models
place more probability mass on the reference
sequence, the reference sequence is still far from
probable compared to the decoded sequence.
However, the ratio of log-likelihoods of the
reference to the decoded sequence is larger for
high-entropy models, which shows that, in this
context, the reference sequence has higher relative
log-likelihood under higher-entropy models.

4.6 Decoding

In language generation tasks, estimated distribu-
tions are fed to decoding algorithms to create se-
quence predictions. To fully understand how model
entropy affects performance for these tasks, we
must explore the potential interactions between
model entropy and the decoding strategy.

Figure 7: BLEU scores on IWSLT’14 De-En valida-
tion set with the convolutional architecture by decoding
strategy and model entropy. The trend in BLEU stays re-
markably constant for beam search as the beam width
is varied. Performance declines drastically for higher
entropy models when random sampling is used. Color
reflects average distance from baseline model.

Chorowski and Jaitly (2017) saw that with label
smoothing, prediction accuracy improved and so
using a wider beam during beam search did not give
further improvements; however, our results suggest
otherwise. As shown in Figure 7, the trend in BLEU

vs. model entropy stays remarkably constant for
beam search as the beam width is varied, includ-
ing for greedy decoding (beam size of 1). Perhaps
unsurprisingly though, higher entropy is detrimen-
tal to the performance of decoding with random
sampling (with temperature T = 1). However,
this phenomenon could potentially be remedied by
decreasing the temperature during decoding, a com-
mon practice for avoiding sampling from the tail
of the distribution (Kirkpatrick et al., 1983).

5 Discussion

Our experiments show entropy regularization has
a number of beneficial effects on natural language
generation models. Clearly, low-entropy predic-
tions, which are more aligned with the empirical
distribution (Figure 8), are a sign of overfitting
in a model since they lead to poor generalization
abilities (Figure 3). In other words, we observe that
closely approximating the empirical distribution
is at odds with a well calibrated model, i.e. a
model pθ(y | x) that matches the true, underlying
probabilities p(y | x).12 Entropy regularization
appears to alleviate this problem; namely, for more
regularized models, Figure 3 shows increased
evaluation metric scores and Figure 8 demonstrates
an increase in the log-likelihood of the reference se-
quence relative to the highest probability sequence.

12This is different than the empirical distribution p̃(y | x).

6878

Figure 8: Average word probability of the reference
and the most probable (for beam search with k = 5)
sequences plotted against model entropy on test set for
IWSLT ’14 (De-En). The black line is a smoothed esti-
mate of their ratio.

Decoding. Overconfident predictions inhibit the
ability to recover after a poor choice of words dur-
ing decoding; Chorowski and Jaitly (2017) suggest
that higher-entropy models pθ, like the ones re-
sulting from regularization with label smoothing,
would alleviate this problem. Results throughout
this paper support this hypothesis not just for la-
bel smoothing, but for the DJα family of entropy
regularizers as well.

Choosing the baseline distribution. Through-
out this work, we use the uniform distribution u as
our baseline distribution for the regularizer DJα .
However, one could also use some other distribu-
tion defined over the vocabulary such as the uni-
gram (Chorowski and Jaitly, 2017) or a function
of word embedding distance with the target word
(Kumar and Tsvetkov, 2019; Li et al., 2020). Both
have proven to be more effective than u when used
with label smoothing and the confidence penalty.
However, using distributions other than u with
DJα leads to indirect forms of entropy regulariza-
tion. Specifically, the mathematical relationship to
entropy regularization becomes more convoluted.
Therefore, we leave the application of GER to other
distributions as a topic for future work.

6 Related Work

Entropy regularization has a long history in re-
inforcement learning (Williams and Peng, 1991;
Mnih et al., 2016; Fox et al., 2016; Haarnoja et al.,
2018) where it has provided substantial improve-
ments in exploration. Such methods have since
been adapted for supervised learning where they
have proven to be reliable forms of regularization

for various probabilistic modeling tasks (Grand-
valet and Bengio, 2005; Smith and Eisner, 2007).

More recently, interpolating between exclusive
and inclusive KL divergences has been explored in
NMT by Xiao et al. (2019). However, this method
was used for the objective function (i.e. between
p̃ and pθ) and not as a regularization technique
(i.e. between a baseline distribution q and pθ). Li
et al. (2020) construct a baseline distribution q as
a function of word embedding distances to to use
in place of the uniform distribution u in the label
smoothing equation. This work is complementary
to ours, as q can similarly be used in place of u
with GER. Finally, our work is closest to that of
Müller et al. (2019), which attempts to find the
circumstances under which label smoothing has a
positive effect on model performance. However,
they do not explore entropy regularization on the
whole nor do they attempt to provide an explana-
tion for why label smoothing works. We attempt to
answer the “why” question through a quantitative
analysis of label smoothing and empirical explo-
ration of the relationship between model entropy
and performance.

7 Conclusion

We discuss the properties of generalized entropy
regularization and provide empirical results on two
language generation tasks. We find entropy reg-
ularization leads to improvements over baseline
systems on evaluation metrics for all values of the
parameter α with our regularizer DJα . Theoreti-
cal and empirical evidence show label smoothing
adds undesirable constraints to the model and is the
hardest to tune of the regularizers tested. We there-
fore advocate the use of alternate forms of entropy
regularization for language generation tasks.

References
J. Beirlant, E. Dudewicz, L. Gyor, and E. C. Meulen.

1997. Nonparametric entropy estimation: An
overview. International Journal of Mathematical
and Statistical Sciences, 6.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems 28, pages 1171–1179.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve

http://dl.acm.org/citation.cfm?id=2969239.2969370
http://dl.acm.org/citation.cfm?id=2969239.2969370

6879

Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web inventory of transcribed
and translated talks. In Proceedings of the 16th Con-
ference of the European Association for Machine
Translation (EAMT), pages 261–268.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics, pages 76–86.

Jan Chorowski and Navdeep Jaitly. 2017. Towards bet-
ter decoding and language model integration in se-
quence to sequence models. In Proceedings of IN-
TERSPEECH.

Kevin Duh. 2018. The multitarget TED talks
task. http://www.cs.jhu.edu/˜kevinduh/a/
multitarget-tedtalks/.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Roy Fox, Ari Pakman, and Naftali Tishby. 2016. Tam-
ing the noise in reinforcement learning via soft up-
dates. In Proceedings of the Thirty-Second Confer-
ence on Uncertainty in Artificial Intelligence, pages
202–211.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, volume 70, pages 1243–1252.

Yves Grandvalet and Yoshua Bengio. 2005. Semi-
supervised learning by entropy minimization. In
L. K. Saul, Y. Weiss, and L. Bottou, editors, Ad-
vances in Neural Information Processing Systems
17, pages 529–536. MIT Press.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the 35th Inter-
national Conference on Machine Learning.

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2001. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc.,
New York, NY, USA.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems 28, pages 1693–1701.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. International Conference on Learning Repre-
sentations.

Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vec-
chi. 1983. Optimization by simulated annealing.
Science, 220(4598):671–680.

Sachin Kumar and Yulia Tsvetkov. 2019. Von Mises–
Fisher loss for training sequence to sequence mod-
els with continuous outputs. In International Con-
ference on Learning Representations.

Pierre Legendre. 2000. Comparison of permutation
methods for the partial correlation and partial mantel
tests. Journal of Statistical Computation and Simu-
lation, 67(1):37–73.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2019. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. CoRR, abs/1910.13461.

Zuchao Li, Rui Wang, Kehai Chen, Masso Utiyama,
Eiichiro Sumita, Zhuosheng Zhang, and Hai Zhao.
2020. Data-dependent Gaussian prior objective for
language generation. In International Conference
on Learning Representations.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

André Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48, pages 1614–1623.

André F. T. Martins, Noah A. Smith, Pedro M. Q.
Aguiar, and Mário A. T. Figueiredo. 2011. Struc-
tured sparsity in structured prediction. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 1500–1511.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pages 1928–
1937, New York, New York, USA. PMLR.

http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://doi.org/10.18653/v1/P18-1008
https://doi.org/10.18653/v1/P18-1008
https://arxiv.org/abs/1612.02695
https://arxiv.org/abs/1612.02695
https://arxiv.org/abs/1612.02695
http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
http://dl.acm.org/citation.cfm?id=3020948.3020970
http://dl.acm.org/citation.cfm?id=3020948.3020970
http://dl.acm.org/citation.cfm?id=3020948.3020970
http://dl.acm.org/citation.cfm?id=3305381.3305510
http://dl.acm.org/citation.cfm?id=3305381.3305510
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/pdf/1812.04616.pdf
https://arxiv.org/pdf/1812.04616.pdf
https://arxiv.org/pdf/1812.04616.pdf
https://doi.org/10.1080/00949650008812035
https://doi.org/10.1080/00949650008812035
https://doi.org/10.1080/00949650008812035
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://dl.acm.org/citation.cfm?id=2145432.2145592
http://dl.acm.org/citation.cfm?id=2145432.2145592
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html

6880

Rafael Müller, Simon Kornblith, and Geoffrey E. Hin-
ton. 2019. When does label smoothing help? In
Advances in Neural Information Processing Systems
32, pages 4696–4705.

Vlad Niculae, André Martins, Mathieu Blondel, and
Claire Cardie. 2018. SparseMAP: Differentiable
sparse structured inference. In Proceedings of the
35th International Conference on Machine Learning,
volume 80, pages 3799–3808.

Frank Nielsen and Sylvain Boltz. 2011. The Burbea-
Rao and Bhattacharyya centroids. IEEE Transac-
tions on Information Theory, 57(8):5455–5466.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. In Interna-
tional Conference on Machine Learning.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, pages 48–53.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Łukasz Kaiser, and Geoffrey E. Hinton. 2017. Reg-
ularizing neural networks by penalizing confident
output distributions. In Proceedings of the Interna-
tional Conference on Learning Representations.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725.

David A. Smith and Jason Eisner. 2007. Bootstrap-
ping feature-rich dependency parsers with entropic
priors. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 667–677, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Infor-
mation Processing Systems 25, pages 2951–2959.

Lin Song, Peter Langfelder, and Steve Horvath. 2012.
Comparison of co-expression measures: mutual in-
formation, correlation, and model based indices.
BMC Bioinformatics, 13(1):328.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2015. Rethinking
the inception architecture for computer vision. 2016
IEEE Conference on Computer Vision and Pattern
Recognition, pages 2818–2826.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2Tensor for neural machine
translation. CoRR, abs/1803.0741.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008.

Ronald Williams and Jing Peng. 1991. Function opti-
mization using connectionist reinforcement learning
algorithms. Connection Science, 3:241–268.

Fengshun Xiao, Yingting Wu, Hai Zhao, Rui Wang,
and Shu Jiang. 2019. Dual skew divergence loss for
neural machine translation. CoRR, abs/1908.08399.

http://papers.nips.cc/paper/8717-when-does-label-smoothing-help.pdf
http://proceedings.mlr.press/v80/niculae18a.html
http://proceedings.mlr.press/v80/niculae18a.html
https://doi.org/10.1109/tit.2011.2159046
https://doi.org/10.1109/tit.2011.2159046
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://openreview.net/forum?id=HyhbYrGYe¬eId=HyhbYrGYe
https://openreview.net/forum?id=HyhbYrGYe¬eId=HyhbYrGYe
https://openreview.net/forum?id=HyhbYrGYe¬eId=HyhbYrGYe
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/D07-1070
https://www.aclweb.org/anthology/D07-1070
https://www.aclweb.org/anthology/D07-1070
http://dl.acm.org/citation.cfm?id=2999325.2999464
http://dl.acm.org/citation.cfm?id=2999325.2999464
https://doi.org/10.1186/1471-2105-13-328
https://doi.org/10.1186/1471-2105-13-328
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1803.07416
http://arxiv.org/abs/1803.07416
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1080/09540099108946587
https://doi.org/10.1080/09540099108946587
https://doi.org/10.1080/09540099108946587
http://arxiv.org/abs/1908.08399
http://arxiv.org/abs/1908.08399

6881

A α-Jensen to KL

For reference, we repeat eq. (9), the definition of the skew Jensen divergence for some strictly convex
function G : Ω −→ R and probability distributions p, q:

Jα,G(p || q) :=
1

α(1− α)

(
(1− α)G(p) + αG(q)−∇G((1− α)p+ αq)

)
We can rewrite the α-Jensen divergence with convex generator function G in terms of the Bregman

divergence

Jα,G(p || q) =
1

α(1− α)

(
(1− α)G(p) + αG(q)−G((1− α)p+ αq)

)
=

1

α(1− α)

(
(1− α)G(p) + αG(q)−G((1− α)p+ αq)

−α(1− α)〈p− q,∇G((1− α)p+ αq)〉 − α(1− α)〈q − p,∇G((1− α)p+ αq)〉︸ ︷︷ ︸
= 0, note p− q in first inner product and q − p in second

)
=

1

α(1− α)

(
(1− α)G(p) + αG(q)−G((1− α)p+ αq)

− (1− α)〈α(p− q),∇G((1− α)p+ αq)〉︸ ︷︷ ︸
bring α inside the inner product since b〈v, w〉 = 〈b · v, w〉

− α〈(1− α)(q − p),∇G((1− α)p+ αq)〉︸ ︷︷ ︸
likewise, bring (1− α) inside the inner product

)

=
1

α(1− α)

(
(1− α)G(p) + αG(q)−G((1− α)p+ αq)

− (1− α) 〈p− ((1− α)p+ αq),∇G((1− α)p+ αq)〉︸ ︷︷ ︸
distribute α and rewrite

− α 〈q − ((1− α)p+ αq),∇G((1− α)p+ αq)〉︸ ︷︷ ︸
distribute (1− α) and rewrite

)

=
1

α(1− α)

(
(1− α)[G(p)−G((1− α)p+ αq)− 〈p− ((1− α)p+ αq),∇G((1− α)p+ αq)〉]

+α[G(q)−G((1− α)p+ αq)− 〈q − ((1− α)p+ αq),∇G((1− α)p+ αq)〉]︸ ︷︷ ︸
regroup terms based on multiplier (either α or 1− α) so we can rewrite equation as two Bregman divergences

)
=

1

α(1− α)

(
(1− α)DG(p, (1− α)p+ αq) + αDG(q, (1− α)p+ αq)

)
We look at the behavior of DJα,G(p || q) as α −→ {0, 1}

lim
α−→0

1

α(1− α)

(
(1− α)DG(p, (1− α)p+ αq) + αDG(q, (1− α)p+ αq)

)
= lim

α−→0

1

α(1− α)

(
(1− α)DG(p, p)︸ ︷︷ ︸

= 0

+αDG(q, p)
)

= lim
α−→0

1

(1− α)
DG(q, p)

= DG(q, p)

6882

If we expand DG(q, p) using our generator function G(p) =
∑

i p(i) log p(i), we get

DG(q, p)

=
∑
i

q(i) log q(i)−
∑
i

p(i) log p(i)− 〈q − p, log(p)− 1〉

=
∑
i

q(i) log q(i)−
∑
i

p(i) log p(i) +
∑
i

p(i) log p(i)−
∑
i

q(i) log p(i)

−
∑
i

p(i) +
∑
i

q(i)︸ ︷︷ ︸
=0 since q, p are both probability distributions summing to 1

=
∑
i

q(i) log q(i)−
∑
i

q(i) log p(i)

= KL(q || p)

Similarly, we can show limα→1 Jα = KL(p || q)

B α-Jensen to Jensen–Shannon

The proof that the α-Jensen divergence is proportional to the Jensen–Shannon divergence is quite straight-
forward. If we evaluate Jα(p || q) at G = x log x and α = 1

2

Jα(p || q) =
1

α(1− α)

(
(1− α)G(p) + αG(q)−G((1− α)p+ αq)

)
= 4 ·

(1

2
G(p) +

1

2
G(q)−G(

1

2
p+

1

2
q)
)

= 4 ·
(1

2
p log(p) +

1

2
q log(q)− p+ q

2
log(

p+ q

2
)
)

= 4 ·
(1

2
(p log(p)− p log(

p+ q

2
)) +

1

2
(q log(q)− q log(

p+ q

2
))
)

= 4 ·
(1

2
KL(p || p+ q

2
) +

1

2
KL(p || p+ q

2
)
)

= 4 · JS(p || q)

C Label Smoothing

For the case that α→ 1, p = u, and q = pθ, we have

lim
α→1

Jα(u || pθ(· | x)) = KL(u || pθ)

=
∑
y∈Y

u(y) log
u(y)

pθ(y | x)

=
∑
y∈Y

u(y) log u(y)−
∑
y∈Y

u(y) log pθ(y | x)

= log|Y |−
∑
y∈Y

u(y) log pθ(y | x)

= −
∑
y∈Y

u(y) log pθ(y | x) +N

6883

When J1(u || pθ(· | x)) is used as a regularizer for maximum likelihood training, we get the loss
function

L(θ)

= KL (p̃(· | x) || pθ(· | x)) + β ·KL (u(·) || pθ(· | x))

= −
∑
y∈Y

(
p̃(y | x) + β · u(y)

)
log pθ(y | x)︸ ︷︷ ︸

unnormalized label-smoothed cross-entropy loss

+N

where N is constant with respect to θ.

D Classical Entropy Regularization

For the case that α→ 0, p = u, and q = pθ, we have

lim
α→0

Jα(q || pθ(· | x)) = KL(pθ || u)

=
∑
y∈Y

pθ(y | x) log
pθ(y | x)

u(y)

=
∑
y∈Y

pθ(y | x) log pθ(y | x)−
∑
y∈Y

pθ(y | x) log u(y)

= −H(pθ(y | x))− log
1

|Y |
∑
y∈Y

pθ(y | x)

= −H(pθ(y | x))− log
1

|Y |
= −H(pθ(y | x))−N

When J0(u || pθ(· | x)) is used as a regularizer for maximum likelihood training, we get the loss
function

L(θ)

= KL (p̃(· | x) || pθ(· | x)) + β ·KL (pθ(· | x || u(·)))
= KL (p̃(· | x) || pθ(· | x))− β ·H(pθ(y | x))︸ ︷︷ ︸

confidence penalty cross-entropy loss

+β ·N

E Bounds of Jα

Upper bound of Jα:

First note that KL(p || q) is convex in q when supp(p)⊆ supp(q), which must be true since (1−α)u+αp
has support everywhere both p and u do for α ∈ (0, 1). Therefore for α ∈ (0, 1)

KL(p || (1− α)u+ αp) ≤ (1− α)KL(p || u) + αKL(p || p)
= (1− α)KL(p || u)

similarly,

KL(u || (1− α)u+ αp) ≤ αKL(u || p)

We then have:

6884

Jα(u || p) =
α

α(1− α)
KL(p || (1− α)u+ αp) +

1− α
α(1− α)

KL(u || (1− α)u+ αp)

≤ α(1− α)

α(1− α)
KL(p || u) +

α(1− α)

α(1− α)
KL(u || p)

= KL(p || u) + KL(u || p)

Lower bound of Jα:

The bound from below is trivial given the definition of Jα, however, it can more easily be seen by
expressing Jα as the sum of KL divergences as above:

Jα(u || p) =
α

α(1− α)
KL(p || (1− α)u+ αp) +

1− α
α(1− α)

KL(u || (1− α)u+ αp)

Since α > 0 and necessarily KL(· || ·) ≥ 0, the lower bound 0 ≤ Jα(u || p) follows.

F No Sparse Solution for J1

Proof. By definition, for any distribution p over a vocabulary Y :

J1(u || p) = − 1

|Y |
∑
y∈Y

log p(y) + log|Y | (13)

Thus, if pθ(y | x)→ 0 for some y ∈ Y and some x ∈ X , we have J1(u || p) = KL(u || pθ)→∞. This
means that label smoothing enforces pθ has support everywhere u > 0, i.e. over all words y ∈ Y . For any
α < 1, Jα allows for sparse solutions since limx→0 x log x = 0.

G Data Pre-Processing and Hyperparameter Settings

For training with convolutional architectures we set hyperparameters, e.g. dropout, learning rate, etc.,
following Gehring et al. (2017). On IWSLT’14 and MTTT tasks, we follow the recommended Transformer
settings for IWSLT’14 in fairseq.13 Hyperparameters for models trained on the WMT task are set following
version 3 of the Tensor2Tensor toolkit (Vaswani et al., 2018). We use byte-pair encoding (BPE; Sennrich
et al. 2016.) for all languages. Vocabulary sizes for WMT and IWSLT’14 are set from recommendations
for the respective tasks in fairseq; for the MTTT tasks, vocabulary sizes are tuned on models with standard
label smoothing regularization.

Similarly, the CNN/DailyMail data set is pre-processed and uses BPE following the same steps as
(Lewis et al., 2019). Hyperparameters are the same as for their model fine-tuned on CNN/DailyMail.
Details are available on the fairseq website.14

H Additional Results

13https://github.com/pytorch/fairseq/tree/master/examples/translation
14https://github.com/pytorch/fairseq/blob/master/examples/bart/README.cnn.md

6885

Figure 9: Model entropy vs. BLEU (validation set)
on Multitarget Ted Talks Task Japanese to English
(Ja-En) using a Transformer architecture; see Figure
3 for additional information.

Figure 10: Model entropy vs. BLEU (validation
set) on IWSLT’14 German to English (De-En) using
a convolutional architecture and generator function
G(z) = ||z||22; see Figure 3 for additional informa-
tion.

Figure 11: Model entropy vs. BLEU (validation set) on IWSLT’14 German to English (De-En) and Multitarget
Ted Talks Task French to English (Fr-En) using Transformer and convolutional architectures; see Figure 3 for
additional information.

6886

WMT’14 De-En (Convolutional) MTTT Ja-En (Transformer)
α β Ĥ(pθ) BLEU α β Ĥ(pθ) BLEU

No Regularization - 0 0.15 33.2 - 0 0.19 13.8
Label Smoothing DJ1 (γ = 0.1) 1 0.11 0.25 34.1 +0.9 1 0.11 0.27 15.2 +1.4
Label Smoothing DJ1 1 0.35 0.42 34.6 +1.4 1 0.96 0.61 16.2 +2.4
Confidence Penalty DJ0 0 0.60 0.79 34.7 +1.5 0 0.65 0.80 15.9 +2.1
GER DJα 0.75 0.60 0.45 34.8 +1.6 0.42 1.7 0.76 15.9 +2.1

Table 5: Test BLEU for IWSLT’14 German-to-English using a convolutional architecture and for MTTT Japanese-
to-English using a Transformer architecture; see Table 2 for additional information.

