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Abstract

Showing items that do not match search query
intent degrades customer experience in e-
commerce. These mismatches result from
counterfactual biases of the ranking algorithms
toward noisy behavioral signals such as clicks
and purchases in the search logs. Mitigating
the problem requires a large labeled dataset,
which is expensive and time-consuming to ob-
tain. In this paper, we develop a deep, end-
to-end model that learns to effectively classify
mismatches and to generate hard mismatched
examples to improve the classifier. We train
the model end-to-end by introducing a latent
variable into the cross-entropy loss that alter-
nates between using the real and generated
samples. This not only makes the classifier
more robust but also boosts the overall rank-
ing performance. Our model achieves a rela-
tive gain compared to baselines by over 26%
in F-score, and over 17% in Area Under PR
curve. On live search traffic, our model gains
significant improvement in multiple countries.

1 Introduction

Deep learning models have shown excellent per-
formance in the natural language domain, and this
success has inspired practitioners to adapt these
models to information retrieval tasks (Mitra et al.,
2017; Huang et al., 2013). However, deep learn-
ing has not succeeded in these tasks due to the
lack of massive labeled datasets (Dehghani et al.,
2017). Another reason is that word-based repre-
sentations (Mikolov et al., 2013; Pennington et al.,
2014) are less useful in representing complex, infor-
mal search queries (Xiong et al., 2017) and hence
provide limited understanding of the search intent.
In the absence of explicit knowledge of which docu-
ments are “matched” with a search query and which
are “mismatched”, it is hard to learn robust deep
learning models that understand the query intent
and find high-quality, relevant documents.

Text-based product search is even more challeng-
ing. Simple modifications to the input query (or
a product title) can completely change the search
intent (or the product type, respectively). Take, for
example, the query gray iPhone X by which a
user is looking for a specific phone. Slightly mod-
ified queries such as iPhone X charger and
case for iPhone X refer to different prod-
ucts. Therefore, it is hard for distributed represen-
tations to capture the nuances. Moreover, noisy
user-behavioral signals from clicks and purchases
(e.g., users purchased a phone while searching for
a charger) can lead to biases in the ranking algo-
rithms. As such, even top-ranked items may not
match the search intent.

In this paper, we consider the problem of identi-
fying query-item mismatches to enhance the rank-
ing performance in product search. This task typ-
ically requires a large labeled dataset of matches
and mismatches that we will respectively refer to
as negative and positive samples. Even if we can
partly afford the expensive and time-consuming
labeling, acquired datasets are unbalanced and lack
hard positive samples, preventing the classifier
from learning a robust decision boundary. How-
ever, the above examples gray Iphone X and
Iphone X charger motivate that meaningful
positive samples can be artificially generated by
leveraging the labeled data. In fact, we can heuris-
tically construct a large number of negatives by
observing which items are commonly purchased
in response to the corresponding query. The ques-
tion is that can we use such negatives to synthesize
hard-to-classify positives to robustify the classifier?
We illustrate the goal of the generation in Figure 1.

To this end, we develop a deep, end-to-end
model that learns to identify mismatched query-
item pairs and is also capable of generating mis-
matched queries given an item. The task of the
generator is twofold: it has to be able to gener-
ate hard-to-classify samples so that the classifier
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Figure 1: (Best seen in color) The query is running
shoes for men. The solid black line illustrates the clas-
sification boundary, and each dotted line is a small margin
around the boundary. Samples to the left of the boundary
are matched. To the right are mismatches, such as socks and
shoelaces (orange boxes). To the extreme right is a telescope,
which is an easy-to-classify example (red box). Close to the
classification boundary is a hiking shoe (orange dotted box)
which is a hard-to-classify positive. We want to train a genera-
tor that can learn to generate such hard samples.

learns a more robust decision boundary; it also
needs to generate realistic queries. Using matched
query-item pairs allows the generator to synthesize
hard-to-classify mismatches based on an efficient
encoder-decoder architecture. This has a distinct
advantage over generating samples from noise, as
in Generative Adversarial Networks (Goodfellow
et al., 2014; Wang et al., 2017) or via dithering the
learned representations to make the model more
robust (Miyato et al., 2018).

We include our classifier and generator in an
end-to-end model. The classifier only requires
continuous representations of the generated query
as the second input instead of a discrete text se-
quence. This key property enables us to use effi-
cient gradient-based optimization techniques and
bypass reinforcement learning-based methods (Jia
and Liang, 2017), which are significantly more
complex, and also recently developed heuristic
approaches to generate adversarial text samples
(Alzantot et al., 2018). To achieve this, we mod-
ify the objective function in a way that makes the
end-to-end training possible via sampling a binary
latent variable, avoiding the min-max optimization
for GANs (Miyato et al., 2018; Wang et al., 2017).

We perform extensive experiments on a mis-
match dataset in an e-commerce company. The
proposed model outperforms deep learning base-
lines by over 26% in F-score and 17% in relative
AUPR score and performs significantly better than
GBDT models, which are widely used in practice.
Including the query generator helps achieve higher
gains than merely dithering the vector representa-
tion of the query. We also show that the generative

model can indeed generate hard-to-classify mis-
matches. When integrated with the ranking com-
ponent of a real-world product search engine, our
model outperforms the baseline methods in multi-
ple countries on an online A/B test evaluation.

1.1 Problem Setup

Let x = (I,Q) denote a pair of item title and tex-
tual query and y(I,Q) denote its corresponding la-
bel. y = 1 if the pair is mismatched or y = 0 other-
wise. Assume we can obtain from search logs many
matched samples, which we use to generate more
positives. These samples are not human-labeled but
instead inferred by considering behavioral signals
such as frequent purchases.

We aim to build a deep classifier that takes
two text sequences in xi = (Ii, Qi) and classifies
whether the pair is mismatched or not. At the same
time, we want the model to generate a new sample
(I,Qgen) with ygen = 1 given (I,Q) with y = 0.
Next, we discuss our proposed model.

2 Proposed Model: QUARTS

We present our proposed model, namely QUARTS
(QUery-based Adversarial learning for Robust Tex-
tual Search) in Figure 2. QUARTS is composed
of three components: (i) an LSTM and attention-
based classifier, (ii) a variational encoder-decoder
query generator (VED) and (iii) a state combiner.

Figure 2: Our model (best seen in color). The blue dotted line
encompasses the classifier. The red dotted line encompasses
the generator. The orange layer in the model helps combine the
outputs from the variational model and the original classifier.

Due to space constraints, we defer the details
of (i) and (ii) in the appendix. The LSTM clas-
sifier (i) is adapted from the entailment model in
(Rocktäschel et al., 2015), with some changes to fit
the product search task (see Appendix A.1). The
VED generator (ii) takes a matched pair (I,Q)
as input and outputs a new query Qgen so that
the pair (I,Qgen) is mismatched while Qgen stays
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lexically similar to Q. As an example, if I =
Apple Iphone X, space gray and Q =
gray Iphone X is a matched pair, we can gen-
erate Qgen = Iphone X case given I . In this
case, Qgen is similar to Q, but (I,Qgen) constitutes
a product mismatch.

To have an end-to-end model, we combine the
query representations computed by the classifier
and the generator to form a proper input to the
attention layer. We need to make sure that the mod-
ifications still allow us to efficiently backpropagate
the gradients of the loss function during training.
To achieve this, we add a merging layer shown
by the orange box in Figure 2. This layer com-
putes sHgen + (1 − s)H, s = (1 − y(I,Q))z
where H,Hgen are the corresponding LSTM rep-
resentations of the input Q and Qgen, and z ∼
Bernoulli(p) is a random binary variable that con-
trols whether the input query Q or the generated
query Qgen is used. When z = 0, QUARTS essen-
tially computes the probability of mismatch.

Let us explain how the real label y and the switch
z combine to yield the desired outputs. As y = 1
where the sample (I,Q) is a real positive, we want
to leverage it to train the classifier fθ(·). In this
case, s = 0 and the attention layer only takes H
as input. When y = 0, we can either use this
sample to train the classifier or use it to generate
adversarial representations Hgen. This process is
controlled by z. When z = 1, we use Hgen, else H .
The value of z determines whether we want to use
the datapoint as-is for training, or instead use the

“fake” query via the VED module.
A second consideration is how to enable effi-

cient training on fθ(·) and the generator gψ(·). Let
xgen = (I,Qgen) be the datapoint we will use to
train fθ(·) using the output from gψ(·). In this case,
since y = 0, z = 1, we use z as a proxy “label”
to train fθ(·). For samples i = 1, 2, . . . , N , we
sample zi ∼ Bernoulli(p) for some p ∈ [0, 1) to
decide which negative samples have labels flipped.
We modify the cross entropy loss as below, with
Lθ being the weighted cross-entropy loss:

1

N

N∑
i=1

(1−si)Lθ(xi, yi)+siLθ(gψ(xi), zi)). (1)

Note that (1) is differentiable in θ, ψ and notably
Hgen – the generated representations ofQgen. Since
we do not use the actual generated query, we need
not resort to heuristics or policy gradient-based op-
timization methods to minimize (1). Before train-

ing QUARTS end-to-end, we pre-train the classifier
and the VED on proper data. The pseudocode of
the end-to-end training is shown in Algorithm 1.

Algorithm 1 QUARTS training procedure

Require: N samples of labeled data
(I,Q, y(I,Q)), M negative samples from
search log, and sampling probability p

1: Using labeled data, pre-train the classifier
2: Create (I,Q,Qmis) tuples T using labeled

data so that y(I,Q) = 0 and y(I,Qmis) = 1
3: Initialize the VED encoder with the trained

classifier, and use the above created tuples to
pre-train the VED generator

4: Concatenate the human annotated and logs
data to form M +N samples D

5: Perform end to end training on D , where in
each epoch

6: for i ∈ [M +N ] do
7: Sample z ∼ Bernoulli(p)
8: Set s = (1− yi(I,Q))z
9: Use s and I,Q, y(I,Q) to perform one

step of learning on the end-to-end model
10: end for

3 Experiments and Results

We used a human-labeled dataset of query-item
pairs, obtained from an e-commerce search plat-
form. There are in total N = 3.2M pairs of which
only a small fraction are mismatches. A separate
test set of ∼ 100K labeled pairs was used to evalu-
ate all methods. We further have 3M query-item
pairs that are deemed “matched” by considering
items that are purchased frequently in response to
those queries from the search logs. This acts as the
augmentation dataset for the QUARTS model.

3.1 Training Details
For all encoders and decoders, we use an LSTM
with hidden size of 300. The inputs to the encoder
are 300 dimensional word embeddings trained sep-
arately for queries and item titles. The word embed-
dings were trained using word2vec on a corpus of
anonymized search engine queries, as well as item
titles from the catalog. The models were trained
using Adam (Kingma and Ba, 2014) and we tuned
the classification part (i.e. excluding the variational
decoder) on a validation dataset. We obtained the
performance with initial learning rate 10−4, and
learning rate decay 0.8 after 10 epochs. The drop-
out probability and the batch size were respectively
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0.1 and 128. Because the imbalanced nature of the
labeled data, we up-weighted the positive samples.
In the cross-entropy loss for classification, we set
β = 5.

To pretrain the VED, we used the annotated
training data and generated I,Q,Qgen tuples as
explained in Section A.2. Since we are explic-
itly interested in training the VED to generate
Qgen : y(I,Qgen) = 1 given I,Q : y(I,Q) = 0,
we consider only the annotated items that have both
positive and negatively annotated queries, and gen-
erate the tuples. The previously pretrained encoder
was fixed, and only the decoder was trained using
Adam with an initial learning rate of 10−3. We
finally merged the LSTM encoder for query and
item, the VED decoder for query with the other
layers described in the previous sections to train
the model end to end.

The classifier fθ(·) is pretrained on the human
annotated data. For the end-to-end model, we
use the pretrained classifier and generator, modify
the loss function as in (1), and further append the
dataset with M = 3MM well matched items from
anonymized user logs, where we assume items
that were purchased in response to a query are
“matched” (y(I,Q) = 0).

3.2 Metrics and Baselines

We evaluated our models using Area under the
Precision-Recall curve (APR), and the F1-score at
the best operating point, all evaluated on the test
set. To evaluate the generation task, we used BLEU
scores. In addition, we had human annotators to
judge generated item-query pairs. These annotators
were trained to identify whether a generated pair is
a match or a mismatch.

We used a GBDT model as a baseline. We used
user-item features for this model similarly to tradi-
tional ranking and relevance models. We also ap-
plied a DSSM-style model (namely DSSM) where
query and item word embeddings were concate-
nated as input to a stack of dense layers. We also
used the BERT (Devlin et al., 2018) embeddings for
the query and item title sequences and passed them
through the aforementioned model. A final baseline
we evaluated against was the MatchPyramid (Pang
et al., 2016), which has shown to outperform sev-
eral baselines for matching and question-answering
tasks. All hyperparameters were chosen via a sim-
ple grid search on a validation set. All the results
are reported on the test set.

3.3 QUARTS Performance

The classification results of all considered mod-
els are shown in Table 1. We also compare our
model trained on the original training data and
one augmented by naively adding the 3M matched
pairs. For confidentiality reasons, we report the per-
formance relative to some baseline. We see from
Table 1 that purely augmenting the training data
with the matched samples does not improve but
worsens the base classifier. Table 2 shows the per-
formance of the QUARTS compared with Match-
Pyramid models and the DSSM model initialized
with pretrained BERT embeddings. The end-to-end
QUARTS model beats the BERT DSSM baseline
by over 17% in APR, and over 26% in F-score.

Model APR F-score
GBDT baseline baseline
DSSM +26.16% +28.86%
DSSM + BERT +33.71% +37.56%
MatchPyramid +44.95% +40.09%
QUARTS Classifier +52.06 % +55.21%
QUARTS Classifier + Augment +50.9% +51.5%
QUARTS end-to-end +56.65% +62.43%

Table 1: The classification performance of our model on
average precision and F-score, compared with baselines. The
performance is relative to a GBDT model.

Model APR F-score
DSSM + BERT baseline baseline
MatchPyramid +8.4% +16.44%
QUARTS Classifier +13.72% +20.85%
QUARTS end-to-end +17.15% +26.06%

Table 2: Comparison with other deep learning baselines.

To validate the effectiveness of QUARTS in im-
proving the ranking performance for the search
task, we performed an A/B test on live search traf-
fic in two countries, to account for varying traf-
fic patterns. Compared to the existing baselines,
the QUARTS model yielded a 12.2% and 5.75%
increase in online metrics for the two countries
respectively, which are significant given the task.

3.4 VED Results

We used a held-out 10% of the (I,Q,Qgen) data
to evaluate the VED generator. In order to make
a fair evaluation, we ensured that the items that
appeared in training set were not in the validation
set. The validation BLEU scores are shown in Ta-
ble 4. BLEU scores do not indicate whether or not
a generated queries is a “realistic” modification of
the original query. Therefore, we also had 2500
generated pairs annotated by human experts who
were specifically trained to decide if a query-item
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Item title (I) Query (Q) Generated query (Qgen)
ESR iPhone 8/7 screen protector tempered glass... iPhone 8 curved screen protector iPhone 8 plus cases
JETech case for iPad Pro 12.9 inch ipad pro 12.9 speck shell iPad pro 12.9
Mounting dream full motion wall mounts bracket lg oled tv mount 55 inch flat screen tv
Intel core i7-8700K desktop processor 6 cores core i7 8700k GTX 1080
Chicco pocket snack booster seat peg perego high chair baby dining set
Comfy sheets ultra luxury 100% Egyptian cotton sheet set king size sheets king size beds for sale

Table 3: Examples of adversarial query generations from the VED query generator. The Item and Query should be matched,
while the Item and generated query should be mismatched. For readability, we have bolded words in the query and generated
query to show how the VED changes the product type intent in the generated query, while still being similar to the original query.

pair is matched or not. The accuracy 82% in Table
4 suggests that most of generated pairs are mean-
ingful. Here, the accuracy is the fraction of the
pairs that were actually labeled as mismatches

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Acc
VED 35.15 31.40 24.84 20.76 0.82

Table 4: Validation BLEU scores of generated queries from
the variational encoder-decoder generator, and misclassifica-
tion accuracy as reported by humans.

We provide some qualitative results from the
VED in Table 3. The generator’s goal is to slightly
modify the input query Q, so that the resultant
(I,Qgen) sample is realistic. A source query for
screen protector is mapped to a query for
phone case, and a source query for tv mount
is mapped to one for flat screen tv.

3.5 Word-by-Word Attention Visualization

The goal of the word-by-word attention layer is to
understand what parts of the user query and item
titles are important to understand whether to match
or not. Importantly, item titles are typically long,
and have information such as brand, color and size.
All of these facets might not be relevant for a par-
ticular user query. Figure 3 shows the performance
of the word-by-word attention layer, for a matched
and a mismatched pair. In both cases, we see that
the correct words are attended to, helping the clas-
sifier make the distinction between a matched and a
mismatched pair. Figure 4 shows another example.

4 Conclusion and Future Work

We developed an end-to-end model with hard
to classify query generation for retrieval in e-
commerce product search. We built upon ideas
for textual entailment, and used a word by word
attention layer to help create item representations
conditioned on an input query. We trained a gen-
erator that yields representations of queries that
are mismatched to a source item, while at the same
time being “realistic”. This allows us to address the

Figure 3: Word-by-word attention for a mismatched (top)
and matched (bottom) query-item pair. Rows represent query
words, columns represent item words, with lighter shares
representing larger weights. band is attended to more on the
left whereas watch is attended to more in the right

Figure 4: Word-by-word attention for a mismatched (top)
and matched (bottom) query-item pair. Rows represent query
words, columns represent item words, with lighter shares
representing larger weights. protector is attended to more
on the left whereas case is attended to more in the right

class imbalance of our datasets, while also gener-
ating samples that help robustly train the classifier.
To train the model end to end, we modified the
cross-entropy loss, allowing us to avoid optimizing
a minimax objective. Experiments on an offline
dataset and live product search traffic showed that
our method improves significantly over baselines.
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A Appendices

A.1 LSTM Classifier
We adapt our classifier from that for textual en-
tailment in (Rocktäschel et al., 2015), but with a
few key differences. Unlike standard textual entail-
ment problems for natural language, user queries
and item titles tend to follow different language
patterns, with both of them being different from
“natural” language. For example, queries "red
nike running shoes", "running nike
shoes, red" and "red running shoes
nike" all refer to the same general product, de-
spite differing in structure. On the other hand, item
titles are structured, with brand, size, color, etc. all
mentioned in a long sequence, which is also not
how a conventional sentence is structured. To ac-
count for these differences between query strings
and item titles, we separately train word embed-
dings using word2vec (Mikolov et al., 2013) on
anonymized query logs and item titles. Thus, the
same word can have two embeddings, one for the
query and one for the title. The overall classifier
structure is shown in Figure 5

We implement the word-by-word attention layer
as follows: Let k be the output dimension of the
LSTMs, K ∈ Rk×m and H = [h1, h2, . . . , hn] ∈
Rk×n be the LSTM output matrices for the item
title and query respectively, with the ith column
corresponding to the output of the ith LSTM cell.
Let m and n denote respective lengths of title and
query sequences.

Figure 5: LSTM based classifier for a query-item
pair (best seen in color). The LSTMs are fed word
embeddings, separately learned for queries and titles.
The word-by-word attention layer is adapted from
(Rocktäschel et al., 2015), and h∗ is defined in (2)

For each word t = 1, 2, . . . , n in the query, we
compute attention scores for every word in the title
and its weighted representation rt at that step. The
representation rt−1 is helpful to inform the next
step what the model previously paid more focus
on. We use the additive attention (Bahdanau et al.,
2014) here, but other alternatives can be used as
well.

Mt = tanh([K>, 1h>t , 1r
>
t−1]Wh),

αt = tanh(Mtw), w ∈ Rk

rt = K>αt + tanh(Wrrt−1).

where Wh ∈ R3k×k and Wr ∈ Rk×k. The final
representation for the query and title that is passed
to fully-connected layers is:

h∗ = tanh(Wx[r
>
n , q

>
n , |rn − qn|>]), (2)

where Wx ∈ Rk×3k. In the above equations,
Wh, w,Wr and Wx are weight matrices to be
learned, and qn is the output of the LSTM
that encodes the query. Passing |rn − qn|
in (2) to the dense layers improves classifica-
tion performance. We observe in mismatched
query-item pairs that a slight word substitution
or deletion often leads to mismatched items;
for example, "iPhone screen protector"
and "iPhone screen" or "iPad screen
protector" are textually very similar, but are
completely different items from a shopping point
of view. Hence, we use the term |rn − qn| in (2)
to explicitly account for such word changes. Tra-
ditional sentence classification methods also pass
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rn ◦qn to the dense layers, where ◦ is the hadamard
product. We noticed that this did not improve the
model performance, and hence choose to not use
it. A desirable side effect is reduced computations.
We expect that |rn − qn| somehow captures words
that are in the query but not in the title and vice
versa.

Let fθ(·) denote the classifier in Figure 5. Given
N samples {(xi, yi)}Ni=1, our objective function is
a weighted cross-entropy loss:

Lθ(X, y) =
1

N

N∑
i=1

Lθ(xi, yi) (3)

=
1

N

∑
i

βyi log(fθ(xi))

+ (1− yi) log(1− fθ(xi)), (4)

where β adjusts the weight on the positive samples.
We set β > 1 to account for the fact that the num-
ber of positive samples (i.e. mismatched) is much
larger than negative samples in our datasets.

A.2 Variational Query Generator
For the applications we are interested in, the train-
ing datasets are highly unbalanced, as a reasonable
search engine will have far more matched query-
item examples than mismatched. We thus need
ways to account for this class imbalance. Gener-
ating trivially mismatched examples is easy: we
can randomly sample an item from the entire cata-
log for a given query. But these will be examples
that are easy-to-classify for fθ(·), and are hence
uninformative. Here we aim to train a model that
can generate hard-to-classify mismatched exam-
ples, which tend to occur due to the query and
product title being lexically similar. Specifically,
we want to generate mismatched query-item exam-
ples that have a realistic chance of appearing in the
search results for said query.

We train a Variational Encoder-Decoder (VED)
model to this end. The model takes as input a
matched pair (I,Q), and outputs a new query
Qgen so that the pair (I,Qgen) is mismatched,
but being lexically similar to Q. As an ex-
ample, if I = puma running shoe, size
11, black and Q = running shoes for
men, we can generate Qgen = insoles for
running shoes. In this case, Qgen is similar
to Q in that the item is somewhat related to Qgen,
and there’s a chance that I may be matched to Qgen
due to keyword stuffing by sellers, or poor semantic

matching. On the other hand, another mismatched
query Qgen = pizza cutter is not a good can-
didate to generate, since it’s highly unlikely that
a reasonable search engine will show shoes for a
query about pizza cutters.

Figure 6: Variational encoder-decoder query generator
(best seen in color). The encoder is reused from the
classifier in the previous section. The decoder is an
LSTM with attention (Luong et al., 2015). Qgen is a
generated query via beam search.

To train the model, we make use of an labeled
{(I,Q, y)} dataset and create a new one as follows:
we consider only those items I , for which there ex-
ist both matched and mismatched queries, and con-
struct samples (I,Q,Qmis) so that y(I,Q) = 0,
and y(I,Qmis) = 1. The model is the variational
sequence to sequence model proposed in (Bahu-
leyan et al., 2017), which we adapt to our case
(Figure 6). Our architecture can reuse the title-
query encoder of the classifier in Section A.1. The
variational decoder allows us to generate diverse
output sequences for the same input. We equip
the decoder with an attention mechanism (Luong
et al., 2015) to generate Qgen. Using an existing
annotated dataset to pretrain the VED allows us
to accurately warm start the end to end model de-
scribed in the next section.

Source Targets
kate spade yoga mat kate spade

kate spade sale
kate spade wallet

dickies overalls striped dickies work pant
32x32 mens dickies shorts
kahki overalls for women

puppy training 101 dog training pad
dog training collar
puppy

plastic stacking bins stackable storage bins
storage bins
foldable storage bins

Table 5: Nearest neighbors by cosine similarity for a few
queries. Note that the LSTM and mean-pooling method accu-
rately represents queries based on various intents. In the first
case, customers looking for Kate Spade items tend to look for
more items of the same brand. In the second case, the model
groups queries with similar intents together. In the last 2 cases,
the model groups similar queries together.
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source screen replacement for iphone 7 plus in white including all tools instruction 2 screen protectors
target 1 iphone 7 plus screen replacement white lcd display 3d touch screen digitizer frame assembly white
target 2 iphone 6 screen replacement white p zone 4 7 inch lcd display touch screen digitizer frame assembly
target 3 for iphone 7 screen replacement lcd touch screen digitizer frame assembly full set
source imagine by rubie s dc superheroes harley quinn mallet costume
target 1 rubie s harley quinn mallet costume accessory
target 2 rubie s women s suicide squad harley quinn mallet as as shown one size
target 3 rubie s women s batman harley quinn inflatable mallet multi one size
source nike unisex core golf visor dark grey anthracite white one size
target 1 nike golf unisex legacy91 hat white black one size
target 2 nike men s flex core golf shorts dark grey dark grey size 36
target 3 nike golf tech visor black adjustable one size
source mercer culinary genesis 6 piece forged knife block set tempered glass block
target 1 dalstrong knife set block gladiator series knife set german hc steel 8 pc
target 2 j a henckels international 13550 005 statement knife block set 15 pc light brown
target 3 top chef by master cutlery 5 piece chef basic knife set with nylon carrying case
source hicksholsters purple dark punisher edition wallet
target 1 hicksholsters kydex dark punisher edition wallet
target 2 silk iphone 6 6s wallet case vault protective credit card grip cover wallet slayer vol 1 black onyx
target 3 kalmore genuine leather rfid protected slim thin pocket wallet minimalist wallet money clip light blue

Table 6: We show nearest neighbors by cosine similarity based on embedding for a few item titles. In each cell, the first line
(bolded) represents the source, and the next 3 lines represents its three nearest neighbors. Unlike the query case, the nearest
neighbors are always substitutable items.

A.3 Learned LSTM Embeddings

Next, we verify that the learned query and item em-
beddings from the LSTM models are informative.
To compute a vector representation of a query, we
mean-pool the query LSTM outputs H . Similarly,
for an item, we mean-pool the item LSTM outputs
K. Table 5 shows the 3-nearest neighbors for user
queries. The neighbors are computed based on the
cosine similarity between the embeddings of the
source and target query. We can see that, depend-
ing on the specific query, the model learns to group
queries that have the same product intent, or brand
(for higher-end) items.

Along the same line, Table 6 shows the 3-nearest
neighbors in terms of cosine similarity for items.
Note that this case is not the same as queries,
since an item by itself is meaningless. Indeed,
the outcome of the word by word attention model
is to achieve an item representation conditioned
on the query. More specifically, the item nike
running shoe by itself cannot be deemed as
matched or mismatched, unless seen in the context
of a user typed query. Hence, the LSTM + mean
pooling output for the items tend to cluster similar
(substitutable) items together. The upshot if this is,
conditioned on a given query Q, the item embed-
dings for similar items will be similar, which is a
desirable outcome for our use case.

A.4 Related Work

The DSSM (Huang et al., 2013) model and it’s vari-
ants (Mitra et al., 2017; Xiong et al., 2017) have

been commonly applied in learning to rank tasks.
Such models are useful for web search, where there
are several related documents and it’s easier for nat-
ural language based models to distinguish between
related and unrelated documents. These models do
not easily carry over for product search, due to the
issues alluded to in the previous section. Recently,
(Kang et al., 2018) developed means to generate
adversarial samples to improve entailment, via the
use of additional datasets to learn “rules” to aid in
sample generation. These rules do not carry over
to the product search domain, nor do the assump-
tion of existing datasets to learn such rules. To
the best of our knowledge, we are the first to work
on generating adversarial representations of text
for the purpose of improving product relevance for
e-commerce.

Adversarial example generation has been studied
in the context of images (Szegedy et al., 2013; Chen
et al., 2018), speech (Carlini and Wagner, 2018)
and text (Cheng et al., 2018; Ebrahimi et al., 2017;
Kuleshov et al., 2018; Iyyer et al., 2018; Papernot
et al., 2016; Kang et al., 2018; Wang et al., 2017).
In (Alzantot et al., 2018; Ebrahimi et al., 2017), the
authors develop a means to perturb the sequence in
order to fool an underlying classifier, and in (Iyyer
et al., 2018), the authors use the concept of back-
translation (Sennrich et al., 2015). The aims in
these works is to generate adversarial text samples
themselves, separate from generating samples that
will make the underlying classifier more robust.


