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Abstract

We present a thorough comparison of two prin-
cipal approaches to Cross-Lingual Informa-
tion Retrieval: document translation (DT) and
query translation (QT). Our experiments are
conducted using the cross-lingual test collec-
tion produced within the CLEF eHealth infor-
mation retrieval tasks in 2013–2015 contain-
ing English documents and queries in several
European languages. We exploit the Statistical
Machine Translation (SMT) and Neural Ma-
chine Translation (NMT) paradigms and train
several domain-specific and task-specific ma-
chine translation systems to translate the non-
English queries into English (for the QT ap-
proach) and the English documents to all the
query languages (for the DT approach). The
results show that the quality of QT by SMT
is sufficient enough to outperform the retrieval
results of the DT approach for all the lan-
guages. NMT then further boosts translation
quality and retrieval quality for both QT and
DT for most languages, but still, QT provides
generally better retrieval results than DT.

1 Introduction

Multilingual content has been growing significantly
in the last few years simultaneously with rapid in-
ternet access growth all over the world. Monolin-
gual information retrieval task allows users to find
information in documents that are written in the
language that they use to write their queries. This
ignores a vast amount of information that is repre-
sented in other languages. Cross-Lingual Informa-
tion Retrieval (CLIR) breaks this language barrier
by allowing users to look up information that is
represented in documents written in languages dif-
ferent from the language of the query.

We reinvestigate the effectiveness of two princi-
pal approaches to CLIR: document translation (DT)
and query translation (QT). The existing compari-
son studies of the two approaches are outdated (e.g.

Oard, 1998) and do not reflect the current advances
in Machine Translation (MT). Even in very recent
works, the authors have blindly assumed that DT is
superior to QT (Khiroun et al., 2018), giving the ar-
gument that in DT, the text is translated in a larger
context compared to the translation of short isolated
queries in QT. The larger context should help in
translation disambiguation and better lexical selec-
tion during translation, which should subsequently
lead to better retrieval results.

This hypothesis needs to be revised, taking into
consideration the significant improvement of ma-
chine translation quality in recent years, despite
the strong practical disadvantages of DT over QT:
DT is computationally expensive and hard to scale
(every document needs to be translated into each
supported language and then indexed) while QT is
performed in query time and only a short text (the
query) is translated into the document language.

In this work, state-of-the-art Statistical Machine
Translation (SMT) and Neural Machine Translation
(NMT) systems are deployed for document transla-
tion and query translation to investigate their effect
on retrieval quality in the cross-lingual setting. The
experiments are conducted using the cross-lingual
test collection produced within the CLEF eHealth
tasks on patient-centered information retrieval in
2013–2015 extended with additional relevance as-
sessments and manual query translations (Saleh
and Pecina, 2019). Though this is a very specific
domain and the results cannot be thoughtlessly gen-
eralized to other domains, the choice of this test
collection was motivated by two facts: First, it
provides resources for large-scale experimentation
(1 million in-domain documents, 166 queries in 8
languages, thorough relevance assessment). Sec-
ond, the medical domain in MT has been well stud-
ied (Jimeno Yepes et al., 2017; Dušek et al., 2014),
and there are enough resources to develop well-
performing MT systems for multiple languages.
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2 Related work

In CLIR, documents and queries are written in dif-
ferent languages. The traditional term-matching re-
trieval methods require both documents and queries
to be represented in the same language. In practice,
either the queries need to be translated into the doc-
ument language (QT), or the documents need to be
translated into the query language (DT). Not many
studies and experiments have been conducted in
order to compare these two approaches.

Oard (1998) investigated the performance of
DT, QT, and a hybrid system combining both.
They found that the system translating English
queries into German (the document language) out-
performed the system translating the documents
from German into English (the query language).
They hypothesized that documents, which are typ-
ically longer than queries, provide more contex-
tual and linguistic information that helps reduce
translation ambiguity and thus improves transla-
tion quality. McCarley (1999) presented a hybrid
DT/QT system, which averaged the retrieved doc-
ument scores from DT and QT systems and thus
outperformed both of them. Fujii and Ishikawa
(2000) employed a two-step method where QT was
first used to retrieve a limited number of documents
that were translated into the query language and
reranked by their DT retrieval scores.

Pirkola (1998) presented a new method for CLIR,
which was referred to as structured queries. The
idea was that a document containing one possi-
ble translation candidate of a query term is more
relevant than a document that contains multiple
translations of that term. This probabilistic struc-
tured queries approach was also applied to Cross-
Language Speech Retrieval (Nair et al., 2020). Dar-
wish and Oard (2003) also exploited alternative
translations of query terms. Their experiments
showed that combining multiple translations out-
performed the selection of one best translation.

Nikoulina et al. (2012) investigated reranking
SMT translation hypotheses towards better CLIR
performance and showed that SMT systems are
usually trained to give the best results in terms of
translation accuracy, adequacy, and fluency. How-
ever, an improvement will be achieved when they
are optimized towards retrieval quality. We fol-
lowed this approach in our previous work and in-
troduced a richer set of features and adopted the
hypothesis reranker for multiple languages in the
medical domain (Saleh and Pecina, 2016b,a).

Several recent papers employed methods based
on Deep Learning. Litschko et al. (2018) pre-
sented an unsupervised CLIR approach employ-
ing shared cross-lingual word embedding model,
which was trained using monolingual data only.
They used those embeddings to translate query
terms word by word into the document language.
Rücklé et al. (2019) trained NMT model for CLIR
using out-domain data and synthetic data (created
by translating in-domain monolingual English into
German) to retrieve answers to German questions
from English collection in the technical domain
(AskUbuntu and StackOverflow).

CLIR in the medical domain has been investi-
gated within the series of CLEF ShARe/eHealth
labs since 2013 which focused on improving ac-
cess of laypeople (non-medical experts) to reliable
medical information (Goeuriot et al., 2013, 2014;
Palotti et al., 2015; Kelly et al., 2016; Palotti et al.,
2017; Jimmy et al., 2018; Kelly et al., 2019).

In this paper, we compare the performance of
both QT and DT using the traditional SMT and
state-of-the-art NMT methods trained on the same
data to make the comparison as fair as possible. We
present a novel approach for NMT model selection
that is optimized towards CLIR performance and
investigate the effect of morphological pre- and
post-processing on the performance on CLIR.

3 Data

Two types of data were used in our experiments:
The data for training, tuning, and testing MT (Sec-
tion 3.1) and the CLIR test collection (Section 3.2).

3.1 Machine Translation Resources

Parallel data is essential for training both SMT
and NMT systems. We exploited the UFAL Med-
ical Corpus1 which was assembled during the
course of several EU projects aiming at more re-
liable machine translation of medical texts and
used for the purposes of WMT Biomedical Trans-
lation Task (Bojar et al., 2014). It mainly in-
cludes the EMEA corpus by Tiedemann (2009),
UMLS metathesaurus (Humphreys et al., 1998),
titles from Wikipedia articles in the medical cate-
gories mapped to other languages using Wikipedia
Interlingual links, medical domain patent applica-
tions (Wäschle and Riezler, 2012; Pouliquen and
Mazenc, 2011), and various web-crawled data.

1http://ufal.mff.cuni.cz/ufal_medical_
corpus

http://ufal.mff.cuni.cz/ufal_medical_corpus
http://ufal.mff.cuni.cz/ufal_medical_corpus
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Monolingual data is used to build a language
model during the development of SMT systems.
The language model helps select a candidate trans-
lation that is as coherent and fluent as possible in
the target language (which is certainly important
for document translation, but less important for
query translation). Our procedure of data selec-
tion (both parallel and monolingual data) follows
the work of Pecina et al. (2014), where two lan-
guage models are trained on in-domain and general-
domain data respectively, then each sentence from
the corpus is scored by its cross-perplexity between
the two models. Finally, the top 10 million scored
sentences are chosen. In NMT training, the mono-
lingual data is used to enlarge the parallel data
training data by back-translation, where target lan-
guage monolingual data is machine translated to
the source language and added to parallel data for
training. The monolingual data used in our ex-
periments includes multiple resources such as the
CLEF eHealth 2014 English document collection
(Goeuriot et al., 2014), Genia corpus (Ohta et al.,
2002), and medical Wikipedia articles in English.

MT development and test data: used for tuning
and evaluating our MT systems consists of the
Khresmoi Summary Translation Test Data2 used
by the DT models and Khresmoi Query Transla-
tion Test Data 2.03 used by the QT models. Both
were developed within the Khresmoi project4 and
later extended within the KConnect5 and HimL6

projects. The summary test data includes sentences
(1,000 for testing and 500 for development) from
summaries of English medical articles manually
translated from English to all relevant languages.
The query test data includes English queries (1,000
for testing and 500 for tuning) sampled from a
query log of a medical search engine and manually
translated to the same set of languages.

3.2 CLIR Test Collection

For CLIR experiments, we use the CLIR test col-
lection7. that we developed in our previous work
(Saleh and Pecina, 2019). It is based on the data
used within the CLEF eHealth lab IR tasks in 2013–
2015 (Suominen et al., 2013; Goeuriot et al., 2014;

2http://hdl.handle.net/11234/1-2122
3http://hdl.handle.net/11234/1-2121
4http://khresmoi.eu/
5http://www.kconnect.eu/
6http://www.himl.eu/
7http://hdl.handle.net/11234/1-2925

Palotti et al., 2015). It contains about 1.1 mil-
lion web pages that were crawled automatically
from various trusted medical websites (Goeuriot
et al., 2015). There are 166 queries in total (100
for training and 66 for testing) originally formu-
lated in English (to mimic real patient queries) and
then manually translated by medical experts into
seven European languages (Czech, French, Ger-
man, Spanish, Swedish, Polish, and Hungarian).
The relevance judgments consist of the official rele-
vance assessments provided by the task organizers
and additional assessments, as described in (Saleh
and Pecina, 2019).

We clean the document collection by removing
HTML tags and other scripts in the documents.
All the lemmatization experiments in our work are
done using UDPipe (Straka and Straková, 2017),
while for stemming, we use the Snowball algorithm
(Moral et al., 2014).

4 Retrieval System

The document collection is indexed using Ter-
rier (Ounis et al., 2005), an open-source tool for
information retrieval experiments. For retrieval,
we use Terrier’s implementation of the language
model with Bayesian smoothing and Dirichlet prior
(Smucker and Allan, 2005) with the default value
of the smoothing parameter.

5 Machine Translation Systems

In this section, we provide details on training the
SMT and NMT systems used in the CLIR experi-
ments. The SMT systems fully replicate the work
by Dušek et al. (2014); we only provide the most
important information. The NMT systems are de-
scribed in full detail.

5.1 Statistical Machine Translation

The SMT systems are based on the phrase-based
SMT paradigm implemented in Moses (Koehn
et al., 2007). The system for the QT experiments
was developed within the Khresmoi project (Dušek
et al., 2014). The system was tuned to trans-
late medical search queries (using the Khresmoi
Query development set) and optimized towards
PER (Position-independent word Error Rate, Till-
mann et al., 1997) instead of the traditionally pre-
ferred BLEU (Papineni et al., 2002) as this was
shown to be more effective for tuning SMT param-
eters for translating search queries (Pecina et al.,
2014). The system is denoted as QT-SMT-form.

http://hdl.handle.net/11234/1-2122
http://hdl.handle.net/11234/1-2121
http://khresmoi.eu/
http://www.kconnect.eu/
http://www.himl.eu/
http://hdl.handle.net/11234/1-2925
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For the DT experiments, we train two SMT sys-
tems: DT-SMT-form, which is a replication of the
SMT system that translates standard sentences by
Dušek et al. (2014), and our own system DT-SMT-
pre-lem that translates English sentences into lem-
matized sentences in the target language. This is
done by lemmatizing the monolingual data and
the target side of the parallel data prior to train-
ing. In both the systems, we use fast align (Dyer
et al., 2013) to train word alignment model on the
lowercased word forms between English and the
target language, then we replace the word forms
in the target language with word lemmas. Moses
(with its default settings) is used to train a phrase-
table model using the tokenized and lowercased
English word forms, and the tokenized and lem-
matized data in the target language plus a 5-gram
language model. Minimum Error Rate Training
(MERT, Och, 2003) is used to tune the model pa-
rameter weights using the development data sets.
We also experiment with another system (DT-SMT-
post-lem), which produces lemmatized output but
obtained as post-lemmatization of the output of the
DT-SMT-form system, and a system (DT-SMT-post-
stem) which produces stemmed output obtained by
the Snowball stemmer applied again to the output
of DT-SMT-form. This is to allow better compar-
ison of the DT and QT approaches. Translating
documents into a morphologically richer language
enlarge the vocabulary (term diversity) and thus
make retrieval more difficult. The three systems
produce morphologically reduced translations of
documents and thus make them comparable to the
English ones (in terms of vocabulary size).

5.2 Neural Machine Translation

Neural Machine Translation (NMT) has become
the state-of-the-art approach in MT and recently
achieved superior results and lead to a significant
improvement over the SMT systems (Jean et al.,
2015). We implement two types of NMT systems:
one for query translation (denoted as QT-NMT-
form) and one for document translation (denoted
as DT-NMT-form). Both produce standard (non-
lemmatized) output.

The systems are based on the Marian (Junczys-
Dowmunt et al., 2018) implementation of the Trans-
former (Vaswani et al., 2017) model with back-
translation (Edunov et al., 2018). SMT has an ad-
vantage over NMT in employing monolingual data
in its language model. This gap can be bridged

Parallel Corpus
(Authentic) 

CLEF eHealth
Collection (EN)

NMT Model 
Source -> EN

NMT Model 
EN -> Target

Initial Training

Parallel Corpus
(Target Side) 

NMT Model 
EN -> Target

NMT Model 
Source -> EN

Parallel Corpus
(Synthetic) 

Parallel Corpus
(Synthetic) 

NMT Model 
Source -> EN

NMT Model 
EN -> Target

Iterative Training

Parallel Corpus
(English Side)

Figure 1: A schema of the iterative back-translation
mechanism for NMT training.

by back-translation, a technique that exploits an-
other MT model to translate monolingual data from
the target language into the source language and
adds this “synthetic” data to the original parallel
data(Sennrich et al., 2016a). This approach also
helps for domain adaption of NMT when the mono-
lingual data is taken from a specific domain. We
follow the back-translation approach in this work
iteratively.

5.2.1 Task-Oriented NMT Training
The NMT systems are trained using the same train-
ing data as the SMT systems. However, in NMT, all
data sets (monolingual and parallel) are encoded
into Byte-Pair Encoding (BPE), which helps re-
duce the out-of-vocabulary problem in NMT by
encoding rare words as sequences of subword units
(Sennrich et al., 2016b). We train the Transformer
model using the same parameters as reported by
Vaswani et al. (2017). Figure 1 shows the architec-
ture of the proposed iterative back-translation NMT
model, inspired by the work of Hoang et al. (2018):
for each language pair, we first train initial models
for both directions, English to target, and source
to English. We use the authentic (non-synthetic)
parallel data that is presented in Section 3.1 for
training the initial models.

During training the Transformer models, multi-
ple epochs (iterations through the entire training
data) are needed. It is known that too many train-
ing epochs can cause over-fitting of the model, and
a few iterations might cause under-fitting (Popel
and Bojar, 2018). To avoid this, the early-stopping
of the training is employed to terminate the pro-
cess when the intermediate model satisfies some
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stopping criteria (training objective). We stop train-
ing when there are three consecutive checkpoints
without any improvement in the translation perfor-
mance of the validation data. Then, we use the
initial model to translate monolingual text in the
target language coming from two resources:
MT parallel training corpus: the target side of
the parallel training data (Section 3.1) is translated
into English using the SRC→EN NMT model to
create the synthetic data for the models that are
used in DT experiments. The English side of the
parallel corpus is translated using the EN→TGT
model for the QT experiment. This is done to in-
vestigate the effect of the source of the monolingual
data on the CLIR performance. We randomly se-
lect 2 million sentences in each iteration.
CLIR test collection: we select randomly 2 mil-
lion sentences from the test collection (Section 3.2)
(after filtering sentences that are longer than 80
words), then we use EN→TGT model to translate
them into the target language. This is done for
models that are used for the query translation ap-
proach. The motivation of choosing the collection
is to make the model adapted to translate the medi-
cal queries into English (the document language).

After translating this monolingual data, we cre-
ate the synthetic data by adding the monolingual
data and their translations to the authentic parallel
data. Then we continue training of the models in
both directions. We conduct back-translation three
times, and in each iteration, we use the updated
models from the previous one.

5.2.2 NMT Model Selection
We setup Marian to save the intermediate models
(checkpoints) after every 5,000 iterations where
each iteration is a batch sized of instances from
the training data. This is done instead of saving
each epoch to avoid loosing effective intermediate
models in between. The model selection is based
on evaluating each checkpoint by BLEU (Papineni
et al., 2002) and PER (Tillmann et al., 1997) using
the Khresmoi Summary development set (DT) and
Khresmoi Query development set (QT).

Figure 2 shows the evaluation results of the inter-
mediate models using the two MT metrics and how
they correlate with P@10 (IR metric). P@10 is cal-
culated by query translation of the Czech training
queries into English using the corresponding NMT
model, and then conducting retrieval as we describe
in Section 4. Choosing the model that gives the
best BLEU scores (iteration 400,000) does not cor-

0 200000 400000 600000 800000
Iteration

0

10

20

30

40

50
P10
BLEU
(1-PER)

Figure 2: Performance comparison of the intermediate
QT-NMT-form models at each checkpoint (after each
5,000 iterations) in terms of BLEU, 1-PER, and P@10
when employed in the Czech QT CLIR system.

relate with the best value for P@10, nor the best
score for PER (500,000). This is understandable
because these metrics evaluate translation quality.

In order to select the best checkpoint that guaran-
tees the advantages of both metrics (BLEU, which
penalizes word order and PER which does not),
we ensemble the two models together (best BLEU
and best PER) during decoding by setting up the
weights for both models equally. Marian decoder
supports model ensembling since they share the
same vocabularies. For the document translation
experiments, we select the NMT models with the
highest BLEU scores.

6 Experiments and Results

6.1 MT Evaluation
In this section, we present intrinsic evaluation of
the MT systems. We evaluate how well the sys-
tems translate sentence/queries given their refer-
ence translations in the test data. We present both
BLEU and PER scores (all as percentages). The
higher the BLEU score, the better the translation
quality is. BLEU is based on measuring the similar-
ity of n-grams counts between a translation hypoth-
esis and its reference translation(s), and as such is
sensitive to word order. PER, on the other hand,
does not penalize word order between a translation
hypothesis and its reference translation as BLEU
does. Instead, it considers both as a “bag of words”.
PER captures all words that appear in a translation
hypothesis but do not exist in the reference. These
words are known as PER errors; thus, the higher
the PER value, the lower the translation quality.
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EN–CS EN–FR EN–DE EN–HU EN–ES EN–SV EN–PL
MT System BLEU PER BLEU PER BLEU PER BLEU PER BLEU PER BLEU PER BLEU PER

DT-SMT-form 19.0 51.1 37.8 68.3 18.7 53.4 10.5 41.6 25.7 63.2 33.6 64.6 11.5 41.3
DT-NMT-form 25.9 56.5 38.8 66.5 19.8 51.4 8.2 39.5 23.2 55.2 35.1 64.4 10.2 35.9
DT-SMT-post-lem 30.9 65.6 43.5 74.7 23.6 60.4 13.2 48.6 35.4 72.3 40.9 69.9 16.1 50.5
DT-SMT-pre-lem 28.7 64.2 41.2 72.6 13.0 48.0 14.3 51.9 28.4 65.7 39.1 70.0 12.5 46.9

Table 1: Intrinsic evaluation of MT systems for document translation using the Khresmoi Summary Test set.

CS–EN FR–EN DE–EN HU–EN ES–EN SV–EN PL–EN
MT System BLEU PER BLEU PER BLEU PER BLEU PER BLEU PER BLEU PER BLEU PER

QT-SMT-form 36.4 70.2 38.7 75.9 37.0 65.2 39.7 67.3 31.2 73.7 39.2 62.7 26.0 58.6
QT-NMT-form 22.5 48.9 30.6 65.4 28.7 58.1 36.7 63.2 17.8 45.5 40.9 63.0 18.7 47.9

Table 2: Intrinsic evaluation of MT systems for query translation using the Khresmoi Query Test set.

The MT evaluation scores cannot be directly
compared across language pairs, and for the *-form
and *-lem systems (since the test sets differ), but
they indicate to what extent the translated queries
differ from the reference translations, which in
term-matching IR is important. Also, the results
of the two systems producing lemmas instead of
the word forms are indicative only. They cannot be
directly compared to those producing word forms.

Table 1 displays the (intrinsic) evaluation of the
MT systems for document translation using the
Khresmoi Summary test set (in terms of BLEU and
PER). The results are not very consistent: For six
out of the seven translation directions, DT-NMT-
form outperforms DT-SMT-form in terms of PER.
In terms of BLEU, DT-NMT-form wins for four
language pairs.

The effect of lemmatization on the scores is not
surprising. Naturally, lemmatization reduces the
vocabulary size in the target language; thus, the
BLEU scores are higher for the systems which
employ lemmatization in either way. However,
post-lemmatization is constantly better (with the
exception of Hungarian, which is a very specific
language, and its scores are generally much lower
than for other languages). In terms of PER, the sit-
uation is different, and despite the fact that lemma-
tization reduces the target language, the systems
without lemmatization often achieve better scores
(except in German and Spanish).

Table 2 presents the (intrinsic) evaluation of the
MT systems for QT using the Khresmoi Query test
set. QT-SMT-form outperforms QT-NMT-form in
terms of BLEU in all the languages except Swedish.
However, in terms of PER (which is preferred), QT-
NMT-form is always better. This can be partially

explained because of the way we ensembled NMT
models towards better CLIR performance. The
bold font indicates which of the two *-form systems
is better (for each language pair and each measure).

6.2 CLIR experiments

Table 3 presents the results of the CLIR experi-
ments altogether. Motivated by the organization of
the CLEF eHealth CLIR tasks, we adopt P@10 (the
percentage of relevant documents among the top
ten retrieved ones) as the main evaluation measure.
In all the experiments, all the top 10 ranked doc-
uments for each query are assessed for relevance.
We also report MAP (Mean Average Precision) as
a secondary evaluation measure. The *-SMT-form
systems are treated as baselines. The figures in
bold denote results better than the baseline. Those,
which are statistically significantly better are in
bold and also in italics. The significance tests were
performed using the paired Wilcoxon signed-rank
test (Hull, 1993) with α = 0.05, and no correction
was applied.

First, we conduct monolingual experiments us-
ing the English queries and the English document
collection to set a reference (oracle) system for our
CLIR task, that is why all the results of monolin-
gual systems are the same for all the languages. We
report the following: Mono-form system uses the
original English queries and the English collection
(no morphological processing applied). Mono-lem
and Mono-stem report the results after performing
lemmatization and stemming of the document col-
lection and the English queries, respectively. The
purpose of these systems is to study the effect of
the morphological processing of the English docu-
ments on retrieval performance.
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Czech French German Hungarian Spanish Swedish Polish
MT System P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP

Monolingual (Oracle)
Mono-form 53.0 28.3 53.0 28.3 53.0 28.3 53.0 28.3 53.0 28.3 53.0 28.3 53.0 28.3
Mono-lem 52.1 27.5 52.1 27.5 52.1 27.5 52.1 27.5 52.1 27.5 52.1 27.5 52.1 27.5
Mono-stem 52.1 26.4 52.1 26.4 52.1 26.4 52.1 26.4 52.1 26.4 52.1 26.4 52.1 26.4
Query translation
QT-SMT-form 47.2 22.6 48.0 23.6 44.2 21.7 45.9 22.9 46.9 23.2 40.0 20.2 42.1 20.1
QT-NMT-form 57.2 26.0 51.5 24.1 50.3 22.5 50.7 24.0 49.0 22.6 50.1 23.8 47.2 22.3
Document translation
DT-SMT-form 39.0 17.4 42.1 21.5 40.4 22.1 40.0 17.2 45.6 26.9 38.3 17.0 40.7 20.4
DT-SMT-post-stem 36.9 16.7 44.5 22.7 39.2 22.9 35.4 17.0 46.3 27.3 33.9 16.7 35.3 18.7
DT-SMT-post-lem 39.3 18.3 41.9 21.7 37.7 22.4 37.1 17.0 42.7 25.0 33.0 16.0 37.1 22.2
DT-SMT-pre-lem 42.8 21.3 43.6 20.6 42.1 19.8 36.5 16.8 47.7 22.4 30.7 12.6 34.8 19.7
DT-NMT-form 42.1 15.6 46.0 19.8 36.6 14.0 26.0 10.5 43.9 17.5 33.9 11.6 38.9 12.3

Table 3: Extrinsic evaluation of the MT systems in the CLIR task. The CLIR experiments are evaluated using the
Extended CLEF eHealth 2013–2015 test collection and compared with the results of monolingual retrieval (queries
in English).

The QT experiments are done using the SMT and
NMT systems, both translating into word forms
(QT-SMT-form and QT-NMT-form). We want to
stress here that the used MT systems for QT are
different from the MT systems for DT, not only in
the translation direction but also in the way that
they were trained and tuned. Details are presented
in Section 5.1 and Section 5.2.

In DT experiments, we exploit several configura-
tions of the MT systems. DT-SMT-form translates
the collection from English into the target language
by the SMT system for document translation (no
morphological processing applied). DT-SMT-post-
stem refers to the results obtained by stemming
the output of the the DT-SMT-form system. DT-
SMT-post-lem lemmatizes the output of the DT-
SMT-form, while DT-SMT-pre-lem lemmatizes the
training data prior SMT training. (i.e., the trans-
lated documents in this system are already lemma-
tized). To compare the performance of DT when
employing the NMT model, we report DT-NMT-
form, which uses the presented NMT models to
translate the collection into all the languages.

6.3 Result Analysis

In this work, we are mainly interested in compar-
ing NMT vs. SMT employed in both the CLIR
approaches (DT and QT), comparing the two ap-
proaches as such and analyzing the effect of mor-
phological normalization in DT.

NMT versus SMT: For the QT approach, we
can conclude that in terms of P@10, the NMT-
based CLIR systems (using the QT-NMT-form MT
systems) significantly outperform the SMT-based
ones. Moreover, QT-NMT-form in Czech outper-
forms not only all other QT systems but also outper-
forms the monolingual system, which means that
the NMT translations are on average better than the
reference ones. This situation is illustrated in Table
4 which provides several examples of queries in
which NMT not only provides translations which
are better (in terms of P@10) than the ones pro-
vided by SMT but also better than the reference
translations (for each translation, the P@10 score
is in parentheses). This can be explained by the
fact that the NMT models in our work are adapted
to translate medical content by employing the col-
lection itself in the back-translation process. This
gives the model access to the collection vocabular-
ies that are frequent in the retrieval collection, and
in the relevant documents eventually.

To investigate this hypothesis. We train an-
other QT-NMT-form system (for CS→EN only) us-
ing a different source of the back-translation data,
namely the English side of the MT parallel text,
which is also from the medical domain but differ-
ent from the CLIR collection (the other settings of
the system remain the same). The performance of
this system decreased (as expected) from 57.2%
to 54.2% (statistically significant). This shows
that employing the document collection in back-
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Query: 2013.38 (Czech)
SRC: IM a dědičný
REF: mi and hereditary (0.0)
SMT: mi and hereditary (0.0)
NMT: hereditary myocardial infarction (10.0)

Query: 2015.61 (French)
SRC: hématomes sous les ongles
REF: fingernail bruises (40.0)
SMT: bruising under the nail (10.0)
NMT: nail hematoma (60.0)

Query: 2014.19 (Swedish)
SRC: L aneurysm i halspulsåder
REF: l common carotid aneurysm (60.0)
SMT: l aneurysm in halspulsåder (0.0)
NMT: carotid artery aneurysm (100.0)

Query: 2015.61 (Spanish)
SRC: hematomas en la uña del dedo
REF: fingernail bruises (40.0)
SMT: bruising in toe nail (20.0)
NMT: nail hematoma (60.0)

Table 4: Comparison of query translations by two systems (QT-SMT-form and QT-NMT-form) and reference trans-
lations and their effect on retrieval quality. The figures in parentheses represent P@10 (in percentages) of retrieval
when using the translation as a single query.

translation indeed helps produce translations that
are more adapted to the collection domain.

NMT also helps deal with out-of-vocabulary
(OOV) words (i.e., words do not appear in the train-
ing data), which is a common problem in SMT.
For instance, the translations of Swedish queries
produced by QT-SMT-form contain 40 untranslated
terms. However, in QT-NMT-form translations, due
to BPE, there are no OOVs at all (all words get
translated, though the correct translation is not guar-
anteed). Very likely, this has a positive effect on
the CLIR performance too.

QT versus DT: The most surprising observation
in this work is the predominance of QT over DT in
our experiments. In terms of P@10, for all the lan-
guages, QT-SMT-form provides significantly better
translations than DT-SMT-form. For German and
Spanish, the systems based on the translation of
documents into morphologically normalized forms
(lemmas, stems) perform on par with the systems
based on QT-SMT-form, but for the other languages,
the baseline QT-SMT-form is the best performing
SMT option. The NMT models unsurprisingly
boost translation quality for both QT and DT, but
QT unexpectedly stays superior to DT, and the re-
sults get very close to the monolingual performance
(and even higher for the Czech system, see above).

This can be explained by a simple hypothesis
that a well-trained MT system based on the state-of-
the-art techniques and sufficient amounts of train-
ing data is good enough to provide query transla-
tions of sufficient quality and does not require to
see any larger context. The translation quality may
not be perfect, but still sufficient for retrieval. For
example, the Czech query clef2015.test.33, which

is “bı́lá infekce hltanu“, is translated into English as
“white infection of pharynx“. The reference transla-
tion for that query is “white infection in pharynx“.
We can see that the CS→EN SMT system fails in
translating prepositions (“of “ instead of “in“), but
this does not affect the CLIR performance. How-
ever, we should keep in mind that our experiments
are carried out in a very specific domain. This
means that the queries are short, and often include
symptoms and health conditions in which linguis-
tics and contextual information may not play a
significant role in solving the translation ambiguity
.

Morphological normalization: Producing doc-
ument translations (lemmatized or stemmed) re-
duces collection vocabularies and improves term
matching. However, in our experiments, none of
the DT-SMT systems employing morphologically
normalized translations of documents outperforms
(in terms of P@10) the QT-SMT-form systems.

An example of a query where morphological nor-
malization improved retrieval is the Czech query
clef2013.test.18: “aspiračnı́ pneumonie a dysfágie
hltanu“ (“aspiration pneumonia and pharyngeal
dysphagia“ in English). The word “hltanu“, which
means “pharyngeal“ is lemmatized in the training
data of the SMT system and the Czech query into
“hltan“, which means “pharynx“. When translat-
ing the English documents into Czech, “pharynx“
and “pharyngeal“ are translated back into “hltan“.
This helps retrieve more relevant documents, in-
creasing P@10 to 0.9 in DT-SMT-pre-lem from
0.7 in the monolingual systems (Mono, Mono-lem
and Mono-stem), 0.6 in QT-SMT-form and 0.0 in
DT-SMT-form. In comparison of pre-lemmatization
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and-post lemmatization, there is no clear winner. In
the intrinsic MT evaluation, DT-SMT-post-lem out-
performs DT-SMT-pre-lem for most languages.But
in the extrinsic CLIR evaluation, DT-SMT-pre-lem
is better for four languages and worse for Hun-
garian, Swedish, and Polish. DT-SMT-pre-lem in
Spanish is the only DT system that outperforms
the QT system. No clear conclusion can be done
regarding the DT-SMT-post-stem models.

Finally, it is important to give insights about the
cost-oriented comparison of the two approaches in
terms of time complexity. The training time of our
MT systems (both NMT and SMT) for both the
approaches (QT and DT) is almost the same. The
major difference was in the translation process. In
the DT approach, translating the document collec-
tion using SMT took on average around three days
using 200 CPU cores (each has 20 GB of RAM)
for each language, which means it took us 21 days
to translate 1.1 mil English documents into seven
languages. While NMT translation was around ten
times faster, using 20 GPUs only (GeForce RTX
2080Ti and Quadro P5000) with 10 GB of GPU
RAM took around 20 days to translate the docu-
ments into the target languages. While for the QT
approach, the translation process was pretty fast,
where it took around 15 minutes to translate 66
queries from seven languages into English using
SMT systems and around 3 minutes to do the same
using NMT.

7 Conclusions

We presented a comparative study between query-
translation (QT), and document translation (DT)
approaches in the Cross-Lingual Information Re-
trieval (CLIR) task. To conduct this study, we in-
vestigated various MT systems and their configura-
tions and performed a thorough large-scale evalu-
ation based on the test collection produced within
the CLEF eHealth tasks on patient-centered infor-
mation retrieval during 2013–2015, and extended
with additional relevance assessments.

We experimented with both statistical and neural
MT paradigms. The SMT systems for QT were
specifically trained and tuned to translate medical
search queries. For DT, we trained two SMT sys-
tems: the first one was built to produce word forms,
and the second one to produce word lemmas. We
then used these two systems to translate the test
collection into seven European languages. Fur-
thermore, we performed lemmatization and stem-

ming on the collection that was translated using the
SMT system that produces word forms. The results
showed that a well-tuned QT system outperforms
DT, which is a positive result with an important
impact on practical applications. So far, the QT
approach has been preferred mainly for efficiency
reasons (less space and computation needed). Our
experiments suggest that this approach is even more
effective (better retrieval results).

We also investigated the effect of using neural
machine translation, which is now considered the
state-of-the-art in many domains. This completely
new paradigm in machine translation tends to im-
prove the fluency of generated output (which is
appreciated by humans), but often mismatches con-
tent and adequacy (which might hurt the perfor-
mance in IR). In our experiments, NMT improved
retrieval results in both QT and DT, but the QT ap-
proach is still superior, so the results are consistent
with the findings from the SMT experiments.

However, we emphasize that the way we trained
our MT systems is very domain-specific (medi-
cal domain), and we made use of a vast amount
of medical data (monolingual and parallel). This
makes our comparative study very task-oriented.
When dealing with general domain test collection,
some search terms might have a different mean-
ing in different domains. For example, the word
”development” probably in most cases means in
medicine the growth or spread of a disease (or a
tumor), while in the general domain we can not
say without a context, and in that case, the need
for linguistics information in the queries will be
more important to solve the translation ambiguity.
This should be considered when comparing QT and
DT approaches; thus, the reader should be careful
when drawing the same conclusion of this work
while working on a different domain.
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Cristian Grozea, Barry Haddow, Madeleine Kit-
tner, Yvonne Lichtblau, Pavel Pecina, Roland Roller,
Rudolf Rosa, Amy Siu, Philippe Thomas, and
Saskia Trescher. 2017. Findings of the WMT 2017
Biomedical Translation Shared Task. In Proceed-
ings of the Second Conference on Machine Transla-
tion, pages 234–247, Copenhagen, Denmark. ACL.

Jimmy, Guido Zuccon, Joao Palotti, Lorraine Goeuriot,
and Liadh Kelly. 2018. Overview of the CLEF 2018
Consumer Health Search Task. In CLEF 2018 Eval-
uation Labs and Workshop: Online Working Notes,
Avignon, France. CEUR-WS.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann, Al-
ham Fikri Aji, Nikolay Bogoychev, André F. T. Mar-
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Andreas Rücklé, Krishnkant Swarnkar, and Iryna
Gurevych. 2019. Improved Cross-Lingual Question
Retrieval for Community Question Answering. In
WWW Conference, WWW ’19, pages 3179–3186,
New York , USA. ACM.



6860

Shadi Saleh and Pavel Pecina. 2016a. Adapting SMT
Query Translation Reranker to New Languages in
Cross-Lingual Information Retrieval. In Proceed-
ings of the Medical Information Retrieval (MedIR)
Workshop. A SIGIR 2016 Workshop, Pisa, Italy.

Shadi Saleh and Pavel Pecina. 2016b. Rerank-
ing Hypotheses of Machine-Translated Queries for
Cross-Lingual Information Retrieval, pages 54–66.
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