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Abstract

Recently, the character-word lattice structure
has been proved to be effective for Chinese
named entity recognition (NER) by incorpo-
rating the word information. However, since
the lattice structure is complex and dynamic,
most existing lattice-based models are hard to
fully utilize the parallel computation of GPUs
and usually have a low inference-speed. In
this paper, we propose FLAT: Flat-LAttice
Transformer for Chinese NER, which converts
the lattice structure into a flat structure con-
sisting of spans. Each span corresponds to
a character or latent word and its position in
the original lattice. With the power of Trans-
former and well-designed position encoding,
FLAT can fully leverage the lattice informa-
tion and has an excellent parallelization ability.
Experiments on four datasets show FLAT out-
performs other lexicon-based models in perfor-
mance and efficiency.

1 Introduction

Named entity recognition (NER) plays an indis-
pensable role in many downstream natural lan-
guage processing (NLP) tasks (Chen et al., 2015;
Diefenbach et al., 2018). Compared with English
NER (Lample et al., 2016; Yang et al., 2017; Liu
etal., 2017; Sun et al., 2020), Chinese NER is more
difficult since it usually involves word segmenta-
tion.

Recently, the lattice structure has been proved
to have a great benefit to utilize the word infor-
mation and avoid the error propagation of word
segmentation (Zhang and Yang, 2018). We can
match a sentence with a lexicon to obtain the latent
words in it, and then we get a lattice like in Figure
1(a). The lattice is a directed acyclic graph, where
each node is a character or a latent word. The lat-
tice includes a sequence of characters and potential
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Figure 1: While lattice LSTM indicates lattice struc-

ture by dynamically adjusting its structure, FLAT only

needs to leverage the span position encoding. In 1(c),
, , denotes tokens, heads and tails, respectively.

words in the sentence. They are not ordered se-
quentially, and the word’s first character and last
character determine its position. Some words in
lattice may be important for NER. For example, in
Figure 1(a), “ AF124JE (Renhe Pharmacy)” can be
used to distinguish between the geographic entity
“EJX(Chongging)” and the organization entity “E
X A(Chongqing People)”.

There are two lines of methods to leverage the
lattice. (1) One line is to design a model to be
compatible with lattice input, such as lattice LSTM
(Zhang and Yang, 2018) and LR-CNN (Gui et al.,
2019a). In lattice LSTM, an extra word cell is em-
ployed to encode the potential words, and attention
mechanism is used to fuse variable-number nodes
at each position, as in Figure 1(b). LR-CNN uses
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CNN to encode potential words at different win-
dow sizes. However, RNN and CNN are hard to
model long-distance dependencies (Vaswani et al.,
2017), which may be useful in NER, such as coref-
erence (Stanislawek et al., 2019). Due to the dy-
namic lattice structure, these methods cannot fully
utilize the parallel computation of GPU. (2) An-
other line is to convert lattice into graph and use a
graph neural network (GNN) to encode it, such as
Lexicon-based Graph Network (LGN) (Gui et al.,
2019b) and Collaborative Graph Network (CGN)
(Sui et al., 2019). While sequential structure is
still important for NER and graph is general coun-
terpart, their gap is not negligible. These meth-
ods need to use LSTM as the bottom encoder to
carry the sequential inductive bias, which makes
the model complicated.

In this paper, we propose FLAT: Flat LAttice
Transformer for Chinese NER. Transformer
(Vaswani et al., 2017) adopts fully-connected self-
attention to model the long-distance dependencies
in a sequence. To keep the position information,
Transformer introduces the position representation
for each token in the sequence. Inspired by the
idea of position representation, we design an in-
genious position encoding for the lattice-structure,
as shown in Figure 1(c). In detail, we assign two
positional indices for a token (character or word):
head position and tail position, by which we can
reconstruct a lattice from a set of tokens. Thus, we
can directly use Transformer to fully model the lat-
tice input. The self-attention mechanism of Trans-
former enables characters to directly interact with
any potential word, including self-matched words.
To a character, its self-matched words denote words
which include it. For example, in Figure 1(a),
self-matched words of “Zj (Drug)” are “ AF1%]
J5 (Renhe Pharmacy)” and “%j I (Pharmacy)”(Sui
et al., 2019). Experimental results show our model
outperforms other lexicon-based methods on the
performance and inference-speed. Our code will
be released at https://github.com/LeeSureman/Flat-
Lattice-Transformer.

2 Background

In this section, we briefly introduce the Trans-
former architecture. Focusing on the NER task,
we only discuss the Transformer encoder. It is com-
posed of self-attention and feedforward network
(FFN) layers. Each sublayer is followed by resid-
ual connection and layer normalization. FFN is

il % J ik NI
orug Sho Chongqing Renhe Phz

4k
rmacy Pharmacy

-4

A
P

Head 1 2 Bl 4 5 6 1 3 5 7}7
3 4 5 6 2 6 6 —

Figure 2: The overall architecture of FLAT.

a position-wise multi-layer Perceptron with non-
linear transformation. Transformer performs self-
attention over the sequence by H heads of attention
individually and then concatenates the result of H
heads. For simplicity, we ignore the head index in
the following formula. The result of per head is
calculated as:

Att(A, V) = softmax(A)V, (1)
QinT)

Ay = (=2 2

’ ( \% dhead ( )

[Q7 K,V] = Eﬁc [WQ7W/€7WU]7 (3)

where E is the token embedding lookup ta-
ble or the output of last Transformer layer.
W, Wi, W, € R¥modet Xdnead are learnable pa-
rameters, and d,,ode = H X dpead, Ahead 18 the
dimension of each head.

The vanilla Transformer also uses absolute posi-
tion encoding to capture the sequential information.
Inspired by Yan et al. (2019), we think commuta-
tivity of the vector inner dot will cause the loss of
directionality in self-attention. Therefore, we con-
sider the relative position of lattice also significant
for NER.

3 Model

3.1 Converting Lattice into Flat Structure

After getting a lattice from characters with a lex-
icon, we can flatten it into flat counterpart. The
flat-lattice can be defined as a set of spans, and a
span corresponds to a token, a head and a tail, like
in Figure 1(c). The token is a character or word.
The head and tail denote the position index of the
token’s first and last characters in the original se-
quence, and they indicate the position of the token
in the lattice. For the character, its head and tail are
the same. There is a simple algorithm to recover
flat-lattice into its original structure. We can first
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take the token which has the same head and tail,
to construct the character sequence. Then we use
other tokens (words) with their heads and tails to
build skip-paths. Since our transformation is re-
coverable, we assume flat-lattice can maintain the
original structure of lattice.

3.2 Relative Position Encoding of Spans

The flat-lattice structure consists of spans with dif-
ferent lengths. To encode the interactions among
spans, we propose the relative position encoding of
spans. For two spans x; and z; in the lattice, there
are three kinds of relations between them: intersec-
tion, inclusion and separation, determined by their
heads and tails. Instead of directly encoding these
three kinds of relations, we use a dense vector to
model their relations. It is calculated by continu-
ous transformation of the head and tail information.
Thus, we think it can not only represent the relation
between two tokens, but also indicate more detailed
information, such as the distance between a charac-
ter and a word. Let head[i] and tail[i] denote the
head and tail position of span x;. Four kinds of rel-
ative distances can be used to indicate the relation
between x; and x;. They can be calculated as:

dg?h) = head[i] — head][j], @
(ht) __ - 1K
di;" = head[i] — tail[j], ®)
dﬁ;h) = tail[i] — headlj], (6)
dl(;t) = tail[i] — tail[j], O
where d"" denotes the distance between head of

ij

x; and tail of x;, and other dg-bt), dg-h), dl(.;t) have
similar meanings. The final relative position encod-
ing of spans is a simple non-linear transformation

of the four distances:

Rij = ReLU(Wy(p jnm) &P ytn) B P ynt) BP y11))), (8)
ij ij ij ij

where W,. is a learnable parameter, ® denotes the
concatenation operator, and py is calculated as in
Vaswani et al. (2017),

p?") = sin (d/mooo%/ dmodel) : ©)
pCFHD _ cog (d/loooo%/dmodez) 7 (10)

where d is dg-lh), dg;t), dg;h) or dg-t) and k denotes
the index of dimension of position encoding. Then
we use a variant of self-attention (Dai et al., 2019)
to leverage the relative span position encoding as

follows:

Ontonotes MSRA Resume Weibo
Train 15740 46675 3821 1350
Chargvg 36.92 45.87 32.15 54.37
Wordgug 17.59 22.38 24.99 21.49
Entityg.g 1.15 1.58 3.48 1.42

Table 1: Statistics of four datasets. ‘Train’ is the size of
training set. ‘Charg,,,’, ‘Word,,,’, ‘Entity,,, " are the
average number of chars, words mateched by lexicon
and entities in an instance.

| Lexicon|Ontonotes MSRA Resume Weibo

BiLSTM - 71.81 91.87 9441 56.75
TENER - 72.82 9301 95.25 58.39
Lattice LSTM| YJ 73.88  93.18 9446 58.79
CNNR Y] 7445 9371 95.11 59.92
LGN Y] 74.85 93.63 9541 60.15
PLT Y] 74.60 9326 9540 59.92
FLAT Y] 7645 94.12 9545 60.32
FLAT msm Y] 73.39  93.11 95.03 57.98
FLAT 14 Y] 75.35 93.83 9528 59.63
CGN LS 7479 93.47 94.12* 63.09
FLAT LS 75.70 9435 9493 63.42

Table 2: Four datasets results (F1). BILSTM results are
from Zhang and Yang (2018). PLT denotes the porous
lattice Transformer (Mengge et al., 2019). ‘Y]’ denotes
the lexicon released by Zhang and Yang (2018), and
‘LS’ denotes the lexicon released by Li et al. (2018).
The result of other models are from their original paper.
Except that the superscript * means the result is not
provided in the original paper, and we get the result
by running the public source code. Subscripts ‘msm’
and ‘mld’ denote FLAT with the mask of self-matched
words and long distance (>10), respectively.

A, =W, E, E, Wiz + W, E R;;W;r
+u'E;, Wi+ v RiyWg g, (11)

where W, Wy p, Wy g € RimodetXdhead and
u, v € Réead gre learnable parameters. Then we
replace A with A* in Eq.(1). The following calcu-
lation is the same with vanilla Transformer.

After FLAT, we only take the character represen-
tation into output layer, followed by a Condiftional
Random Field (CRF) (Lafferty et al., 2001).

Span F Type Acc
Ontonotes MSRA Ontonotes MSRA
TENER 72.41 93.17 96.33 99.29
FLAT 76.23 94.58 97.03 99.52
FLAT}cqa 75.64 94.33  96.85 99.45

Table 3: Two metrics of models. FLAT},..q means R;;
(hh)
ij -

in (11) is replaced by d
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4 Experiments

4.1 Experimental Setup

Four Chinese NER datasets were used to eval-
vate our model, including (1) Ontonotes 4.0
(Weischedel and Consortium, 2013) (2) MSRA
(Levow, 2006) (3) Resume (Zhang and Yang,
2018) (4) Weibo (Peng and Dredze, 2015; He and
Sun, 2016). We show statistics of these datasets in
Table 1. We use the same train, dev, test split as Gui
et al. (2019b). We take BiLSTM-CRF and TENER
(Yan et al., 2019) as baseline models. TENER is
a Transformer using relative position encoding for
NER, without external information. We also com-
pare FLAT with other lexicon-based methods. The
embeddings and lexicons are the same as Zhang
and Yang (2018). When comparing with CGN (Li
et al., 2018), we use the same lexicon as CGN. The
way to select hyper-parameters can be found in the
supplementary material. In particular, we use only
one layer Transformer encoder for our model.

4.2 Overall Performance

As shown in Table 2, our model outperforms base-
line models and other lexicon-based models on
four Chinese NER datasets. Our model outper-
forms TENER (Yan et al., 2019) by 1.72 in average
F1 score. For lattice LSTM, our model has an
average F1 improvement of 1.51 over it. When
using another lexicon (Li et al., 2018), our model
also outperforms CGN by 0.73 in average F1 score.
Maybe due to the characteristic of Transformer, the
improvement of FLAT over other lexicon-based
models on small datasets is not so significant like
that on large datasets.

4.3 Advantage of Fully-Connected Structure

We think self-attention mechanism brings two ad-
vantages over lattice LSTM: 1) All characters can
directly interact with its self-matched words. 2)
Long-distance dependencies can be fully modeled.
Due to our model has only one layer, we can strip
them by masking corresponding attention. In de-
tail, we mask attention from the character to its
self-matched word and attention between tokens
whose distance exceeds 10. As shown in Table
2, the first mask brings a significant deterioration
to FLAT while the second degrades performance
slightly. As a result, we think leveraging informa-
tion of self-matched words is important For Chi-
nese NER.
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Figure 3: Inference-speed of different models, com-
pared with lattice LSTM &. & denotes non-batch-
parallel version, and # indicates the model is run in
16 batch size parallelly. For model LR-CNN, we do
not get its batch-parallel version.

4.4 Efficiency of FLAT

To verify the computation efficiency of our model,
we compare the inference-speed of different
lexicon-based models on Ontonotes. The result
is shown in Figure 3. GNN-based models outper-
form lattice LSTM and LR-CNN. But the RNN
encoder of GNN-based models also degrades their
speed. Because our model has no recurrent mod-
ule and can fully leverage parallel computation of
GPU, it outperforms other methods in running ef-
ficiency. In terms of leveraging batch-parallelism,
the speedup ratio brought by batch-parallelism is
4.97 for FLAT, 2.1 for lattice LSTM, when batch
size = 16. Due to the simplicity of our model, it can
benefit from batch-parallelism more significantly.

4.5 How FLAT Brings Improvement

Compared with TENER, FLAT leverages lexicon
resources and uses a new position encoding. To
probe how these two factors bring improvement.
We set two new metrics, 1) Span F: while the com-
mon F score used in NER considers correctness
of both the span and the entity type, Span F only
considers the former. 2) Type Acc: proportion of
full-correct predictions to span-correct predictions.
Table 3 shows two metrics of three models on the
devlopment set of Ontonotes and MSRA. We can
find: 1) FLAT outperforms TENER in two met-
rics significantly. 2) The improvement on Span F
brought by FLAT is more significant than that on
Type Acc. 3) Compared to FLAT, FLAT}.q4’s de-
terioration on Span F is more significant than that
on Type Acc. These show: 1) The new position
encoding helps FLAT locate entities more accu-
rately. 2) The pre-trained word-level embedding
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| Lexicon |Ontonotes MSRA Resume Weibo

BERT - 80.14 9495 9553 68.20
BERT+FLAT| YIJ 81.82 96.09 95.86 68.55
Table 4: Comparision between BERT and

BERT+FLAT. ‘BERT"’ refers to the BERT+MLP+CRF
architecture. ‘FLAT+BERT’ refers to FLAT using
BERT embedding. We finetune BERT in both models
during training. The BERT in the experiment is
‘BERT-wwm’ released by Cui et al. (2019). We use it
by the BERTEmbedding in fastNLP !

makes FLAT more powerful in entity classification
(Agarwal et al., 2020).

4.6 Compatibility with BERT

We also compare FLAT equipped with BERT with
common BERT+CREF tagger on four datasets, and
Results are shown in Table 4. We find that, for large
datasets like Ontonotes and MSRA, FLAT+BERT
can have a significant improvement over BERT. But
for small datasets like Resume and Weibo, the im-
provement of FLAT+BERT over BERT is marginal.

5 Related Work

5.1 Lexicon-based NER

Zhang and Yang (2018) introduced a lattice LSTM
to encode all characters and potential words recog-
nized by a lexicon in a sentence, avoiding the error
propagation of segmentation while leveraging the
word information. Gui et al. (2019a) exploited a
combination of CNN and rethinking mechanism
to encode character sequence and potential words
at different window sizes. Both models above suf-
fer from the low inference efficiency and are hard
to model long-distance dependencies. Gui et al.
(2019b) and Sui et al. (2019) leveraged a lexicon
and character sequence to construct graph, convert-
ing NER into a node classification task. However,
due to NER’s strong alignment of label and input,
their model needs an RNN module for encoding.
The main difference between our model and models
above is that they modify the model structure ac-
cording to the lattice, while we use a well-designed
position encoding to indicate the lattice structure.

5.2 Lattice-based Transformer

For lattice-based Transformer, it has been used in
speech translation and Chinese-source translation.
The main difference between them is the way to

"https://github.com/fastnlp/fastNLP

indicate lattice structure. In Chinese-source trans-
lation, Xiao et al. (2019) take the absolute position
of nodes’ first characters and the relation between
each pair of nodes as the structure information. In
speech translation, Sperber et al. (2019) used the
longest distance to the start node to indicate lattice
structure, and Zhang et al. (2019) used the shortest
distance between two nodes. Our span position
encoding is more natural, and can be mapped to all
the three ways, but not vise versa. Because NER is
more sensitive to position information than transla-
tion, our model is more suitable for NER. Recently,
Porous Lattice Transformer (Mengge et al., 2019)
is proposed for Chinese NER. The main difference
between FLAT and Porus Lattice Transformer is
the way of representing position information. We
use ‘head’ and ‘tail’ to represent the token’s posi-
tion in the lattice. They use ‘head’, tokens’ relative
relation (not distance) and an extra GRU. They also
use ‘porous’ technique to limit the attention distri-
bution. In their model, the position information is
not recoverable because ‘head’ and relative relation
can cause position information loss. Briefly, rela-
tive distance carries more information than relative
relation.

6 Conclusion and Future Work

In this paper, we introduce a flat-lattice Trans-
former to incorporate lexicon information for Chi-
nese NER. The core of our model is converting
lattice structure into a set of spans and introduc-
ing the specific position encoding. Experimental
results show our model outperforms other lexicon-
based models in the performance and efficiency.
We leave adjusting our model to different kinds of
lattice or graph as our future work.
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A Appendices

A.1 Hyperparameters Selection

For MSRA and Ontonotes these two large datasets,
we select the hyper-parameters based on the devel-
opment experiment of Ontonotes. For two small
datasets, Resume and Weibo, we find their optimal

Table 5: Hyper-parameters for Ontonotes and MSRA.

batch [8,10]
hyper-parameters by random-search. The Table 5
lists the hyper-parameters obtained from the devel- Ir [le-3, 8e-4]
opment experiment of Ontonotes. dhead [16,20]
The Table 6 lists the range of hyper-parameters head [4.8,12]
random-search for Weibo, Resume datasets. For warmup  [1, 5, 10] (epoch)

the hyper-parameters which do not appear in it,

they are the same as in Table 5. Table 6: The range of hyper-parameters random-search

for Weibo, Resume datasets.

6842


http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1298
https://doi.org/10.18653/v1/P19-1298
http://arxiv.org/abs/1707.05127
http://arxiv.org/abs/1707.05127
https://doi.org/10.18653/v1/P19-1649
http://arxiv.org/abs/1805.02023
http://arxiv.org/abs/1805.02023

