
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6795–6805
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6795

Semi-Supervised Semantic Dependency Parsing Using CRF Autoencoders

Zixia Jia�, Youmi Ma†, Jiong Cai�, Kewei Tu�∗
�School of Information Science and Technology, ShanghaiTech University

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences

Shanghai Engineering Research Center of Intelligent Vision and Imaging
†Tokyo Institute of Technology

{jiazx, caijiong, tukw}@shanghaitech.edu.cn
youmi.ma@nlp.c.titech.ac.jp

Abstract

Semantic dependency parsing, which aims to
find rich bi-lexical relationships, allows words
to have multiple dependency heads, resulting
in graph-structured representations. We pro-
pose an approach to semi-supervised learning
of semantic dependency parsers based on the
CRF autoencoder framework. Our encoder is
a discriminative neural semantic dependency
parser that predicts the latent parse graph of
the input sentence. Our decoder is a gener-
ative neural model that reconstructs the input
sentence conditioned on the latent parse graph.
Our model is arc-factored and therefore pars-
ing and learning are both tractable. Experi-
ments show our model achieves significant and
consistent improvement over the supervised
baseline.

1 Introduction

Semantic dependency parsing (SDP) is a task aim-
ing at discovering sentence-internal linguistic in-
formation. The focus of SDP is the identification
of predicate-argument relationships for all content
words inside a sentence (Oepen et al., 2014, 2015).
Compared with syntactic dependencies, semantic
dependencies are more general, allowing a word
to be either unattached or the argument of multi-
ple predicates. The set of semantic dependencies
within a sentence form a directed acyclic graph
(DAG), distinguishing SDP from syntactic depen-
dency parsing tasks, where dependencies are usu-
ally tree-structured. Extraction of such high-level
structured semantic information potentially ben-
efits downstream NLP tasks (Reddy et al., 2017;
Schuster et al., 2017).

Several supervised SDP models are proposed
in the recent years by modifying syntactic depen-
dency parsers. Their parsing mechanisms are either
transition-based (Kanerva et al., 2015; Wang et al.,

∗Corresponding author.

2018) or graph-based (Martins and Almeida, 2014;
Peng et al., 2017; Dozat and Manning, 2018; Wang
et al., 2019).

One limitation of supervised SDP is that labeled
SDP data resources are limited in scale and diver-
sity. Due to the rich relationships in SDP, the anno-
tation of semantic dependency graphs is expensive
and difficult, calling for professional linguists to de-
sign rules and highly skilled annotators to annotate
sentences. This limitation becomes more severe
with the rise of deep learning, because neural ap-
proaches are more data-hungry and susceptible to
over-fitting when lacking training data. To allevi-
ate this limitation, we investigate semi-supervised
SDP capable of learning from both labeled and
unlabeled data.

While a lot of work has been done on super-
vised SDP, the research of unsupervised and semi-
supervised SDP is still lacking. Since parsing re-
sults of semantic dependencies are DAGs with-
out the tree-shape restriction, most existing suc-
cessful unsupervised (Klein and Manning, 2004;
I. Spitkovsky et al., 2010; Jiang et al., 2016; Cai
et al., 2017) and semi-supervised (Koo et al., 2008;
Druck et al., 2009; Suzuki et al., 2009; Corro and
Titov, 2019) learning models for syntactic depen-
dency parsing cannot be applied to SDP directly
and it would be non-trivial to extend these mod-
els for SDP. There also exist several unsupervised
(Poon and Domingos, 2009; Titov and Klementiev,
2011) and semi-supervised (Das and Smith, 2011;
Kočiskỳ et al., 2016; Yin et al., 2018) methods for
semantic parsing, but these models are designed
for semantic representations different from depen-
dency graphs, making their adaptation to SDP dif-
ficult.

In this work, we propose an end-to-end neural
semi-supervised model leveraging both labeled and
unlabeled data to learn a dependency graph parser.
Our model employs the framework of Conditional

6796

Random Field Autoencoder (Ammar et al., 2014),
modeling the conditional reconstruction probabil-
ity given the input sentence with its dependency
graph as the latent variable. Our encoder is the
supervised model of Dozat and Manning (2018),
formulating an SDP task as labeling each arc in a
directed graph with a simple neural network. Anal-
ogous to a CRF model (Sutton et al., 2012), our
encoder is capable of computing the probability of
a dependency graph conditioned on the input sen-
tence. The decoder is a generative model based on
recurrent neural network language model (Mikolov
et al., 2010), which formulates the probability of
generating the input sentence, but we take into ac-
count the information given by the dependency
parse graphs when generating the input.

Our model is arc-factored, i.e., the encoding, de-
coding and reconstructing probabilities can all be
factorized into the product of arc-specific quanti-
ties, making both learning and parsing tractable.
A unified learning objective is defined that takes
advantage of both labeled and unlabeled data. Be-
sides, compared with previous semi-supervised
approaches based on Variational Autoencoder
(Kingma and Welling, 2013), our learning process
does not involve sampling, promising better stabil-
ity.

We evaluate our model on SemEval 2015 Task
18 Dataset (English) (Oepen et al., 2015) and find
that our model consistently outperforms the super-
vised baseline. We also conduct detailed analysis
showing the benefits of different amounts of unla-
beled data.

2 Model

Our model is based on the CRF autoencoder frame-
work (Ammar et al., 2014) which provides a unified
fashion for structured predictors to leverage both la-
beled and unlabeled data. A CRF autoencoder aims
to produce a reconstruction of the input X̂ from the
original input X with an intermediate latent struc-
ture Y. It is trained to maximize the conditional
reconstruction probability P (X̂ = X|X) with the
latent variable Y marginalized. Ideally, success-
ful reconstruction implies that the latent structure
captures important information of the input.

We adopt the following notations when describ-
ing our model. We represent a vector in lowercase
bold, e.g., s, and use a superscript for indexing,
e.g., si for the i-th vector. We represent a scalar
in lowercase italics, e.g., s, and use a subscript for

indexing, e.g., si for the i-th element of vector s.
An uppercase italic letter such as Y denotes a ma-
trix. A lower case letter with a subscript pair such
as yi,j refers to the element of matrix Y at row i
and column j. An uppercase bold letter, e.g., U,
stands for a tensor. We maintain this convention
when indexing, e.g., yi is the i-th row of matrix Y .

In our model, the input is a natural language
sentence consisting of a sequence of words. A
sentence with m words is represented by s =
(s0, s1, s2, . . . , sm), where s0 is a special token
TOP. The latent variable produced by our en-
coder is a dependency parse graph of the input
sentence, represented as a matrix of booleans
Y ∈ {0, 1}(m+1)×(m+1), where yi,j = 1 indi-
cates that there exists an dependency arc pointing
from word si to word sj . The reconstructed out-
put generated by our decoder is a word sequence
ŝ = (ŝ1, ŝ2, . . . , ŝm).

Our encoder with parameters Θ computes
PΘ(Y |s), the probability of generating a depen-
dency parse graph Y given a sentence s. Our
decoder with parameters Λ computes PΛ(ŝ|Y),
the probability of reconstructing sentence ŝ con-
ditioned on the parse graph Y . The encoder and
decoder in combination specify the following con-
ditional distribution.

PΘ,Λ(ŝ, Y |s) = PΘ(Y |s)PΛ(ŝ|Y)

To compute the conditional probability P (ŝ|s),
we sum out the latent variable Y .

PΘ,Λ(ŝ|s) =
∑
Y ∈Y

PΘ,Λ(ŝ, Y |s)

where Y is the set of all possible dependency parse
graphs of s. During training, we set ŝ = s and
maximize the conditional reconstruction probabil-
ity P (ŝ|s).

Note that throughout our model, we only con-
sider dependency arc predictions (i.e., whether an
arc exists between each word pair). Arc-labels will
be learned separately as described in Section 3. We
leave the incorporation of arc-label prediction in
our model for future work.

2.1 Encoder
Our encoder can be any arc-factored discriminative
SDP model. Here we adopt the model of Dozat and
Manning (2018), one of the best-performing SDP
models, which formulates the semantic dependency
parsing task as independently labeling each arc in

6797

⋯

Embedding

FNN

BiLSTM

𝑠𝑖 𝑠𝑗

Biaff

𝐡𝑖
(dep) 𝐡𝑖

(head)

𝛹

⋯⋯

𝐱𝑖 𝐱𝑗

Figure 1: Illustration of the encoder, following the de-
sign of Dozat and Manning (2018).

a directed complete graph. To predict whether or
not a directed arc (si, sj) exists, the model com-
putes contextualized representations of si and sj
and feeds them into a binary classifier.

The architecture of our encoder is shown in Fig-
ure 1. Word, part-of-speech tag (for short, POS tag),
and lemma embeddings1 of each word in the input
sentence are concatenated and fed into a multi-
layer bi-directional LSTM to get a contextualized
representation of the word.

xi =e
(word)
i ⊕ e

(tag)
i ⊕ e

(lemma)
i (1)

R = BiLSTM(X)

where e
(word)
i , e

(tag)
i and e

(lemma)
i are notations for

the word, POS tag and lemma embedding respec-
tively, concatenated (⊕) to form an embedding xi

for word si. Stacking xi for i = 0, 1, . . . ,m forms
matrix X .

The contextualized word representation is then
fed into two single-layer feedforward neural net-
works (FNN) with different parameters to produce
two vectors: one for the representation of the word
as a dependency head and the other for the repre-
sentation of the word as a dependent. They are
denoted as h

(head)
i and h

(dep)
i respectively.

h
(head)
i = FNN(enc−head)(ri)

h
(dep)
i = FNN(enc−dep)(ri)

Finally, a biaffine function is applied to every
arc between word pairs (si, sj) to obtain an arc-
existence score ψi,j .

ψi,j = h
(head)>
i Wh

(dep)
j + b

1 The latest experimental results in Dozat and Manning
(2018) show that using lemma embedding improves perfor-
mance even further while including character-level word em-
bedding produces little effect. Thus unless stated otherwise,
our model makes use of lemma embeddings by default.

where W is a square matrix of size d× d (d is the
size of vector h

(head)
i and h

(dep)
j) , and b is a scalar.

The likelihood of every arc’s presence given
a sentence, P (yi,j = 1|s), can be computed by
applying a sigmoid function on score ψi,j . The
arc-absence probability P (yi,j = 0|s) is evidently
1− P (yi,j = 1|s).

To conclude, the probability of producing a de-
pendency parse graph Y from the encoder given an
input sentence s can be computed as below.

P (Y |s) =
∏
i,j

P (yi,j |s)

2.2 Decoder

Our generative decoder is based on recurrent neural
network language models (Mikolov et al., 2010),
but we take dependency relationships into account
during reconstruction. Our inspiration sources
from the decoder with a Graph Convolutional Net-
work (GCN) used by Corro and Titov (2019) to
incorporate tree-structured syntactic dependencies
when generating sentences, but our decoder differs
significantly from theirs in that ours handles parse
graphs and is arc-factored.

As mentioned above, semantic dependency pars-
ing allows a word to have multiple dependency
heads. If we generate a word conditioned on mul-
tiple heads, then it becomes difficult if not impos-
sible to make the decoder arc-factored and hence
we may have to enumerate all parse graphs during
parsing and learning, which is intractable. Instead,
we propose to generate a word for multiple times,
each time conditioned on a different head, which
leads to a fully arc-factored generative decoder
and hence tractable parsing and learning. Specifi-
cally, we split dependency graph Y of a sentence
s = (s0, s1, . . . , sm) with m words and a TOP
token into m+ 1 parts:

Y = [y0; y1; y2; . . . ; ym]

Each yi is the i-th row of Y , representing a sub-
graph where arcs are rooted at the i-th word of
the sentence s. Mathematically, we have yi =
{yi,j |j ∈ (1, 2, ...,m)}.

We then generate m + 1 sentences
(ŝ0, ŝ1, ŝ2, . . . , ŝm) using m + 1 neural gen-
erators. The generation of sentence ŝi is guided
by the i-th sub-graph yi. Each generator is a
left-to-right LSTM language model and computes
PΛ(ŝki |ŝk0:i−1, yk,i), the probability of generating

6798

𝑠!𝑠"

𝐦"
#$%&

𝑠' 𝑠(

⋯⋯

Embedding

FNN

LSTM

FC

�̂�! �̂�(
"𝝓!
"𝝓#

"softmax

Sub-graph 𝐲!

𝐦'
)*$

Bilinear

𝐦!
)*$

𝐱$ 𝐱# 𝐱!𝐱"

Figure 2: Illustration of the decoder generating ŝk

from the k-th neural generator, guided by sub-graph
yk. Dashed arcs at the bottom represent dependency
arcs. A cross over arc (sk, s4) indicates the absence of
this arc.

each word conditioned on its preceding words
and whether yk contains a dependency arc to the
word. We share parameters among all the m + 1
generators.

Figure 2 shows an example for computing the
generative probability of ŝk by the k-th generator
(k ∈ {0, 1, . . . ,m}) that incorporates the infor-
mation of the k-th sub-graph yk. Recall that yk

contains only dependencies rooted at sk. Below we
describe how to compute the generative probability
of each word ŝki with and without the dependency
arc (sk, si) respectively.

Generative probability with a dependency
Suppose there is a dependency arc from sk to
si, we need to compute the generative probabil-
ity PΛ(ŝki |ŝk0:i−1, yk,i = 1). The LSTM in the k-th
generator takes the embedding of the previous word
si−1 computed through Eq.1 as its input and out-
puts the hidden state gi−1, which is fed into an
FNN to produce a representation m

(pre)
i−1 . Mean-

while, the embedding of the k-th word (also com-
puted through Eq.1) is fed into another FNN to get
its representation m

(head)
k as a dependency head.

G = LSTM(X)

m
(pre)
i−1 = FNN(dec−pre)(gi−1) (2)

m
(head)
k = FNN(dec−head)(xk) (3)

m
(head)
k and m

(pre)
i−1 are fed into a bilinear function

to obtain a vocabulary-size score vector φk
i .

φk
i = m

(head)>
k Um

(pre)
i−1 (4)

Here, U is a tensor of size d×V ×d, where V is the
vocabulary size and d is the size of vector m

(head)
k

and m
(pre)
i−1 . To conserve parameters, the tensor U

is diagonal (i.e., ui,k,j = 0 wherever i 6= j). A
softmax function can then be applied to φk

i , from
which we pick the generative probability of ŝki .

Generative probability without a dependency
Suppose there is no dependency arc from sk to
si. In this case, reconstruction of ŝki resembles a
normal recurrent neural network language model.
The representation m

(pre)
i−1 from Eq.2 is fed into a

fully connected layer to get φ̄k
i , a vector of vocab-

ulary size containing generative scores of all the
words.

φ̄k
i = FC(m

(pre)
i−1) (5)

The generative probability PΛ(ŝki |ŝk0:i−1, yk,i = 0)
can then be computed by applying a softmax func-
tion on φ̄k

i and selecting the corresponding prob-
ability of ŝki . Since we simply reconstruct word
si without considering the dependency arc infor-
mation, this probability is exactly the same in the
m+ 1 generators and only needs to be computed
once.

To conclude the overall design of our decoder, it
is worth noting that in m+ 1 generation processes,
parameters among all LSTMs are shared, as well
as those among all FNNs2 and FCs. Still, embed-
dings in Eq.1 are shared among both encoder and
decoder.

With P (ŝki |ŝk0:i−1, yk,i) computed for i =
1, . . . ,m, k = 0, 1, . . . ,m, the probability of gen-
erating ŝ0, ŝ1, ŝ2, . . . , ŝm from dependency graph
Y can be computed through:

PΛ(ŝ0, . . . , ŝm|Y) =
m∏
k=0

PΛ(ŝk|yk)

=
m∏
k=0

m∏
i=1

PΛ(ŝki |ŝk0:i−1, yk,i)

In our model, we are only interested in the case
where all the m + 1 sentences are the same. In
addition, to balance the influence of the encoder
and the decoder, we take the geometric mean of the
m+ 1 probabilities. The final decoding probability
is defined as follows.

PΛ(ŝ|Y) :=

m∏
i=1

m∏
k=0

m+1

√
PΛ(ŝki |ŝk0:i−1, yk,i)

2FNN(dec−pre) and FNN(dec−head) never share param-
eters between each other, since their usages are different.

6799

Note that this is not a properly normalized probabil-
ity distribution, but in practice we find it sufficient
for semi-supervised SDP.

2.3 Parsing
Given parameters {Θ,Λ} of our encoder and de-
coder, we can parse a sentence s by finding a Y ∈
Y(s) which maximizes probability P (ŝ = s, Y |s),
where Y(s) is the set of all parse graphs of sentence
s.

Y ∗ = arg max
Y ∈Y(s)

logPΘ,Λ(ŝ, Y |s) (6)

= arg max
Y ∈Y(s)

logPΘ(Y |s)PΛ(ŝ|Y)

= arg max
Y ∈Y(s)

∑
i,j

(
logPΘ(yi,j |s)

+
1

m+ 1
logPΛ(ŝj |ŝ0:j−1, yi,j)

)
Since the probability is arc-factored, we can de-

termine the existence of each dependency arc in-
dependently by picking the value of yi,j that maxi-
mizes the corresponding term. The time complexity
of our parsing algorithm is O(m2) for a sentence
with m words.

3 Learning

Since we want to train our model in a semi-
supervised manner, we design loss functions for
labeled and unlabeled data respectively. For each
training sentence s, the overall loss function is de-
fined as a combination of supervised loss Ll and
unsupervised loss Lu.

L(s) = ι(s) ∗ Ll(s) + (1− ι(s)) ∗ ρLu(s) (7)

where an indicator ι(s) ∈ {0, 1} specifies whether
training sentence s is labeled or not and a tunable
constant ρ balances the two losses.

Supervised Loss For any labeled sentence
(s, Y ∗), where s stands for a sentence and Y ∗

stands for a gold parse graph, we can compute
the discriminative loss.

Ll(s) = − logPΘ,Λ(ŝ = s, Y ∗|s) (8)

Following the derivation of Eq.6, we have:

logPΘ,Λ(ŝ, Y ∗|s) =
∑
i,j

(
logPΘ(y∗i,j |s)

+
1

m+ 1
logPΛ(ŝj |ŝ0:j−1, y

∗
i,j)
)

Usage Source Sentences Tokens
train WSJ Sec.00-20 35,656 802,717

test (id) WSJ Sec.21 1,410 31,948
test (ood) Brown 1,849 31,583

Table 1: The sources and scale of the SDP 2014 & 2015
(English) dataset. We extract WSJ Section 20 (1,692
sentences) from the train set for development purpose.
id stands for in-domain testing, while ood stands for
out-of-domain testing.

Gold parses also provide a label for each depen-
dency. We follow Dozat and Manning (2018) and
model dependency labels with a purely supervised
module on top of the BiLSTM layer of the encoder.
Its parameters are learned by optimizing a cross-
entropy loss function.

Unsupervised Loss For any unlabeled sentence
s, we maximize the conditional reconstruction
probability P (ŝ = s|s). The unsupervised loss
is:

Lu(s) = − logPΘ,Λ(ŝ|s) (9)

= − log
∑

Y ∈Y(s)

PΘ,Λ(Y, ŝ|s)

= − log
∑

Y ∈Y(s)

PΘ(Y |s)PΛ(ŝ|Y)

= −
∑
i,j

log
∑

yi,j∈{0,1}

(
PΘ(yi,j |s)

× m+1

√
PΛ(ŝj |ŝ0:j−1, yi,j)

)
Derivations of Eq.9 are provided in the Appendix
A.

Given a dataset containing both labeled and un-
labeled sentences, our model can be trained end-to-
end by optimizing the loss function Eq.7 over the
combined dataset using any gradient based method.

4 Experiments

4.1 Settings

Dataset We examine the performance of our
model on the English corpus of the SDP 2014 &
2015: Broad Coverage Semantic Dependency Pars-
ing dataset (Oepen et al., 2015). The corpus is
composed of three distinct and parallel semantic de-
pendency annotations (DM, PAS, PSD) of Sections
00-21 of the WSJ Corpus, as well as a balanced
sample of twenty files from the Brown Corpus. The
scale of this dataset is shown in Table 1.

6800

Hidden Layer Hidden Sizes
Word/GloVe/POS/Lemma/Char 100
GloVe Linear 125
Encoder BiLSTM 3*600
Encoder FNN(head) 1*600
Encoder FNN(dep) 1*600
Decoder UniLSTM 1*600
Decoder FNN(head) 1*400
Decoder FNN(pre) 1*400
Dropouts Dropout Prob.
Word/GloVe/POS/Lemma 20%
Encoder/Decoder FNN 25 %
BiLSTM (FF/recur) 45%/25%
Optimizer & Loss Value
Adam β1 0
Adam β2 0.95
Learning rate 1e−3

L2 regularization 3e−9

Table 2: Summary of hyper-parameters.

We evaluate the performance of models through
two metrics: Unlabeled F1 score (UF1) and La-
beled F1 score (LF1). UF1 measures the accuracy
of the binary classification of arc existence, while
LF1 measures the correctness of each arc-label as
well. Unless stated otherwise, we report scores
averaged over three runs.

Network Configuration For our encoder, we
adopt the hyper-parameters of Dozat and Man-
ning (2018). Following Dozat and Manning (2018),
we concatenate pre-trained 100-dimensional GloVe
embeddings (Pennington et al., 2014) linearly trans-
formed to 125-dimension into our input word em-
beddings. Words or lemmas whose occurrences are
less than 7 times within the training set are treated
as UKN.

For our decoder, we set the number of layer(s)
of uni-directional LSTM to 1, whose recurrent
hidden size is 600. For FNN(dec−head) and
FNN(dec−pre), the output sizes are both 400, acti-
vated by a tanh(·) function.

Learning Our loss function (Eq.7) is optimized
by the Adam+AMSGrad optimizer (Reddi et al.,
2018), with hyper-parameters β1, β2 kept the same
as those of Dozat and Manning (2018). The interpo-
lation constant ρ is tuned with the size of unlabeled
data. A detailed table of hyper-parameters is pro-
vided in Table 2. The training time for one batch
with our autoencoder is 2–3 times of that of Dozat
and Manning (2018) because of the extra decoder.

(a) UF1 and LF1 for
in-domain tests on DM.

(b) UF1 and LF1 for
out-of-domain tests on DM.

Figure 3: Results with fixed amount of labeled data and
varying amount of unlabeled data. +10U represents us-
ing 10% unlabeled data, and so on. Numbers on Y-axes
represent F1 scores. Dashed horizontal lines are results
of the supervised baseline (Dozat and Manning, 2018)
trained on labeled data only. Solid lines are our results.

4.2 Varying Size of Unlabeled Data

In our first experiment (with the DM annotations
only), we fix the amount of labeled data and con-
tinuously incorporate more unlabeled data into the
training set.

Specifically, we randomly sample 10% of the
whole dataset as labeled data. Unlabeled data are
then sampled from the remaining part (with their
gold parses removed), with a proportion increasing
from 0% to 90% of the complete dataset.

For unlabeled data, we find that long sentences
do not help in improving F1 scores and therefore in
this and all the subsequent experiments we remove
unlabeled sentences longer than 20 to reduce the
running time and memory usage.

Experimental results are visualized in Figure
3. It is observed that in the purely supervised
setting (i.e., +0% unlabeled data), our model al-
ready outperforms the baseline (Dozat and Man-
ning, 2018). Since our encoder is exactly the base-
line model, this shows the benefit of adding the
decoder for joint learning and parsing even in the
supervised setting. With an increasing size of un-
labeled data, we can see the increase in perfor-
mance of our model, especially when evaluated
on out-of-domain data, suggesting the benefit of
semi-supervised learning with our model.

4.3 Varying Proportion of Unlabeled Data

In our second experiment (again with the DM an-
notations), we use the full training set and vary the
proportion of labeled and unlabeled data.

Experimental results are shown in Table 3. Our
semi-supervised model shows the largest advantage
over the supervised models with the 0.1:9.9 propor-
tion (which contains only 339 labeled sentences),

6801

Models
Labeled:Unlabeled

0.1:9.9 1:9 3:7 5:5 10:0
UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

id
D&M 75.21 70.70 88.32 86.60 91.65 90.52 92.81 91.90 94.11 93.38

Ours-Sup 75.52 70.59 88.58 86.74 91.88 90.73 92.99 92.05 94.30 93.55
Ours-Semi 76.73 72.16 88.98 87.11 92.04 90.92 93.02 92.07 - -

ood
D&M 70.51 65.63 83.15 80.87 86.91 85.17 88.35 86.93 90.01 88.87

Ours-Sup 70.53 65.48 83.33 80.92 87.16 85.45 88.63 87.24 90.22 89.05
Ours-Semi 72.18 67.30 83.93 81.48 87.43 85.70 88.67 87.28 - -

Table 3: Experimental results with varying proportions of labeled and unlabeled data. D&M stands for the super-
vised model of Dozat and Manning (2018) trained on labeled data only. Ours-Sup stands for our model trained
on labeled data only. Ours-Semi stands for our model trained on both labeled and unlabeled data. All scores in
this table are averaged over 10 runs. We do paired permutation test (p < 0.05). Two different scores being both
boldfaced means that they are not significantly different.

indicating the strength of our mode in low resource
setting.

With the increased proportion of labeled data,
the performance of all the models goes up, but
the advantage of our semi-supervised model dimin-
ishes. This is consistent with the tendency of many
semi-supervised approaches to work well when
given small labeled data but have diminishing ef-
fectiveness when adding more labeled data.

Another worth-noting observation is that the su-
periority of our semi-supervised model is much
stronger on the out-of-domain tests, which sug-
gests good generalizability of our semi-supervised
model.

4.4 On All Representations

In the previous two experiments, we evaluate our
model on the DM representation. Here we eval-
uate our model on all the three representations:
DM, PAS and PSD. We slightly tune the hyper-
parameters based on the optimal values from the
previous experiments of the DM representation.
We use 10% of the sentences as labeled data and
the rest 90% of the sentences as unlabeled data.
For the completeness of our experiment, we fol-
low Dozat and Manning (2018) and examine four
different word representations: basic (i.e., using
only word and POS tag embeddings), +Lemma
(i.e., using word, POS tag and lemma embeddings),
+Char (i.e., using word, POS tag and character em-
beddings) and +Lemma+Char (i.e. using word,
POS tag, lemma and character embeddings).

Table 4 shows the experimental results of
+Lemma, the default word representation. The
results of the other word representations show very

similar trends (see the Table 7 in Appendix B).
We observe significant improvement of our semi-
supervised model over the two supervised baselines
on both DM and PSD representations. However, it
is surprising to find that on the PAS representation,
our semi-supervised model exhibits little advantage
over its supervised counterpart. One possible ex-
planation, as Dozat and Manning (2018) also noted,
is that PAS is the easiest of the three representa-
tions (as can be seen by comparing the scores of the
three representations in Table 4) and our supervised
model may already reach the performance ceiling.

4.5 Analysis of Our Decoder

We empirically study alternative structures of our
decoder. In the first variant, we remove the LSTM
layer of our decoder, so each word si is gener-
ated without access to the generation history before
si−1. In the second variant, we replace the bilin-
ear function in Eq.4 with a fully connected layer
that takes as input either the concatenation or the
summation of m

(head)
k and m

(pre)
i−1 . All the other

settings are the same as in Section 4.4 on the DM
annotation. Experimental results are shown in Ta-
ble 5. We can see that these alternatives lead to
worse scores, which verifies the effectiveness of
our decoder design.

4.6 Stability of Our Model

To test the stability of our model, we repeat the
experiment of Section 4.4 on the DM annotation
for three times (without tuning hyper-parameters),
each time with respect to different labeled data
sampled from the training dataset. Table 6 shows
the results. We observe consistent advantage of our

6802

Models DM PAS PSD Avg
UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

id
D&M 88.32 86.60 91.89 90.57 88.17 73.42 89.46 83.53

Ours-Sup 88.58 86.74 92.14 90.91 88.49 73.34 89.74 83.66
Ours-Semi 88.98 87.11 92.07 90.84 88.62 73.68 89.89 83.88

ood
D&M 83.15 80.87 88.34 86.32 85.10 71.30 85.53 79.50

Ours-Sup 83.33 80.92 88.57 86.68 85.09 71.11 85.66 79.57
Ours-Semi 83.93 81.48 88.61 86.68 85.30 71.46 85.95 79.87

Table 4: Experimental results on all the three representations. All scores in this table are averaged over 10 runs.
We do paired permutation test (p < 0.05). Two different scores being both boldfaced means that they are not
significantly different.

ID OOD
UF1 LF1 UF1 LF1

Default 88.95 87.07 83.94 81.55
−LSTM 88.72 86.88 83.58 81.20
Concat 88.75 86.77 83.72 81.26
Sum 86.13 83.90 79.08 76.34

Table 5: Experimental results on different structures of
our decoder. Default is our default semi-supervised
model, −LSTM means removing the LSTM layer of
our decoder, Concat stands for the concatenation set-
ting, and Sum stands for the summation setting, as
stated in Section 4.5.

model over the baseline on all the three datasets.

5 Related Work

Work on unsupervised or semi-supervised depen-
dency parsing, to the best of our knowledge, is dom-
inated by tree-structured parsing (Koo et al., 2008;
Druck et al., 2009; Suzuki et al., 2009). Recently,
Corro and Titov (2019) introduced an approximate
inference method with a Variational Autoencoder
(Kingma et al., 2014) for semi-supervised syntac-
tic dependency parsing. Our decoder is inspired
by their work, but differs from theirs in that our
decoder handles parse graphs and is arc-factored.
Cai et al. (2017) used the framework of CRF Au-
toencoder (Ammar et al., 2014) to perform unsu-
pervised syntactic dependency parsing. The same
framework has been used by Zhang et al. (2017)
for semi-supervised sequence labeling. Our work
also adopts the CRF Autoencoder framework, but
with both the encoder and the decoder redesigned
for semantic dependency parsing.

Existing unsupervised and semi-supervised ap-
proaches to semantic parsing focused on semantic
representations different from dependency graphs,

e.g., general-purpose logic forms (Sondheimer
and Nebel, 1986) and formal meaning represen-
tations (Bordes et al., 2012). Poon and Domin-
gos (2009) presented the first unsupervised se-
mantic parser to transform dependency trees into
quasi-logical forms with Markov logic. Follow-
ing this work, Titov and Klementiev (2011) pro-
posed a non-parametric Bayesian model for unsu-
pervised semantic parsing using hierarchical Pit-
manYor process (Teh, 2006). Das and Smith (2011)
described a semi-supervised approach to frame-
semantic parsing. Kočiskỳ et al. (2016) proposed a
semi-supervised semantic parsing approach mak-
ing use of unpaired logical forms with sentence
being unobserved. Recently, Yin et al. (2018) pro-
posed a variational autoencoding model for semi-
supervised semantic parsing of tree-structured se-
mantic representations. Take Yin et al. (2018)
for example. To extend their approach for SDP,
one needs to design a different transition system
for their encoder for graph parsing and design a
graph linearization method for their sequence-to-
sequence decoder. In addition, SDP-specific con-
straints (e.g., the graph structure contains exactly
the same set of words as the sentence) shall be in-
corporated into their model. Therefore, previous
semi-supervised semantic parsing models cannot
be applied to SDP directly and modifying them
for SDP is non-trivial. We leave for future work
such modification and extension of previous semi-
supervised semantic parsing approaches to SDP.

6 Conclusion

In this work, we proposed a semi-supervised learn-
ing model for semantic dependency parsing using
CRF Autoencoders. Our model is composed of a
discriminative neural encoder producing a depen-
dency graph conditioned on an input sentence, and

6803

Models Data1 Data2 Data3 Avg
UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

id
D&M 88.25 86.55 88.70 87.09 88.49 86.85 88.48 86.83

Ours-Sup 88.68 86.84 88.79 86.96 88.71 86.97 88.73 86.92
Ours-Semi 88.95 87.07 89.24 87.45 88.97 87.19 89.05 87.24

ood
D&M 83.12 80.89 83.30 81.01 83.62 81.26 83.35 81.05

Ours-Sup 83.36 80.98 83.46 81.05 84.00 81.62 83.60 81.22
Ours-Semi 83.94 81.55 83.87 81.51 84.11 81.68 83.97 81.58

Table 6: Experimental results on three randomly sampled datasets.

a generative neural decoder for input reconstruction
based on the dependency graph. The model works
in an arc-factored fashion, promising end-to-end
learning and efficient parsing.

We evaluated our model under both full-
supervision settings and semi-supervision settings.
Our model outperforms the baseline on multiple tar-
get representations. By adding unlabeled data, our
model exhibits further performance improvements.
In particular, our semi-supervised model performs
well in the low resource setting and on the out-of-
domain test set. This points to future directions of
applying our model to low-resource languages and
cross-domain settings. Our code is publicly avail-
able at https://github.com/JZXXX/Semi-SDP.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (61976139).

References
Waleed Ammar, Chris Dyer, and Noah A. Smith. 2014.

Conditional Random Field Autoencoders for Unsu-
pervised Structured Prediction. Advances in Neural
Information Processing Systems, 4:3311–3319.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2012. Joint Learning of Words
and Meaning Representations for Open-text Seman-
tic Parsing. In Artificial Intelligence and Statistics,
pages 127–135.

Jiong Cai, Yong Jiang, and Kewei Tu. 2017. Crf au-
toencoder for unsupervised dependency parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Caio Corro and Ivan Titov. 2019. Differentiable
Perturb-and-Parse: Semi-Supervised Parsing with
a Structured Variational Autoencoder. In Interna-
tional Conference on Learning Representations.

Dipanjan Das and Noah A Smith. 2011. Semi-
Supervised Frame-Semantic Parsing for Unknown

Predicates. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1,
pages 1435–1444. Association for Computational
Linguistics.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but More Accurate Semantic Dependency
Parsing. In ACL.

Gregory Druck, Gideon S. Mann, and Andrew McCal-
lum. 2009. Semi-Supervised Learning of Depen-
dency Parsers using Generalized Expectation Crite-
ria. In IJCNLP-ACL.

Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Juraf-
sky, and Christoper Manning. 2010. Viterbi Train-
ing Improves Unsupervised Dependency Parsing.
CoNLL 2010 - Fourteenth Conference on Computa-
tional Natural Language Learning, Proceedings of
the Conference, pages 9–17.

Yong Jiang, Wenjuan Han, and Kewei Tu. 2016. Un-
supervised Neural Dependency Parsing. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 763–771.

Jenna Kanerva, Juhani Luotolahti, and Filip Ginter.
2015. Turku: Semantic Dependency Parsing as A
Sequence Classification. In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval 2015), pages 965–969.

Diederik Kingma and Max Welling. 2013. Auto-
Encoding Variational Bayes. ICLR.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-Supervised
Learning with Deep Generative Models. In Ad-
vances in neural information processing systems,
pages 3581–3589.

Dan Klein and Christopher D Manning. 2004. Corpus-
based Induction of Syntactic Structure: Models of
Dependency and Constituency. In Proceedings of
the 42nd Annual Meeting on Association for Compu-
tational Linguistics, page 478. Association for Com-
putational Linguistics.

Tomáš Kočiskỳ, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and

https://github.com/JZXXX/Semi-SDP
https://openreview.net/forum?id=BJlgNh0qKQ
https://openreview.net/forum?id=BJlgNh0qKQ
https://openreview.net/forum?id=BJlgNh0qKQ

6804

Karl Moritz Hermann. 2016. Semantic Parsing
with Semi-Supervised Sequential Autoencoders. In
EMNLP.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple Semi-Supervised Dependency Parsing. In In
Proceedings of ACL-08.

André FT Martins and Mariana SC Almeida. 2014.
Priberam: A Turbo Semantic Parser with Second Or-
der Features. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014),
pages 471–476.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent Neural Network Based Language Model. In
Eleventh annual conference of the international
speech communication association.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkov, Dan Flickinger, Jan
Haji, and Zdeka Ureov. 2015. SemEval 2015 Task
18: Broad-Coverage Semantic Dependency Parsing.
In Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015), pages 915–
926, Denver, CO, USA.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task 8:
Broad-Coverage Semantic Dependency Parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72.

Hao Peng, Sam Thomson, and Noah A Smith. 2017.
Deep Multitask Learning for Semantic Dependency
Parsing. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics
(ACL).

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Hoifung Poon and Pedro Domingos. 2009. Unsuper-
vised Semantic Parsing. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing: Volume 1-Volume 1, pages 1–10.
Association for Computational Linguistics.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar.
2018. On the Convergence of Adam and Beyond.
In International Conference on Learning Represen-
tations.

Siva Reddy, Oscar Tackstrom, Slav Petrov, Mark Steed-
man, and Mirella Lapata. 2017. Universal Semantic
Parsing. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Sebastian Schuster, Éric Villemonte de La Clergerie,
Marie Candito, Benoı̂t Sagot, Christopher Manning,
and Djamé Seddah. 2017. Paris and Stanford at EPE

2017: Downstream Evaluation of Graph-based De-
pendency Representations. In EPE 2017-The First
Shared Task on Extrinsic Parser Evaluation, pages
47–59.

Norman K Sondheimer and Bernhard Nebel. 1986. A
Logical-Form and Knowledge-Base Design for Nat-
ural Language Generation. In Proceedings of the
workshop on Strategic computing natural language,
pages 231–241. Association for Computational Lin-
guistics.

Charles Sutton, Andrew McCallum, et al. 2012. An In-
troduction to Conditional Random Fields. Founda-
tions and Trends R© in Machine Learning, 4(4):267–
373.

Jun Suzuki, Hideki Isozaki, Xavier Carreras, and
Michael Collins. 2009. An Empirical Study of Semi-
Supervised Structured Conditional Models for De-
pendency Parsing. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing: Volume 2-Volume 2, pages 551–560. As-
sociation for Computational Linguistics.

Yee Whye Teh. 2006. A Hierarchical Bayesian Lan-
guage Model Based on Pitman-Yor Processes. In
Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual
meeting of the Association for Computational Lin-
guistics, pages 985–992. Association for Computa-
tional Linguistics.

Ivan Titov and Alexandre Klementiev. 2011. A
Bayesian Model for Unsupervised Semantic Pars-
ing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1, pages 1445–
1455. Association for Computational Linguistics.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with
end-to-end neural networks. ACL.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting
Liu. 2018. A Neural Transition-Based Approach
for Semantic Dependency Graph Parsing. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Pengcheng Yin, Chunting Zhou, Junxian He, and Gra-
ham Neubig. 2018. StructVAE: Tree-Structured La-
tent Variable Models for Semi-Supervised Semantic
Parsing. In ACL.

Xiao Zhang, Yong Jiang, Hao Peng, Kewei Tu, and Dan
Goldwasser. 2017. Semi-Supervised Structured Pre-
diction with Neural CRF Autoencoder. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1701–1711.

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://openreview.net/forum?id=ryQu7f-RZ
http://aclweb.org/anthology/D/D17/D17-1009.pdf
http://aclweb.org/anthology/D/D17/D17-1009.pdf

6805

Models DM PAS PSD Avg
UF1 LF1 UF1 LF1 UF1 LF1 UF1 LF1

id, basic
D&M 87.48 85.36 91.82 90.46 87.9 72.74 89.07 82.86

Ours-Sup 87.57 85.4 91.92 90.61 88.00 72.70 89.16 82.90
Ours-Semi 88.27 85.96 92.16 90.85 88.27 73.06 89.57 83.23

ood, basic
D&M 82.32 79.6 88.30 86.29 84.35 70.18 84.99 78.69

Ours-Sup 82.34 79.59 88.51 86.56 84.39 70.25 85.08 78.80
Ours-Semi 83.19 80.29 88.65 86.71 84.56 70.45 85.47 79.15

id, +Char
D&M 87.66 85.68 91.93 90.58 87.85 72.74 89.15 83.00

Ours-Sup 87.84 85.71 92.23 90.99 88.25 72.77 89.44 83.16
Ours-Semi 88.21 85.99 92.20 90.93 88.27 73.26 89.56 83.39

ood, +Char
D&M 82.50 80.07 88.27 86.33 84.51 70.48 85.09 78.96

Ours-Sup 82.60 79.99 88.71 86.84 84.59 70.46 85.30 79.09
Ours-Semi 83.23 80.41 88.74 86.79 84.84 71.00 85.60 79.40

id, +Lemma+Char
D&M 88.47 86.87 92.10 90.83 88.3 73.54 89.62 83.74

Ours-Sup 88.68 86.91 92.23 90.95 88.61 73.39 89.84 83.75
Ours-Semi 88.95 87.22 92.23 90.97 88.71 73.56 89.96 83.92

ood, +Lemma+Char
D&M 83.42 81.31 88.55 86.59 85.23 71.34 85.73 79.75

Ours-Sup 83.64 81.31 88.71 86.82 85.28 71.41 85.88 79.85
Ours-Semi 83.93 81.67 89.00 87.09 85.37 71.65 86.10 80.14

Table 7: Experimental results on all the three representations. D&M stands for the supervised model of Dozat and
Manning (2018). Ours-Sup stands for our model trained on labeled data only. Ours-Semi stands for our model
trained on both labeled and unlabeled data.

A Detailed Derivation

Derivation of the marginalized probability over all
possible dependency graphs of a sentence with m
words for Eq.9 is shown below.

log
∑
Y ∈Y

P (ŝ, Y |s) = log
∑
Y ∈Y

P (Y |s)P (ŝ|Y)

= log
∑
Y ∈Y

∏
i,j

P (yi,j |s) m+1

√
P (ŝj |ŝ0:j−1, yi,j)

= log
∑
y0,1

...
∑
yi,j

...
∑
ym,m

(∏
i,j

P (yi,j |s)

× m+1

√
P (ŝj |ŝ0:j−1, yi,j)

)
= log

((∑
y0,1

P (y0,1|s) m+1

√
P (ŝ1|ŝ0, y0,1)

)
...
(∑

ym,m

P (ym,m|s) m+1

√
P (ŝm|ŝ0:m−1, ym,m)

))
= log

∏
i,j

(∑
yi,j

P (yi,j |s) m+1

√
P (ŝj |ŝ0:j−1, yi,j)

)
=
∑
i,j

log

(∑
yi,j

(
P (yi,j |s)

× m+1

√
P (ŝj)|ŝ0:j−1, yi,j)

))

B Experiments on All Representations

Results for experiments on DM, PAS and PSD un-
der the setting of Section 4.4 (i.e., basic, +Char
and +Lemma+Char) are summarized in Table 7.

