
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6708–6718
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6708

Document Modeling with Graph Attention Networks for Multi-grained
Machine Reading Comprehension

Bo Zheng1∗, Haoyang Wen1, Yaobo Liang2, Nan Duan2,
Wanxiang Che1†, Daxin Jiang3, Ming Zhou2, Ting Liu1

1Harbin Institute of Technology, Harbin, China
2Microsoft Research Asia, Beijing, China

3STCA NLP Group, Microsoft, Beijing, China
{bzheng,hywen,car,tliu}@ir.hit.edu.cn

{yalia,nanduan,djiang,mingzhou}@microsoft.com

Abstract

Natural Questions is a new challenging ma-
chine reading comprehension benchmark with
two-grained answers, which are a long answer
(typically a paragraph) and a short answer (one
or more entities inside the long answer). De-
spite the effectiveness of existing methods on
this benchmark, they treat these two sub-tasks
individually during training while ignoring
their dependencies. To address this issue, we
present a novel multi-grained machine read-
ing comprehension framework that focuses on
modeling documents at their hierarchical na-
ture, which are different levels of granularity:
documents, paragraphs, sentences, and tokens.
We utilize graph attention networks to obtain
different levels of representations so that they
can be learned simultaneously. The long and
short answers can be extracted from paragraph-
level representation and token-level represen-
tation, respectively. In this way, we can model
the dependencies between the two-grained an-
swers to provide evidence for each other. We
jointly train the two sub-tasks, and our exper-
iments show that our approach significantly
outperforms previous systems at both long and
short answer criteria.

1 Introduction

Machine reading comprehension (MRC), a task
that aims to answer questions based on a given
document, has been substantially advanced by re-
cently released datasets and models (Rajpurkar
et al., 2016; Seo et al., 2017; Xiong et al., 2017;
Joshi et al., 2017; Cui et al., 2017; Devlin et al.,
2019; Clark and Gardner, 2018). Natural Questions
(NQ, Kwiatkowski et al., 2019), a newly released
benchmark, makes it more challenging by introduc-
ing much longer documents than existing datasets

∗Work was done while this author was an intern at Mi-
crosoft Research Asia.

†Email corresponding.

Figure 1: An example from NQ dataset.

and questions that are from real user queries. Be-
sides, unlike conventional MRC tasks (e.g. Ra-
jpurkar et al.,2016), in NQ, answers are provided
in a two-grained format: long answer, which is typ-
ically a paragraph, and short answers, which are
typically one or more entities inside the long an-
swer. Figure 1 shows an example from NQ dataset.

Existing approaches on NQ have obtained
promising results. For example, Kwiatkowski et al.
(2019) builds a pipeline model using two sepa-
rate models: the Decomposable Attention model
(Parikh et al., 2016) to select a long answer, and
the Document Reader model (Chen et al., 2017) to
extract the short answer from the selected long an-
swer. Despite the effectiveness of these approaches,
they treat the long and short answer extraction as
two individual sub-tasks during training and fail
to model this multi-grained characteristic of this
benchmark, while we argue that the two sub-tasks
of NQ should be considered simultaneously to ob-
tain accurate results.

According to Kwiatkowski et al. (2019), a valid
long answer must contain all of the information re-
quired to answer the question. Besides, an accurate
short answer should be helpful to confirm the long
answer. For instance, when humans try to find the
two-grained answers in the given Wikipedia page
in Figure 1, they will first try to retrieve paragraphs

6709

(long answer) describing the entity bowling hall
of fame, then try to confirm if the location (short
answer) of the asked entity exists in the paragraph,
which helps to finally decide which paragraph is the
long answer. In this way, the two-grained answers
can provide evidence for each other.

To address the two sub-tasks together, instead
of using conventional documents modeling meth-
ods like hierarchical RNNs (Cheng and Lapata,
2016; Yang et al., 2016; Nallapati et al., 2017;
Narayan et al., 2018), we propose to use graph
attention networks (Velickovic et al., 2018) and
BERT (Devlin et al., 2019), directly model repre-
sentations at tokens, sentences, paragraphs, and
documents, the four different levels of granularity
to capture hierarchical nature of documents. In
this way, we directly derive scores of long answers
from its paragraph-level representations and obtain
scores of short answers from the start and end posi-
tions on the token-level representations. Thus the
long and short answer selection tasks can be trained
jointly to promote each other. At inference time,
we use a pipeline strategy similar to Kwiatkowski
et al. (2019), where we first select long answers
and then extract short answers from the selected
long answers.

Experiments on NQ dataset show that our model
significantly outperforms previous models at both
long and short answer criteria. We also analyze
the benefits of multi-granularity representations
derived from the graph module in experiments.

To summarize, the main contributions of this
work are as follows:

• We propose a multi-grained MRC model
based on graph attention networks and BERT.

• We apply a joint training strategy where long
and short answers can be considered simulta-
neously, which is beneficial for modeling the
dependencies of the two-grained answers.

• We achieve state-of-the-art performance on
both long and short answer leaderboard of NQ
at the time of submission (Jun. 25th, 2019),
and our model surpasses single human per-
formance on the development dataset at both
long and short answer criteria.

We will release our code and models at https:
//github.com/DancingSoul/NQ_BERT-DM.

Figure 2: System overview. The document fragments
of one document are fed into our model independently.
The outputs of graph encoders are merged and sent into
the answer selection module, which generates a long
answer and a short answer.

2 Preliminary

2.1 Natural Questions Dataset

Each example in NQ dataset contains a question
together with an entire Wikipedia page. The mod-
els are expected to predict two types of outputs: 1)
long answer, which is an HTML span containing
enough information for a reader to completely infer
the answer to the question. It can be a paragraph,
a table, a list item, or a whole list. A long answer
is selected in a list of candidates, or a “no answer”
should be given if no candidate answers the ques-
tion; 2) short answer, which can be “yes”, “no” or
a list of entities within the long answer. Also, a
“no answer” should be given if there is no suitable
short answer.

2.2 Data Preprocessing

Since the average length of the documents in NQ is
too long to be considered as one training instance,
we first split each document into a list of document
fragments with overlapping windows of tokens,
like in the original BERT model for the MRC tasks
(Alberti et al., 2019b; Devlin et al., 2019). Then we
generate an instance from a document fragment by
concatenating a “[CLS]” token, tokenized question,
a “[SEP]” token, tokens from the content of the doc-

https://github.com/DancingSoul/NQ_BERT-DM
https://github.com/DancingSoul/NQ_BERT-DM

6710

Token-Level
 Self-Attention

Sentence-Level
Self-Attention

Paragraph-Level
Self-Attention

Doc

Graph Initialization

BERT Encoder

Graph Integration

Add & Norm

Feed-Forward

Add & Norm

Output Layer

N×

Concatenate

Figure 3: Inner structure of our graph encoder.

ument fragment and a final “[SEP]” token. “[CLS]”
and “[SEP]” follow the definitions from Devlin
et al. (2019). We tag each document fragment with
an answer type as one of the five labels to construct
a training instance: “short” for instances that con-
tain all annotated short spans, “yes” and “no” for
yes/no annotations where the instances contain the
long answer span, “long” when the instances con-
tain the long answer span, but there is no short or
yes/no answer. In addition to the above situations,
we tag a “no-answer” to those instances.

We will explain more details of the data prepro-
cessing in the experiment section.

3 Approach

In this section, we will explain our model. The
main idea of our model lies in multi-granularity
document modeling with graph attention networks.
The overall architecture of our model is shown in
Figure 2.

3.1 Input & Output Definition

Formally, we define an instance in the training set
as a six-tuple

(c, S, l, s, e, t).

Suppose the instance is generated from the i-th
document fragment Di of the corresponding ex-
ample, then c = ([CLS], Q1, ..., Q|Q|, [SEP], Di,1

, ..., Di,|Di|, [SEP]) defines the document fragment
Di along with a question Q of the instance, |Q|+
|Di|+ 3 = 512 corresponding to the data prepro-
cessing method. S denotes the set of long answer
candidates inside the document fragment. l ∈ S

Document
Fragment

Paragraph

Sentence

Token

Figure 4: The graph on the left is an illustration of the
graph integration layer. The graph on the right shows
the incoming information when updating a paragraph
node. The solid lines represent the edges in the hierar-
chical tree structure of a document while the dash lines
stand for the edges we additionally add.

is the target long answer candidate among the can-
didate set S of this instance. s, e ∈ {0, 1, ..., 511}
are inclusive indices pointing to the start and end
of the target answer span. t ∈ {0, 1, 2, 3, 4} is
the annotated answer type, corresponding to the
five labels. For instances containing multiple short
answers, we set s and e to point to the leftmost
position of the first short answer and the rightmost
position of the last short answer, respectively.

Our goal is to learn a model that identifies a long
answer candidate l and a short answer span (s, e)
in l and predicting their scores for evaluation.

3.2 Multi-granularity Document1 Modeling

The intuition of representing documents in multi-
granularity is derived from the natural hierarchical
structure of a document. Generally speaking, a doc-
ument can be decomposed to a list of paragraphs,
which can be further decomposed to lists of sen-
tences and lists of tokens. Therefore, it is straight-
forward to treat the document structure as a tree,
which has four types of nodes, namely token nodes,
sentence nodes, paragraph nodes, and a document
node. Different kinds of nodes represent informa-
tion at different levels of granularity. Since long
answer candidates are paragraphs, tables, or lists,
information at paragraph nodes also represents the
information for long answer candidates.

The hierarchical tree structure for a document
contains edges that are between tokens and sen-
tences, between sentences and paragraphs, and be-
tween paragraphs and documents. Besides, we
further add edges between tokens and paragraphs,
between tokens and documents, between sentences
and the document to construct a graph. All these

1For brevity, the word “document” refers to document
fragment in the rest of our paper.

6711

edges above are bidirectional in our graph repre-
sentation. Hence information between every two
nodes can be passed through no more than two
edges in the graph. In the rest of this section, we
will present how we utilize this graph structure to
pass information between nodes with graph atten-
tion networks so that the two-grained answers can
promote each other.

3.3 Graph Encoder
Figure 3 shows the inner structure of our graph
encoder. Each layer in our graph encoder consists
of three self-attention layers, a graph integration
layer, and a feed-forward layer. The self-attention
layers are used for interactions among nodes with
the same granularity, while the graph integration
layer aims at gathering information from other lev-
els of granularity with graph attention networks.
Figure 4 is an illustration for the graph integra-
tion layer. Since self-attention is a special case of
graph attention networks, where the graph is fully
connected, we only introduce the general form of
graph attention networks, which can be generalized
to the self-attention mechanism.

3.3.1 Graph Attention Networks
We apply graph attention networks (Velickovic
et al., 2018) to model the information flow between
nodes, which can further improve the representa-
tions of nodes by attention mechanism over fea-
tures from its neighbors. In this way, the interaction
between the two-grained answers can be enhanced.
Instead of other graph-based models, we use graph
attention networks to keep consistency with the
multi-head attention module in the BERT model.
We will describe a single layer of our graph atten-
tion networks in the following.

We define a graph G = (V, E , X) that is com-
posed of a set of nodes V , node features X =
(h1, ...,h|V|) and a list of directed edge set E =
(E1, ..., EK) where K is the number of edges. Each
i ∈ V has its own representation hi ∈ Rdh where
dh is the hidden size of our model.

We use the multi-head attention mechanism in
our graph attention networks following Vaswani
et al. (2017). We describe one of the m attention
heads. All the parameters are unique to each atten-
tion head and layer. If there is an edge from node j
to node i, the attention coefficient eij is calculated
as follows:

eij =

(
hiW

Q
) (

hjW
K
)T

√
dz

. (1)

We normalize the attention coefficients of node i
by using the softmax function across all the neigh-
bor nodes j ∈ Ni. Especially, there is a self-loop
for each node (i.e. i ∈ Ni) to allow it update itself.
This process can be expressed as:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

.

Then the output of this attention head zi is com-
puted as a weighted sum of linear transformed input
elements:

zi =
∑
j∈Ni

αijhjW
V. (2)

In the above equations, WQ,WK and WV ∈
Rdh×dz are parameter matrices, dz is the output size
of one attention head, we use dz ×m = dh.

Finally we get the multi-head attention result
z′i ∈ Rdh by concatenating the outputs of m indi-
vidual attention heads:

z′i =
m

‖
k=1

zk
i .

3.3.2 Self-Attention Layer
The self-attention mechanism is equivalent to the
fully-connected version of graph attention net-
works. To make interactions among nodes with the
same granularity, we utilize three self-attention lay-
ers, which are token-level self-attention, sentence-
level self-attention, and paragraph-level self-
attention. Since the four types of nodes are essen-
tially heterogeneous, we separate the self-attention
layer from the graph integration layer to distinguish
information from nodes with the same granularity
or different ones.

3.3.3 Graph Integration Layer
We use graph attention networks on the graph pre-
sented in Figure 4, this layer allows information to
be passed to nodes with different levels of granu-
larity. Instead of integrating information only once
after the graph encoder, we put this layer right
after every self-attention layer inside the graph en-
coder, which means the update brought by the self-
attention layer will also be utilized by the nodes
with other levels of granularity. This layer helps
to model the dependencies of the two-grained an-
swers. We concatenate the input and output of
the graph integration layer and pass it to the feed-
forward layer.

6712

3.3.4 Feed-Forward Layer
Following the inner structure of the transformer
(Vaswani et al., 2017), we also utilize an addi-
tional fully connected feed-forward network at the
end of our graph encoder. It consists of two lin-
ear transformations with a GELU activation in be-
tween. GELU is Gaussian Error Linear Unit ac-
tivation (Hendrycks and Gimpel, 2016), and we
use GELU as the non-linear activation, which is
consistent with BERT.

3.3.5 Relational Embedding
Inspired by positional encoding in Vaswani et al.
(2017) and relative position representations in
Shaw et al. (2018), we introduce a novel relational
embedding on our constructed graph, which aims
at modeling the relative position information be-
tween nodes on the multi-granularity document
structure. We make the edges in our document
modeling graph to embed relative positional infor-
mation. We modify equation 1 and 2 for eij and zi

to introduce our relational embedding as follows:

eij =

(
hiW

Q
) (

hjW
K
)T

+ hiW
Q
(
aK
ij

)T
√
dz

,

zi =
∑
j∈Ni

αij

(
hjW

V + aV
ij

)
.

In above equations, the edge between node i
and node j is represented by learnable embedding
aK
ij , aV

ij ∈ Rdz . The representation can be shared
across attention heads. Compared to previous work
which encodes positional information in the em-
bedding layer, our proposed relational embedding
is more flexible, and the positional information can
be taken into consideration in each graph layer. For
example, relational embedding between two nodes
of the same type represents the relative distance be-
tween them in the self-attention layer. In the graph
integration layer, relational embedding between a
sentence and its paragraph represents the relative
position of the sentence in the paragraph, and it is
the same for other types of edges.

3.3.6 Graph Initialization
Since the BERT model can only provide token-
level representation, we use a bottom-up average-
pooling strategy to initialize the nodes other than
token-level nodes. We use oi ∈ {0, 1, 2, 3} to in-
dicate the type of node i, representing token node,
sentence node, paragraph node and document node

respectively. The initialized representation is cal-
culated as follows:

h0
i = average

j∈Ni,oj+1=oi

{
h0
j + aij

}
+ boi ,

where aij , boi ∈ Rdh represent the relational em-
bedding and node type embedding in the graph
initializer.

3.4 Output Layer

The objective function is defined as the negative
sum of the log probabilities of the predicted dis-
tributions, averaged over all the training instances.
The log probabilities of predicted distributions are
indexed by the true start and end indices, true long
answer candidate index, and the type of this in-
stance:

L(θ) =− 1

N

N∑
i

[log p(s, e, t, l | c, S)]

=− 1

N

N∑
i

[log ps(s | c, S)

+ log pe(e | c, S) + log pt(t | c, S)
+ log pl(l | c, S)],

where ps(s | c, S), pe(e | c, S), pl(l | c, S) and
pt(t | c, S) are the probabilities for the start and
end position of the short answer, probabilities for
the long answer candidate, and probabilities for the
answer type of this instance, respectively. One of
the probability, ps(s | c, S), is computed as follow,
and the others are similar to it:

ps(s | c, S) = softmax(fs(s, c, S; θ)),

where fs is a scoring function, derived from the last
layer of graph encoder. Similarly, we derive score
functions at the other three levels of granularity.
For instances without short answers, we set the
target start and end indices to the “[CLS]” token.
We also make “[CLS]” markup as the first sentence
and paragraph, and the paragraph-level “[CLS]”
will be classified as long answers for the instances
without long answers. At inference time, we get the
score of a document fragment g(c, S), long answer
score g(c, S, l) and short answer score g(c, S, s, e)

6713

Long Answer Dev Long Answer Test Short Answer Dev Short Answer Test
P R F1 P R F1 P R F1 P R F1

DocumentQA 47.5 44.7 46.1 48.9 43.3 45.7 38.6 33.2 35.7 40.6 31.0 35.1
DecAtt + DocReader 52.7 57.0 54.8 54.3 55.7 55.0 34.3 28.9 31.4 31.9 31.1 31.5
BERTjoint 61.3 68.4 64.7 64.1 68.3 66.2 59.5 47.3 52.7 63.8 44.0 52.1
+ 4M synthetic data 62.3 70.0 65.9 65.2 68.4 66.8 60.7 50.4 55.1 62.1 47.7 53.9

BERT-syn+Model-III 72.4 73.0 72.7 - - - 60.1 54.1 56.9 - - -
+ ensemble 3 models 74.2 73.6 73.9 73.7 75.3 74.5 64.0 54.9 59.1 62.6 55.3 58.7

Single Human 80.4 67.6 73.4 - - - 63.4 52.6 57.5 - - -
Super-annotator 90.0 84.6 87.2 - - - 79.1 72.6 75.7 - - -

Table 1: Results of our best model on NQ compared to the previous systems and to the performance of a single
human annotator and of an ensemble of human annotators. The previous systems include DocumentQA (Clark
and Gardner, 2018), DecAtt + DocReader (Parikh et al., 2016; Chen et al., 2017) , BERTjoint and BERTjoint + 4M
synthetic data (Alberti et al., 2019a).

as follows:

g(c, S) =ft(t > 0, c, S; θ)

− ft(t = 0, c, S; θ);

g(c, S, l) =fl(l, c, S; θ)

− fl(l = [CLS], c, S; θ);

g(c, S, s, e) =fs(s, c, S; θ) + fe(e, c, s; θ)

− fs(s = [CLS], c, S; θ)

− fe(e = [CLS], c, S; θ).

We use the sum of g(c, S, l) and g(c, S) to se-
lect a long answer candidate with highest score.
g(c, S) is considered as a bias term for document
fragments. Then we use g(c, S, s, e) to select the
final short answer within the selected long answer
span. We rely on the official NQ evaluation script
to set thresholds to separate the predictions to posi-
tive and negative on both long and short answer.

4 Experiments

In this section, we will first describe the data prepro-
cessing details, then give the experimental results
and analysis. We also conduct an error analysis and
two case studies in the appendix.

4.1 Data Preprocessing Details
We ignore all the HTML tags as well as tokens not
belonging to any long answer candidates. The av-
erage length of documents is approximately 4, 500
tokens after this process. Following Devlin et al.
(2019) and Alberti et al. (2019b), we first tokenize
questions and documents using a 30, 522 word-
piece vocabulary. Then we slide a window of a
certain length over the entire length of the docu-
ment with a stride of 128 tokens, generating a list
of document fragments. There are about 7 para-
graphs and 18 sentences on average per document

fragment. We add special markup tokens at the
beginning of each long answer candidate according
to the content of the candidate. The special tokens
we introduced are of the form “[Paragraph=N]”,
“[Table=N]” and “[List=N]”. According to Alberti
et al. (2019b), this decision was based on the obser-
vation that the first few paragraphs and tables in the
document are more likely to contain the annotated
answer. We generate 30 instances on average per
NQ example, and each instance will be processed
independently during the training phase.

Since the fact that only a small fraction of gen-
erated instances are tagged as positive instances
which contains a complete span of long or short
answer, and that 51% of the documents do not con-
tain the answers for the questions, We downsample
about 97% of null instances to get about 660, 000
training instances in which 350, 000 has a long an-
swer, and 270, 000 has short answers.

4.2 Experimental Settings

We use three model settings for our experiments,
which are: 1) Model-I: A refined BERT baseline
on the basis of Alberti et al. (2019b); 2) Model-
II: A pipeline model with only graph initializa-
tion method to get representation of sentence, para-
graph, and document; 3) Model-III: Adding two
layers of our graph encoder on the basis of Model-
II.

Model-I improves the baseline in Alberti et al.
(2019b) in two ways: 1) When training an instance
with a long answer only, we ignore the loss of
predicting the short answer span to “no-answer”
because it would introduce distraction to the model.
2) We sample more negative instances.

We use three BERT encoders to initialize our
token node representation: 1) BERT-base: a

6714

Model LA. F1 SA. F1

BERT-base+Model-I 63.9 51.0
BERT-base+Model-II 67.7 50.9
BERT-base+Model-III 68.9 51.9

BERTjoint 64.7 52.7
BERT-large+Model-I 66.0 52.9
BERT-large+Model-II 70.3 53.2
BERT-large+Model-III 70.7 53.8

BERT-syn+Model-I 67.8 56.1
BERT-syn+Model-II 72.2 56.7
BERT-syn+Model-III 72.7 56.9

Table 2: Comparison of different models with different
BERT models on the development dataset.

BERT-base-uncased model finetuned on SQuAD
2.0; 2) BERT-large: a BERT-large-uncased
model finetuned on SQuAD 2.0; 3) BERT-syn:
Google’s BERT-large-uncased model pre-trained
on SQuAD2.0 with N-Gram Masking and Syn-
thetic Self-Training.2 Since the Natural Question
dataset does not provide sentence-level informa-
tion, we additionally use spacy (Honnibal and Mon-
tani, 2017) as the sentence segmentor to get the
boundaries of sentences.

We trained the model by minimizing loss L from
Section 3.4 using the Adam optimizer (Kingma and
Ba, 2015) with a batch size of 32. We trained our
model for 2 epochs with an initial learning rate
of 2 × 10−5, and we use a warmup proportion of
0.1. The training of our proposed model is con-
ducted on 4 Tesla P40 GPUs for approximately 2
days. For each setting, the results are averaged
over three models initialized with different random
seeds to get a more solid comparison, which also
suggests the improvements brought by our methods
are relatively stable. The hidden size, the number
of attention heads, and the dropout rate in our graph
encoder are equal to the values in the corresponding
BERT model.

4.3 Comparison

The main results are shown in Table 1. The re-
sults show that our best model BERT-syn+Model-
III(ensemble 3 models) have gained improvement
over the previous models by a large margin. Our
ensemble strategy is to train three models with dif-
ferent random seeds. The scores of answer candi-

2This model can be downloaded at https://bit.ly/
2w7nUQK.

Model LA.F1 SA.F1

0-layer 67.7 50.9
1-layer 68.8 51.2
2-layer 68.9 51.9
3-layer 68.9 51.9
4-layer 68.9 51.7

Table 3: Influences of graph layer numbers on the de-
velopment set.

dates are averaged over these three models. At the
time of submission (Jun. 25th, 2019), this model
has achieved the state-of-the-art performance on
both long answer (F1 score of 74.5%) and short
answer (F1 score of 58.7%) on the public leader-
board3. Furthermore, our model surpasses single
human performance at both long and short answer
criteria on the development dataset.

The comparison of different models with differ-
ent BERT models is illustrated in Table 2. The
results show that our approach significantly outper-
forms our baseline model on both the long answer
and the short answer. For the BERT-base setting,
our Model-II with a pipeline inference strategy out-
performs our baseline by 3.8% on long answer F1
score while our Model-II with two graph layers fur-
ther improves the performance by 1.2% and 1.0%.
For the BERT-syn setting, the Model-III benefits
less from the graph layers because the pretraining
for this model is already quite strong. Our Model-
III with BERT-large, compared to previously pub-
lic model (BERTjoint) also using BERT-large, im-
proves long answer F1 score by 6.0% and short
answer F1 score by 1.1% on the development set.

From Table 1 and Table 2, we can see that the en-
semble of human annotators can lead to a massive
improvement at both long and short answer criteria
(from 73.4% to 87.2%, 57.5% to 75.7%). However,
the improvement of ensembling our BERT-based
model is relatively smaller (from 72.7% to 73.9%,
56.9% to 59.1%). This suggests that the diversity
of human annotators is a lot better than the same
model structure with different random seeds. How
to improve the diversity of the deep learning mod-
els for the open-domain datasets like NQ remains
as a hard question.

3Since we can only make 10 submissions on the test
dataset, we only submit and report the result of our best model.
Due to the official attempts on the test dataset are given 24
hours. We can only ensemble 3 models at most.

https://bit.ly/2w7nUQK
https://bit.ly/2w7nUQK

6715

Model LA. F1 SA. F1

BERT-base+Model-III 68.9 51.9

-Graph module 63.9 51.0
-Long answer prediction 65.1 51.4
-Short answer prediction 68.2 -
-Relational embedding 68.8 51.7
-Graph integration layer 68.3 51.1
-Self-attention layer 68.4 51.2

Table 4: Ablation study on the development set.

4.4 Ablation Study

We evaluate the influence of layer numbers, which
is illustrated in Table 3. We can see the increase in
the performance of our models when the number
of layers increases from 0 to 2 (The 0-layer setting
means that only the graph initialization module is
used to obtain the graph representations). Then
the model performance does not improve with the
number of network layers increasing. We attribute
it to the fact that the information between every two
nodes in our proposed graph can be passed through
in no more than two edges, and that increasing the
size of randomly initialized parameters may not be
beneficial for BERT fine-tuning.

To evaluate the effectiveness of our proposed
model, we conduct an ablation study on the de-
velopment dataset on the BERT-base setting. The
results are shown in Table 4. First, we discuss
the effect of the joint training strategy. We can
see that the removal of either sub-task goals will
bring decreases on both tasks. It suggests that the
two-grained answers can promote each other with
our multi-granularity representation. Then we re-
move the whole graph module, which means the
inference process depends on the score of short
answer spans because long answer candidates can-
not be scored. We can see the decrease of both
long and short answer performance by 5.0% and
0.9%, respectively, indicating the effectiveness of
our proposed graph representations.

Finally, we investigate the effect of components
in our graph encoder. In Table 4, we can see that
without relational embedding, the performance on
the long answer and short answer both slightly de-
crease. When removing the graph integration layer,
the performance of long answer and short answer
both become worse by 0.6% and 0.8%. At last,
we remove the self-attention layer in the graph en-
coder, the performance of long answer and short

answer both become worse by 0.5% and 0.7%. The
ablation study shows the importance of each com-
ponent in our method.

5 Related Work

Machine reading comprehension has been widely
investigated since the release of large-scale datasets
(Rajpurkar et al., 2016; Joshi et al., 2017; Lai et al.,
2017; Trischler et al., 2017; Yang et al., 2018).
Lots of work has begun to build end-to-end deep
learning models and has achieved good results (Seo
et al., 2017; Xiong et al., 2017; Cui et al., 2017;
Devlin et al., 2019; Lv et al., 2020). They normally
treat questions and documents as two simple se-
quences regardless of their structures and focus on
incorporating questions into the documents, where
the attention mechanism is most widely used. Clark
and Gardner (2018) proposes a model for multi-
paragraph reading comprehension using TF-IDF
as the paragraph selection method. Wang et al.
(2018) focuses on modeling a passage at word and
sentence level through hierarchical attention.

Previous work on document modeling is mainly
based on a two-level hierarchy (Ruder et al., 2016;
Tang et al., 2015; Yang et al., 2016; Cheng and
Lapata, 2016; Koshorek et al., 2018; Zhang et al.,
2019). The first level encodes words or sentences to
get the low-level representations. Moreover, a high-
level encoder is applied to obtain document repre-
sentation from the low-level. In these frameworks,
information flows only from low-level to high-level.
Fernandes et al. (2018) proposed a graph neural net-
work model for summarization and this framework
allows much complex information flows between
nodes, which represents words, sentences, and en-
tities in the graph.

Graph neural networks have shown their flexibil-
ity in a variant of NLP tasks (Zhang et al., 2018c;
Marcheggiani et al., 2018; Zhang et al., 2018b;
Song et al., 2018). A recent approach that be-
gan with Graph Attention Networks (Velickovic
et al., 2018), which applies attention mechanisms
to graphs. Wang et al. (2019) proposed knowledge
graph attention networks to model the informa-
tion in the knowledge graph, (Zhang et al., 2018a)
proposed gated attention networks, which use a
convolutional sub-network to control each atten-
tion head’s importance. We model the hierarchical
nature of documents by representing them at four
different levels of granularity. Besides, the rela-
tions between nodes are represented by different

6716

types of edges in the graph.

6 Conclusion

In this work, we present a novel multi-grained
MRC framework based on graph attention net-
works and BERT. We model documents at different
levels of granularity to learn the hierarchical na-
ture of the document. On the Natural Questions
dataset, which contains two sub-tasks predicting
a paragraph-level long answer and a token-level
short answer, our method jointly trains the two
sub-tasks to consider the dependencies of the two-
grained answers. The experiments show that our
proposed methods are effective and outperform the
previously existing methods by a large margin. Im-
proving our graph structure of representing the doc-
ument as well as the document-level pretraining
tasks is our future research goals. Besides, the cur-
rently existing methods actually cannot process a
long document without truncating or slicing it into
fragments. How to model long documents is still a
problem that needs to be solved.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (NSFC) via grant
61976072, 61632011 and 61772153.

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-

vlin, and Michael Collins. 2019a. Synthetic QA cor-
pora generation with roundtrip consistency. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers.

Chris Alberti, Kenton Lee, and Michael Collins. 2019b.
A BERT baseline for the Natural Questions. arXiv
preprint arXiv:1901.08634.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proc. of ACL.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proc. of ACL.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In Proc. of ACL.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
attention neural networks for reading comprehen-
sion. In Proc. of ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2018. Structured neural summariza-
tion. arXiv preprint arXiv:1811.01824.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units. CoRR, abs/1606.08415.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proc. of ACL.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Proc. of
ICLR.

Omri Koshorek, Adir Cohen, Noam Mor, Michael Rot-
man, and Jonathan Berant. 2018. Text segmentation
as a supervised learning task. In Proc. of NAACL.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Rhine-
hart, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, et al. 2019. Natural Questions: a
benchmark for question answering research.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing Comprehension dataset from Examinations. In
Proc. of EMNLP.

Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang,
Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang,
Guihong Cao, and Songlin Hu. 2020. Graph-based
reasoning over heterogeneous external knowledge
for commonsense question answering. In Proceed-
ings of the Thirty-Fourth Conference on Associa-
tion for the Advancement of Artificial Intelligence
(AAAI).

Diego Marcheggiani, Joost Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Proc.
of NAACL.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Proc. of AAAI.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summa-
rization with reinforcement learning. In Proc. of
NAACL.

http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415

6717

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proc. of
EMNLP.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proc. of
EMNLP.

Sebastian Ruder, Parsa Ghaffari, and John G Breslin.
2016. A hierarchical model of reviews for aspect-
based sentiment analysis. In Proc. of EMNLP.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In Proc. of ICLR.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proc. of NAACL.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. N-ary relation extraction using graph-
state LSTM. In Proc. of EMNLP.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proc. of EMNLP.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. Newsqa: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NIPS.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In Proc. of ICLR.

Wei Wang, Ming Yan, and Chen Wu. 2018. Multi-
granularity hierarchical attention fusion networks
for reading comprehension and question answering.
In Proc. of ACL.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and
Tat-Seng Chua. 2019. Kgat: Knowledge graph atten-
tion network for recommendation. In Proceedings
of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD).

Caiming Xiong, Victor Zhong, and Richard Socher.
2017. Dynamic coattention networks for question
answering. In Proc. of ICLR.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for di-
verse, explainable multi-hop question answering. In
Proc. of EMNLP.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proc. of NAACL.

Haoyu Zhang, Yeyun Gong, Yu Yan, Nan Duan, Jian-
jun Xu, Ji Wang, Ming Gong, and Ming Zhou.
2019. Pretraining-based natural language gen-
eration for text summarization. arXiv preprint
arXiv:1902.09243.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin
King, and Dit-Yan Yeung. 2018a. Gaan: Gated at-
tention networks for learning on large and spatiotem-
poral graphs. In Proc. of UAI.

Yue Zhang, Qi Liu, and Linfeng Song. 2018b.
Sentence-state LSTM for text representation. In
Proc. of ACL.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018c. Graph convolution over pruned dependency
trees improves relation extraction. In Proc. of
EMNLP.

Appendix

A Error Analysis

We provide an error analysis for our proposed mod-
els. We divide the results for instances in develop-
ment dataset into five cases:

• Case 1: The question has a long (short) an-
swer, and the predicted score is above the
threshold.

• Case 2: The question does not have a long
(short) answer, and the predicted score is be-
low the threshold.

• Case 3: The question has a long (short) an-
swer, and prediction is wrong.

• Case 4: The question has a long (short) an-
swer, and the predicted score is below the
threshold.

• Case 5: The question does not have a long
(short) answer, and the predicted score is
above the threshold.

The analysis results are shown in Table 5. For
BERT-base+Model-III, we can see it outperforms
other BERT-base models in the first four cases on
the long answer and gets comparable results on
Case 5. For the short answer, the improvement
of our proposed model mainly comes from Case
1 and Case 4, which suggests that our approach

6718

Long Answer Short Answer
Case1 Case2 Case3 Case4 Case5 Case1 Case2 Case3 Case4 Case5

BERT-base+Model-I 38.2 28.4 9.7 10.9 12.8 20.2 48.5 7.7 16.2 7.3
BERT-base+Model-II 40.8 28.6 8.4 9.7 12.5 20.0 49.0 7.7 16.4 6.9
BERT-base+Model-III 41.8 28.6 8.1 9.0 12.6 20.9 48.2 8.0 15.3 7.7

BERT-syn+Model-I 40.0 30.0 7.9 11.0 11.1 22.6 49.3 7.4 14.1 6.6
BERT-syn+Model-II 42.8 30.7 6.6 9.5 10.4 23.3 48.9 7.6 13.2 7.0
BERT-syn+Model-III 43.0 30.9 6.2 9.7 10.2 23.9 48.2 8.1 12.2 7.7

Table 5: Percentage of five categories for both long answer and short answer.

Question: what ’s the dog ’s name on tom and jerry

Long Answer: Tom (named “ Jasper ” in his debut appear-
ance) is a grey and white domestic shorthair cat . “ Tom ” is
a generic name for a male cat . He is usually but not always
, portrayed as living a comfortable , or even pampered life ,
while Jerry ...

Long Answer: Spike , occasionally referred to as Butch or
Killer , is a stern but occasionally dumb American bulldog
who is particularly disapproving of cats , but a softie when
it comes to mice (though in his debut appearance , Dog
Trouble , Spike goes after both Tom and Jerry) ...

Short Answer: Jasper Short Answer: Spike , occasionally referred to as Butch or
Killer

Question: when is a spearman correlation meant to be used instead of a pearson correlation

Long Answer: This method should also not be used in
cases where the data set is truncated ; that is , when the
Spearman correlation coefficient is desired for the top X
records (whether by pre-change rank or post-change rank
, or both) , the user should use the Pearson correlation
coefficient formula given above .

Long Answer: The Spearman correlation between two vari-
ables is equal to the Pearson correlation between the rank
values of those two variables ; while Pearson ’s correla-
tion assesses linear relationships , Spearman ’s correlation
assesses monotonic relationships (whether linear or not) ...

Short Answer: where the data set is truncated Short Answer: assesses monotonic relationships (whether
linear or not)

Table 6: Case studies from the development dataset. The results of directly predicting short answer span are shown
on the left, and the results on the right are predicted by a pipeline strategy.

helps the model do well in cases that have a short
answer. Comparing Model-I and Model-III, we can
see the significant improvement of our model lies
in the long answer on Case 1 (From 38.2%, 40.0%
to 41.8%, 43.0%, respectively).

For Case 2 and Case 5, our Model-III does not
have significant improvement compared to Model-
I. The reason is that, for instances with no answer
or no apparent answers, fine-grained information
is more crucial. Therefore, using the score of short
answer spans might be more accurate than the long
answer score from paragraph nodes, which are
coarse-grained. Overall, our Model-III is better
than the baseline Model-I, especially for examples
with long or short answers.

B Case Study

We report two case studies on the development
dataset shown in Table 6. In the first case, the
former prediction finds a wrong short answer
“Jasper” where the word-level information in ques-
tion “name” and “tom” is captured within a min-
imal context. Our pipeline strategy can consider

the context of the whole paragraph, leading to a
more accurate long answer along with its short an-
swer. For the second case, the former prediction
failed to capture the turning information while our
pipeline model sees the whole context in the para-
graph, which leads to the correct short answer. In
both two cases, short answers on the left both have
a larger score than those on the right. This suggests
that for a model that learns a strong paragraph-level
representation, we can prevent errors from short an-
swers by constraining it to the selected long answer
spans.

