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Abstract

Many studies have applied reinforcement
learning to train a dialog policy and show great
promise these years. One common approach
is to employ a user simulator to obtain a large
number of simulated user experiences for rein-
forcement learning algorithms. However, mod-
eling a realistic user simulator is challenging.
A rule-based simulator requires heavy domain
expertise for complex tasks, and a data-driven
simulator requires considerable data and it is
even unclear how to evaluate a simulator. To
avoid explicitly building a user simulator be-
forehand, we propose Multi-Agent Dialog Pol-
icy Learning, which regards both the system
and the user as the dialog agents. Two agents
interact with each other and are jointly learned
simultaneously. The method uses the actor-
critic framework to facilitate pretraining and
improve scalability. We also propose Hybrid
Value Network for the role-aware reward de-
composition to integrate role-specific domain
knowledge of each agent in task-oriented dia-
log. Results show that our method can success-
fully build a system policy and a user policy
simultaneously, and two agents can achieve a
high task success rate through conversational
interaction.

1 Introduction

Dialog policy, which decides the next action that
the dialog agent should take, plays a vital role in a
task-oriented dialog system. More recently, dialog
policy learning has been widely formulated as a
Reinforcement Learning (RL) problem (Su et al.,
2016; Peng et al., 2017; He et al., 2018; Zhao et al.,
2019; Zhang et al., 2019; Takanobu et al., 2019),
which models users as the interactive environment.
Since RL requires much interaction for training, it
is too time-consuming and costly to interact with
real users directly. The most common way is first
∗Corresponding author

to develop a dialog agent with a user simulator that
mimics human behaviors in an offline scenario.

Designing a reliable user simulator, however, is
not trivial and often challenging as it is equivalent
to building a good dialog agent. With the grow-
ing needs for the dialog system to handle more
complex tasks, it will be much challenging and
laborious to build a fully rule-based user simula-
tor, which requires heavy domain expertise. Data-
driven user simulators have been proposed in recent
studies (Kreyssig et al., 2018; Shi et al., 2019), but
they require a considerable quantity of manually
labeled data, most of which regard the simulator as
a stationary environment. Furthermore, there is no
standard automatic metric for evaluating these user
simulators, as it is unclear to define how closely
the simulator resembles real user behaviors.

In this paper, we propose Multi-Agent Dialog
Policy Learning (MADPL), where the user is re-
garded as another dialog agent rather than a user
simulator. The conversation between the user and
the system is modeled as a cooperative interactive
process where the system agent and the user agent
are trained simultaneously. Two dialog agents inter-
act with each other and collaborate to achieve the
goal so that they require no explicit domain exper-
tise, which helps develop a dialog system without
the need of a well-built user simulator. Different
from existing methods (Georgila et al., 2014; Pa-
pangelis et al., 2019), our approach is based on
actor-critic framework (Barto et al., 1983) in order
to facilitate pretraining and bootstrap the RL train-
ing. Following the paradigm of centralized training
with decentralized execution (CTDE) (Bernstein
et al., 2002) in multi-agent RL (MARL), the actor
selects its action conditioned only on its local state-
action history, while the critic is trained with the
actions of all agents.

It should be noted that the roles of two agents
are different though they interact with each other



626

Figure 1: The user has his/her own goal to be accom-
plished and the system is provided with an interface
to access an external database. Both agents can only
obtain information from the other side via communica-
tion.

in a cooperative setting. As shown in Fig. 1, only
the user agent knows the user goal, while only the
system agent can access the backend database. The
user agent should express the requirements com-
pletely in an organized way, and the system should
respond with useful information accurately and im-
mediately. So it is inappropriate to apply simple
self-play RL (Silver et al., 2017; Lewis et al., 2017)
that views two agents as the same agent in this task.
To address this issue, the system and the user are
viewed as two asymmetric agents in MADPL. We
introduce Hybrid Value Network (HVN) for role-
aware reward decomposition. It decomposes the
reward into two parts: one is the role-specific re-
ward that focuses on its local target, and the other
is the global reward that represents the shared goal.

To evaluate the proposed approach, we con-
duct our experiments on a multi-domain, multi-
intent task-oriented dialog corpus, MultiWOZ
(Budzianowski et al., 2018). The corpus involves
high dimensional state and action spaces, multiple
decision making in one turn, which makes it more
difficult to get a good system policy as well as a
good user policy. The experiments demonstrate
that MADPL can successfully build a system pol-
icy as well as a user policy with the aid of HVN,
and two agents can achieve high task success rate
in complex tasks by interacting with each other as
well as with benchmark policies.

To summarize, our contributions are in three
folds:

• We apply actor-critic based multi-agent rein-
forcement learning to learn the task-oriented
dialog policy to facilitate pretraining and

avoid explicitly building a user simulator.

• We propose Hybrid Value Network for reward
decomposition to deal with the asymmetric
role issue between the system agent and the
user agent in the task-oriented dialog.

• We conduct in-depth experiments on the multi-
domain, multi-intent task-oriented dialog cor-
pus to show the effectiveness, reasonableness
and scalability of our algorithm.

2 Related Work

2.1 Multi-Agent Reinforcement Learning

The goal of RL is to discover the optimal strategy
π∗(a|s) of the Markov Decision Process, which can
be extended into the N -agent setting, where each
agent has its own set of states Si and actions Ai.
In MARL, the state transition s = (s1, . . . , sN )→
s′ = (s′1, . . . , s

′
N ) depends on the actions taken by

all agents (a1, . . . , aN ) according to each agent’s
policy πi(ai|si) where si ∈ Si, ai ∈ Ai, and simi-
lar to single RL, each agent aims to maximize its
local total discounted return Ri =

∑
t γ

tri,t.
Since two or more agents learn simultaneously,

the agents continuously change as the training pro-
ceeds, therefore the environment is no longer sta-
tionary. Many MARL algorithms (Lowe et al.,
2017; Foerster et al., 2018; Rashid et al., 2018)
have been proposed to solve challenging problems.
Most of them use the CTDE framework to address
the non-stationarity of co-adapting agents. It al-
lows the policies to use extra information to ease
training, but the learned policies can only use local
information (i.e. their own observations) at execu-
tion time.

Several studies have demonstrated that apply-
ing MARL delivers promising results in NLP tasks
these years. While some methods use identical
rewards for all agents (Das et al., 2017; Kottur
et al., 2017; Feng et al., 2018), other studies use
completely separate rewards (Georgila et al., 2014;
Papangelis et al., 2019). MADPL integrates two
types of rewards by role-aware reward decomposi-
tion to train a better dialog policy in task-oriented
dialog.

2.2 User Modeling in Task-Oriented Dialog

User modeling is essential for training RL-based
dialog models, because a large amount of dialog
samples are required for RL policy learning, mak-
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ing it impractical to learn with real users directly
from the beginning.

There are three main approaches for user model-
ing. The first approach is to build a rule-based user
simulator. Among these methods, the most pop-
ular one is agenda-based simulator (Schatzmann
et al., 2007; Shah et al., 2018), which is built on
hand-crafted rules with a stack-like agenda based
on the user goal. The second approach is to build a
user simulator from the dialog data (Keizer et al.,
2010; El Asri et al., 2016; Kreyssig et al., 2018).
Recently, Gür et al. (2018) uses a variational hi-
erarchical seq2seq framework to encode user goal
and system turns, and then generate the user re-
sponse. Shi et al. (2019) uses two decoders with
a copy and attention mechanism to predict a be-
lief span first and then decode user utterance. The
third approach is to use model-based policy opti-
mization that incorporates a differentiable model
of the world dynamics and assumptions about the
interactions between users and systems (Su et al.,
2018; Zhang et al., 2019), but this approach still
requires real users or a user simulator for world
model learning.

Instead of employing a user simulator, a few
methods jointly learn two agents directly from the
corpus. Liu and Lane (2017) models the system
and the user by iteratively training two policies.
Papangelis et al. (2019) make the first attempt to
apply MARL into the task-oriented dialog policy,
whose algorithm is based on Q-learning for mixed
policies. However, it is not well scalable to com-
plex tasks such as multi-domain dialog. Therefore,
MADPL uses the actor-critic framework instead to
deal with the large discrete action space in dialog.

3 Multi-Agent Dialog Policy Learning

We first formally describe the task, and then present
the overview of our proposed model. Specifically,
given a user goal G=(C,R) composed of the user
constraints C (e.g. a Japanese restaurant in the cen-
ter of the city) and requests R (e.g. inquiry for
address, phone number of a hotel), and given an
external database DB containing all candidate enti-
ties and corresponding information, the user agent
and system agent interact with each other in a di-
alog session to fulfill the user goal. There can be
multiple domains in G, and two agents have to ac-
complish all the subtasks in each domain. Both
agents can partially observe the environment, i.e.
only the user agent knows G, while only the sys-

Figure 2: Architecture of MADPL. HVN consists of
three critics. Each critic estimates its return based on
role-aware reward decomposition, and each actor uses
the estimated value to optimize itself.

tem agent can access DB, and the only way to
know each other’s information is through conver-
sational interaction. Different from ordinary multi-
agent task setting, two agents in dialog are exe-
cuted asynchronously. In a single dialog turn, the
user agent posts an inquiry first, then the system
agent returns a response, and the two communi-
cate alternately. Therefore, each dialog session τ
can be seen as a trajectory of state-action pairs
{(sU0 , aU0 , sS0 , aS0 ); (sU1 , aU1 , sS1 , aS1 ); . . . }, where
the user agent and the system agent make
decisions according to each dialog policy
µ(aU |sU ), π(aS |sS) respectively.

Here we present a novel algorithm, Multi-Agent
Dialog Policy Learning (MADPL), as shown in
Fig. 2, which can be naturally formulated as a
MARL problem. Two agents interact through di-
alog acts following (Georgila et al., 2014). We
choose the actor-critic framework in order to learn
an explicitly stochastic dialog policy (actor) for
high scalability along with an estimated value func-
tion (critic) to bootstrap RL training. Besides, this
can facilitate imitation learning to pretrain the dia-
log policy using human-human dialogs. Since two
agents cooperate to reach success, yet their roles
are asymmetric in the dialog, we propose Hybrid
Value Network (HVN) to decompose the task re-
ward into different parts for better policy learning.
Note that our approach is fully data-driven without
building a user simulator beforehand, and does not
need any other human supervision during training.

In the subsequent subsections, we will first ex-
plain the state and action used in two dialog poli-
cies. Then we describe how we decompose the
reward and the proposed HVN. At last, we present
model optimization.
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3.1 Dialog Policy
System Policy The system policy π decides the
system action aS according to the system dialog
state sS to give the appropriate response to user
agent. Each system action aS is a subset of dialog
act setA as there may be multiple intents in one di-
alog turn. A dialog act is an abstract representation
of an intention (Stolcke et al., 2000), which can be
represented in a quadruple composed of domain, in-
tent, slot type and slot value (e.g. [restaurant,
inform, food, Italian]). In practice, dialog
acts are delexicalized in the dialog policy. We re-
place the slot value with a count placeholder and
refill it with the true value according to the entity se-
lected from the external database DB, which allows
the system to operate on unseen values. The system
dialog state sSt at dialog turn t is the concatenation
of (I) user action at current turn aUt ; (II) system
action at the last turn aUt−1; (III) the belief state bt
(Williams et al., 2016) that keeps track of constraint
slots and request slots supplied by the user agent;
and (IV) embedding vectors of the number of query
results qt from DB.

User Policy The user policy µ decides the user
action aU according to the user dialog state sU

to express its constraint and request to the system
agent. Similar to the system policy, the user policy
uses delexicalized dialog acts as actions, and the
value is refilled according to the user goal G. User
dialog state sUt is the concatenation of (I) last sys-
tem action aSt−1; (II) last user action aUt−1; (III) the
goal state gt that represents the remained constraint
and request that need to send; (IV) inconsistency
vector ct (Kreyssig et al., 2018) that indicates the
inconsistency between the systems response and
user constraint C. In addition to predicting dialog
acts, the user policy outputs terminal signal T at
the same time, i.e. µ = µ(aU , T |sU ).

3.2 Reward Decomposition
On the one hand, the roles between the user agent
and the system agent are different. The user agent
actively initiates a task and may change it during
conversation, but the system agent passively re-
sponds to the user agent and returns the proper
information, so the reward should be considered
separately for each agent. On the other hand, two
agents communicate and collaborate to accomplish
the same task cooperatively, so the reward also in-
volves a global target for both agents. Therefore,
we decompose the mixed reward into three parts

according to the characteristic of each component.
The reward of each part is explained as follows:

System Reward rSt consists of (I) empty dialog
act penalty aSt = ∅; (II) late answer penalty if
there is a request slot triggered but the system agent
does not reply the information immediately; and
(III) task success reward based on the user agent’s
description.

User Reward rUt consists of (I) empty dialog
act penalty aUt = ∅; (II) early request penalty if
the user agent requests for information when there
is still a constraint slot remained to inform; and
(III) user goal reward whether the user agents have
expressed all the constraints C and requests R.

Global Reward rGt consists of (I) efficiency
penalty that a small negative value will be given at
each dialog turn; (II) sub-goal completion reward
once the subtask of G in a particular domain is ac-
complished; and (III) task success reward based on
user goal G.

Obviously, each agent should obtain its local re-
ward, and both agents should receive the global
reward during the training process. Note that the
task success and the user goal reward are only com-
puted at the end of the dialog, and the task success
computed in the system reward differs from the one
in the global reward.

3.3 Hybrid Value Network

The value function aims to estimate the expected
return given the current state V (st) = E[Rt] =
E[
∑

t′≥t γ
t′−trt′ ] so that the policy can directly use

the estimated cumulative reward for optimization,
without sampling the trajectories to obtain rewards
which may cause high variance. Another advan-
tage by applying actor-critic approaches in MARL
is that it can integrate with the CTDE framework:
the actor of each agent benefits from a critic that is
augmented with additional information about the
policies of other agents during training. However, a
simple centralized critic conditioned on the global
state and joint actions cannot well exploit the do-
main knowledge mentioned above since each part
of the overall rewards only depends on a subset of
features, e.g. the system reward only depends on
the system agent’s behaviors.

Inspired by Hybrid Reward Architecture
(Van Seijen et al., 2017) that learns a separate Q
function, we propose Hybrid Value Network to
improve an estimate of the optimal role-aware
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value function. It first encodes the dialog state of
each agent to learn a state representation

hSs = tanh(fSs (s
S)),

hUs = tanh(fUs (sU )),

where f(·) can be any neural network unit. The
value network V is separated into three branches
V S , V U and V G for the value of system rewards,
user rewards and global rewards, respectively.

V S(sS) = fS(h
S
s ),

V U (sU ) = fU (h
U
s ),

V G(s) = fG([h
S
s ;h

U
s ]).

3.4 Optimization

The action space for the policies can be very large
since we deal with multi-domain, complex dialog
tasks, which makes it almost impossible for the RL
policies to explore and learn from scratch. So the
training process can be split into two stages (Fatemi
et al., 2016; Takanobu et al., 2019): pretraining
the dialog policy with the conversational corpus
first and then using RL to improve the pretrained
policies. We use β-weighted logistic regression
for policy pretraining here to alleviate data bias
because each agent only generates several dialog
acts in one dialog turn

L(X,Y ;β) =− [β · Y T log σ(X) (1)

+ (I − Y )T log(I − σ(X))],

where X is the state and Y is the action from the
corpus in this task.

As for critic optimization, it aims to minimize
the squared error between the temporal difference
(TD) target rt + γV (st+1) and the estimated value
V (st) = E[rt+γV (st+1)]. Actor-critic algorithms
have high variance since the critic is updated too
frequently, which has contributed to severe changes
in the estimated value, particularly in multi-agent
tasks. So we introduce a target network (Mnih
et al., 2015) to make the training process more
stable. In the context of HVN, it aims to minimize
the following loss functions:

LSV (θ) = (rS + γV S
θ−(s

′S)− V S
θ (sS))2,

LUV (θ) = (rU + γV U
θ−(s

′U )− V U
θ (sU ))2,

LGV (θ) = (rG + γV G
θ−(s

′)− V G
θ (s))2,

LV = LSV + LUV + LGV , (2)

Algorithm 1: Multi-Agent Dialog Policy
Learning
Require :Dialog corpus D with annotations of

dialog acts {a}
1 Initialize weights φ, ω for system policy π and

user policy µ respectively
2 Pretrain policies π, µ on human conversational

data D using Eq. 1
3 Initialize weights θ for hybrid value network

V = (V S , V U , V G) and target network
θ− ← θ

4 foreach training iteration do
5 Initialize user goal and dialog state sU , sS

6 repeat
7 Sample actions aU , aS and terminal

signal T using current policy π, µ
8 Execute actions and observe reward

rU , rS , rG and new states s′U , s′S

9 Update hybrid value network (critic)
using Eq. 2

10 Compute the advantage AU , AS , AG

using current value network
11 Update two dialog policies (actor)

using Eq. 3
12 sU ← s′U , sS ← s′S

13 Assign target network parameters
θ− ← θ every C steps

14 until the session ends according to T
15 end

where HVN Vθ is parameterized by θ, and θ− is
the weight of target network, and the overall loss
LV is the sum of value estimation loss on each
component reward.

Each dialog policy aims to maximize all the
related returns, e.g. the system policy π aims
to maximize the cumulative system rewards and
global rewards E[

∑
t γ

t(rSt + rGt )]. The advantage
A(s) = r+ γV (s′)− V (s) estimated by the critic
can evaluate the new state s′ and current state s to
determine whether the dialog has become better
or worse than expected. With the aid of HVN, the
sum of the related component advantages can be
used to update different agents. By using the log-
likelihood ratio trick, the gradients for the system
policy and the user policy yield:

∇φJπ(φ)=∇φ logπφ(aS |sS)[AS(sS)+AG(s)],
(3)

∇ωJµ(ω)=∇ω logµω(aU |sU )[AU (sU )+AG(s)],



630

where the system policy πφ is parameterized by φ
and the user policy µω by ω.

In summary, a brief script for MADPL is shown
in Algorithm 1.

4 Experimental Setting

4.1 Dataset

MultiWOZ (Budzianowski et al., 2018) is a multi-
domain, multi-intent task-oriented dialog corpus
that contains 7 domains, 13 intents, 25 slot types,
10,483 dialog sessions, and 71,544 dialog turns.
During the data collection process, a user is asked
to follow a pre-specified user goal, and is allowed
to change the goal during the session if necessary,
so the collected dialogs are much closer to real-
world conversations. The corpus also provides the
domain knowledge that defines all the entities and
attributes as the external database.

4.2 Metrics

Evaluation of a task-oriented dialog system mainly
consists of the cost and task success. We count the
number of dialog turns to reflect the dialog cost. A
user utterance and a subsequent system utterance
are regarded as one dialog turn. We utilize two
other metrics: inform F1 and match rate to estimate
the task success. Both metrics are calculated at
the dialog act level. Inform F1 evaluates whether
all the requested information has been informed,
and match rate checks whether the booked entities
match all the indicated constraints given by the
user. The overall task success is reached if and
only if both inform recall and match rate are 1.

4.3 Baselines

We compare MADPL with a series of baselines that
involve both system policy learning and user policy
learning. Note that we do not consider any other ap-
proaches that use a user simulator for policy train-
ing because our motivation is to avoid explicitly
modeling a simulator.

SL Supervised Imitation Learning directly uses
the dialog act annotations and trains the agents
simply by behavior cloning using Eq. 1, which is
the same as the pretraining phase in MADPL.

The following three baselines are all RL algo-
rithms that start from the pretrained policy:

RL Independent Reinforcement Learning learns
only one dialog policy by fixing another agent fol-
lowing the single RL setting, and the reward for

Class Attraction Hospital Hotel
Count 320 22 389

Police Restaurant Taxi Train
22 457 164 421

Num. Single Two Three
Count 328 549 123

Table 1: Domain distribution of user goals used in the
automatic evaluation. A user goal with multiple do-
mains is counted repeatedly for each domain.

the agent is the sum of role-specific reward and
global reward. For example, the user policy uses
the reward r = rU + rG at each dialog turn.

CRL Centralized Reinforcement Learning is a
MARL approach that uses a single centralized critic
on the sum of reward r = rU + rS + rG to train
two agents simultaneously, which also serves for
the ablation test of MADPL.

IterDPL Iterative Dialog Policy Learning (Liu
and Lane, 2017) updates two agents iteratively us-
ing single RL training to reduce the risk of non-
stationarity when jointly training the two agents.

5 Automatic Evaluation

5.1 Interaction between Two Agents

A set of 1,000 user goals are used for automatic
evaluation as shown in Table 1. When the dialog
is launched, two agents interact with each other
around a given user goal. The performance of inter-
action between the two trained policies are shown
in Table 2. MADPL reaches the highest match rate
and task success among all the methods. It man-
ages to improve the success rate of the pretrained
policies from 49.7% to 70.1%. Single RL policies
(row 2 to 4) have limited improvement, and even
decline in match rate since they assume a station-
ary environment. The comparison between CRL
and IterDPL indicates the effectiveness of CTDE
in the multi-agent task. The superiority of MADPL
against CRL shows that two agents benefit from
the role-aware reward decomposition in HVN. The
learning curves in Fig. 3 illustrates that the suc-
cess rate grows rapidly in MADPL, and it always
improves the success rate as the training proceeds.

The average reward of each component reward
is shown in 4. We run 10 different instances of
MADPL with different random seeds. The solid
curves correspond to the mean and the shaded re-
gion to the standard deviation of rewards over the
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System User Turns Inform Match Success

SL SL 6.34 73.08 82.58 49.7
SL RL 8.75 76.86 76.28 60.2
RL SL 6.20 72.84 79.15 51.1
RL RL 7.92 75.96 70.37 58.7

CRL 8.13 68.29 89.71 66.6
IterDPL 8.79 74.01 81.04 64.6

MADPL 8.96 76.26 90.98 70.1

Table 2: Performance of the interaction between the
user agent and the system agent.

Figure 3: Learning curves of the interaction between
the user agent and the system agent.

10 trials. We can observe that all the rewards in-
crease steadily during the training process, which
implies that HVN has estimated a proper return for
policy training.

5.2 Interaction with Benchmark Policies

It is essential to evaluate a multi-agent dialog sys-
tem whether all the agents understand the semantic
interaction rather than invent an uninterpretable
language (Kottur et al., 2017; Lee et al., 2019a).
To this end, we use two benchmark policies in
the standardized task-oriented dialog system plat-
form Convlab (Lee et al., 2019b) to examine all the
methods. Each benchmark is a strong rule-based
system policy or user policy at the dialog act level,
which is used as the simulated evaluation in the
DSTC-8 Track 1 competition and show a high cor-
relation with real user interaction (Li et al., 2020).
The trained system/user policy in each method is
directly deployed to interact with the benchmark
user/system policy during the test without any other
finetuning, which can be regarded as a weakly zero-
shot experiment. The same goal set in Table 1 is
used here.

Table 3 and Fig. 5 show the results of the interac-

Figure 4: Learning curves of MADPL on system re-
ward (top), user reward (middle) and global reward
(bottom).

tion between the benchmark user policy and the sys-
tem agent of each model. The SOTA performance
from GDPL (Takanobu et al., 2019) that directly
trains with benchmark user policy is also presented
as the soft performance upper bound. Among all
the methods, MADPL has achieved the highest task
success and the second-highest match rate. All the
methods experience a decline in inform F1 after
the RL training. Fig. 5 also shows that the success
rate is unstable during training. This is because the
action space of the system policy is much larger,
thus more challenging to learn. In spite of that, the
success rate of MADPL shows a rising trend.

Table 4 and Fig. 6 show the results of the in-
teraction between the user agent of each method
and the benchmark system policy. Among all the
methods, MADPL has achieved the highest inform
F1 and task success. Though CRL improves the
performance at the beginning, the success rate fails
to increase further afterwards, while MADPL con-
tinues to improve all the time. This also indirectly
indicates the advantage of using role-aware reward
decomposition in HVN.
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System Turns Inform Match Success

SL 7.76 83.33 85.84 84.2
RL 7.53 82.06 85.77 84.3

CRL 8.38 72.43 89.48 86.4
IterDPL 7.74 79.68 82.49 82.5

MADPL 7.63 79.93 89.24 87.7
GDPL 7.62 92.10 91.50 92.1

Table 3: Performance of the interaction between the
benchmark user policy and each system agent.

Figure 5: Learning curves of the interaction between
the benchmark user policy and each system agent.

User Turns Inform Match Success

SL 8.64 78.64 87.84 51.7
RL 11.18 85.69 92.13 77.2

CRL 11.31 86.58 92.89 74.7
IterDPL 12.53 84.68 92.57 75.5

MADPL 13.25 87.04 90.81 83.7

Table 4: Performance of the interaction between each
user agent and the benchmark system policy.

Figure 6: Learning curves of the interaction between
each user agent and the benchmark system policy.

In summary, each policy trained from MADPL
can interact well with the benchmark policy, which

VS.
System Q User Q Success

W D L W D L W D L

SL/SL 55 22 23 61 25 14 68 26 6
RL/RL 49 23 28 52 28 20 70 19 11
IterDPL 50 27 23 56 30 14 64 24 12

Table 5: Human preference on dialog session pairs that
MADPL wins (W), draws with (D) or loses to (L) base-
lines with regard to quality (Q) and success by majority
voting.

implies that MADPL learns a reasonable dialog
strategy.

5.3 Goal across Multiple Domains

We also investigate the domains in the user goals
to observe the scalability of each method in the
complex tasks. 200 goals are randomly sampled
under each setting. Fig. 7 presents the results
of the interaction between two agents in different
numbers or classes of domains. The success rate
decreases substantially as the number of domains
increases in the goal. When there are 3 domains in
the goal, RL/RL gets a high inform F1 but a low
match rate, IterDPL gets a high match rate but a
low inform F1, while MADPL can still keep a high
inform F1 and match rate, and obtains the highest
task success. In terms of the class of domains, there
are 7/10/6 informable slots that needs to be tracked
in the Restaurant/Hotel/Train domain respectively.
Among these, MADPL outperforms other baselines
in the Restaurant and Hotel domains, and performs
comparably in the Train domain. In brief, all the
results indicate that MADPL has good scalability
in multi-domain dialog.

6 Human Evaluation

For human evaluation, we hire Amazon Mechanical
Turkers to conduct pairwise comparison between
MADPL and baselines. Since all the policies work
at the dialog act level, we generate the texts from di-
alog acts using hand-crafted templates to make the
dialog readable. Each Turker is asked to read a user
goal first, then we show 2 dialog sessions around
this user goal, one from MADPL and the other from
another baseline. We randomly sample 100 goals
for each baseline. For each goal, 5 Turkers are
asked to judge which dialog is better (win, draw or
lose) according to different subjective assessments
independently: (I) system quality, (II) user quality,
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Figure 7: Performance of dialog agents according to the different number (left) or class (right) of domains in the
dialog.

and (III) task success. The system quality metric
evaluates whether the system policy provides the
user with the required information efficiently, and
the user quality metric evaluates whether the user
policy expresses the constraints completely in an
organized way. Note that we do not evaluate the
quality of language generation here.

Table 5 shows the results of human preference
by majority voting. We can observe that the high
win rate of MADPL on the task success is consis-
tent with the results of automatic evaluation, and
MADPL outperforms three baselines significantly
in all aspects (sign test, p-value < 0.01) except for
the system quality against RL/RL policies.

The proportion of the pairwise annotations in
which at least 3 of 5 annotators assign the same
label to a task is 78.7%/77.3%/83.3% for system
quality/user quality/task success, respectively. This
indicates that annotators have moderate agreements.
The human judgements align well with the results
of automatic evaluation, which also indicates the
reliability of the metrics used in task-oriented dia-
log.

7 Conclusion

We present a multi-agent dialog policy algorithm,
MADPL, that trains the user policy and the sys-

tem policy simultaneously. It uses the actor-critic
framework to facilitate pretraining and bootstrap
RL training in multi-domain task-oriented dialog.
We also introduce role-aware reward decomposi-
tion to integrate the task knowledge into the algo-
rithm. MADPL enables the developers to set up
a dialog system rapidly from scratch. It only re-
quires the annotation of dialog acts in the corpus for
pretraining and does not need to build a user simu-
lator explicitly beforehand. Extensive experiments1

demonstrate the effectiveness, reasonableness and
scalability of MADPL.

As future work, we will apply MADPL in the
more complex dialogs and verify the role-aware
reward decomposition in other dialog scenarios.
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A Implementation Details

Both the system policy π and the user policy µ
are implemented with two hidden layer MLPs. The
action space of system policy and user policy is 172
and 80 respectively. For Hybrid Value Network
V , all neural network units f(·) are two hidden
layer MLPs. The activation function is all Relu for
MLPs.

We use RMSprop as the optimization algorithm.
The batch size is set to 32. The weighted pretrain-
ing factor β is 2.5, 4 for the system policy and user
policy respectively. The learning rate for two po-
lices is 1e-3 when pretraining. As for RL training,
the learning rate is 1e-4, 5e-5 for the system pol-
icy and the user policy respectively, and 3e-5 for
Hybrid Value Network. The discount factor γ is
0.99, and the target network is updated every C=
400 training iterations.

In terms of reward design, the empty action
penalty is set to -5, and penalties of other types
are set to -1. The sub-goal completion reward is set
to 5. The task success and the user goal reward are
set to 20 if triggered, otherwise they are set to -5.

B Case Study

To illustrate the superiority of our model, we show
a pair of sample dialog sessions between the user
and the system, trained with RL/RL and MADPL,
respectively. As shown in Table 6, the user goal
contains two domains (i.e., train and restaurant).
The user agent is supposed to inform the constraints
displayed in Info, request information displayed in
Reqt, and express the intent to book the train and
restaurant with the information in Book. The sys-
tem agent is required to answer the request, as well
as book the train and the restaurant according to
the user’s demands. Table 7 shows the sampled dia-
log sessions. For RL/RL, the user sometimes talks
about both the train and the restaurant simultane-
ously, making it difficult for the system to respond
(highlighted in red color). Moreover, the system
agent in RL/RL sometimes fails to answer the re-
quested information or book the restaurant as the
user demands (highlighted in blue color). As a re-
sult, the dialog in RL/RL fails as the user does not
request the arrival time of the train, and the system
does not book the restaurant for the user. In com-
parison, both the user and the system in MADPL
fulfill their own task, and the whole dialog is suc-
cessful. Table 8 shows the same sample dialog
sessions with the original dialog acts.
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Train Restaurant
Info Reqt Book Info Reqt Book

destination=peterborough duration people= 3 food=european phone time=19:30
day=thursday arriveBy pricerange=expensive postcode people=5

departure=cambridge address day=tuesday
leaveAt=19:45

Table 6: User goal used in the case study.

RL/RL MADPL
U: Hi, I’d like to take a train from cambridge to peterbor-

ough on thursday. I want to leave at about 19:45.
U: Hi, I’d like to take a train from cambridge to peterbor-

ough on thursday. I want to leave at about 19:45.
S: You may consider TR7324, which leaves at 21:40. Shall

I book tickets for you?
S: You may consider TR7324, which leaves at 21:40, and

arrives at cambridge at 24:23. Shall I book tickets for
you?

U: Sounds good! Please book tickets to peterborough for 3
people.

U: Sounds good! Please book tickets for 3 people.

S: I’ve booked your train tickets. The price is 10.10 pounds
and your reference number is train-00002321. Is there
anything else I can help you with today?

S: I ’ve booked your train tickets. The price is 10.10 pounds
and your reference number is train-00002321. Is there
anything else I can help you with today?

U: Could you please tell me the train ID and travel time? I
also want to book an european restaurant with expensive
price.

U: I also want to book an european restaurant with expen-
sive price on Tuesday.

S: There are 4 choices for expensive european restaurant.
What area of town would you prefer ?

S: There are 4 choices found. City Stop Restaurant is a
good choice.

U: I don’t care about the location. Could you please tell me
the address, phone number and post of the restaurant?

U: I don’t care its name, but make sure it’s an expensive
restaurant. Can you help me with a reservation for 5
people at 19:30 this coming Tuesday?

S: Sure, City Stop Restaurant is located at Cambridge City
Football Club Milton Road Chesterton and the post is
cb41uy. The phone number is 01223363270. Is there
anything else I can help you with today?

S: Booking was successful. Reference number is:
restaurant-00000083.

U: Can you help me with a reservation for 5 people at 19:30
this coming Tuesday?

U: Although I don’t care its name, I’d like to know its phone
number and post.

S: Is there anything else I can help you with? S: Sure, the phone number is 01223368786 and the post is
cb23rh. Anything else?

U: Could you please tell me the travel time of the train I
just booked?

U: What’s the address of the restaurant?

S: The travel time is 60 minutes. Anything else I can look
up for you?

S: The restaurant is located at Cambridge Lodge Hotel 139
Huntingdon Road City Centre. Is there anything else I
can help you with?

U: Thanks! When will the train arrive? U: Could you please tell me the travel time of the train I
just booked? Thanks very much!

S: You’re welcome! Anything else? Bye! S: The travel time is 105 minutes. Anything else I can look
up for you?

U: Thank you very much! U: Thank you. That ’s all I needed .
S: You are very welcome. Goodbye. S: You are very welcome. Goodbye.
Failure: User does not request the arrive time of the train, and

the system does not book the restaurant for the user. Success

Table 7: A sample dialog session comparison between RL/RL and MADPL in natural language.
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RL/RL MADPL
U: {’train-inform-dest’: ’peterborough’, ’train-inform-

day’: ’thursday’, ’train-inform-depart’: ’cambridge’,
’train-inform-leave’: ’19:45’}

U: {’train-inform-dest’: ’peterborough’, ’train-inform-
day’: ’thursday’, ’train-inform-depart’: ’cambridge’,
’train-inform-leave’: ’19:45’}

S: {’train-inform-leave’: ’21:40’, ’train-inform-id’:
’TR7324’, ’train-offerbook-none’: ’none’}

S: {’train-inform-leave’: ’21:40’, ’train-inform-id’:
’TR7324’, ’train-inform-arrive’: ’24:23’, ’train-
offerbook-none’: ’none’, ’train-inform-dest’: ’cam-
bridge’}

U: {’train-inform-dest’: ’peterborough’, ’train-inform-
people’: ’3’}

U: {’train-inform-people’: ’3’}

S: {’general-reqmore-none’: ’none’, ’train-
offerbooked-ref’: ’train-00002321’, ’train-
offerbooked-ticket’: ’10.10 pounds’}

S: {’general-reqmore-none’: ’none’, ’train-
offerbooked-ref’: ’train-00002321’, ’train-
offerbooked-ticket’: ’10.10 pounds’}

U: {’restaurant-inform-food’: ’european’, ’restaurant-
inform-price’: ’expensive’, ’train-request-time’: ’?’,
’train-request-id’: ’?’}

U: {’restaurant-inform-food’: ’european’, ’restaurant-
inform-price’: ’expensive’, ’restaurant-inform-day’:
’tuesday’}

S: {’restaurant-inform-choice’: ’4’, ’restaurant-inform-
food’: ’european’, ’restaurant-inform-price’: ’expen-
sive’, ’restaurant-request-area-?’: ’?’}

S: {’restaurant-inform-choice’: ’4’, ’restaurant-
recommend-name’: ’city stop restaurant’}

U: {’restaurant-inform-area’: ’dont care’, ’restaurant-
request-addr’: ’?’, ’restaurant-request-phone’: ’?’,
’restaurant-request-post’: ’?’}

U: {’restaurant-inform-price’: ’expensive’, ’restaurant-
inform-time’: ’19:30’, ’restaurant-inform-day’:
’tuesday’, ’restaurant-inform-people’: ’5’,
’restaurant-inform-name’: ’dont care’}

S: {’general-reqmore-none’: ’none’, ’restaurant-
inform-name’: ’city stop restaurant’, ’restaurant-
inform-addr’: ’Cambridge City Football Club
Milton Road Chesterton’, ’restaurant-recommend-
name’: ’city stop restaurant’, ’restaurant-inform-
phone’: ’01223363270’, ’restaurant-inform-post’:
’cb41uy’}

S: {’general-reqmore-none’: ’none’, ’booking-book-
ref’: ’restaurant-00000083’}

U: {’restaurant-inform-time’: ’19:30’, ’restaurant-
inform-day’: ’tuesday’, ’restaurant-inform-people’:
’5’}

U: {’restaurant-inform-name’: ’dont care’, ’restaurant-
request-phone’: ’?’, ’restaurant-request-post’: ’?’}

S: {’general-reqmore-none’: ’none’} S: {’general-reqmore-none’: ’none’, ’restaurant-
inform-phone’: ’01223368786’, ’restaurant-inform-
post’: ’cb23rh’}

U: {’train-request-time’: ’?’} U: {’restaurant-request-addr’: ’?’}
S: {’general-reqmore-none’: ’none’, ’train-inform-

time’: ’60 minutes’}
S: {’general-reqmore-none’: ’none’, ’restaurant-

inform-addr’: ’Cambridge Lodge Hotel 139 Hunt-
ingdon Road City Centre’}

U: {’general-thank-none’: ’none’, ’train-request-
arrive’: ’?’}

U: {’general-thank-none’: ’none’, ’train-request-time’:
’?’}

S: {’general-reqmore-none’: ’none’, ’general-bye-
none’: ’none’, ’general-welcome-none’: ’none’}

S: {’general-reqmore-none’: ’none’, ’train-inform-
time’: ’105 minutes’}

U: {’general-thank-none’: ’none’} U: {’general-thank-none’: ’none’}
S: {’general-bye-none’: ’none’, ’general-welcome-

none’: ’none’}
S: {’general-bye-none’: ’none’, ’general-welcome-

none’: ’none’}
Failure: User does not request the arrive time of the train, and

the system does not book the restaurant for the user. Success

Table 8: A sample dialog session comparison between RL/RL and MADPL in dialog acts.


