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Abstract

Visual referring expression recognition is a
challenging task that requires natural language
understanding in the context of an image.
We critically examine RefCOCOg, a standard
benchmark for this task, using a human study
and show that 83.7% of test instances do not
require reasoning on linguistic structure, i.e.,
words are enough to identify the target ob-
ject, the word order doesn’t matter. To mea-
sure the true progress of existing models, we
split the test set into two sets, one which re-
quires reasoning on linguistic structure and the
other which doesn’t. Additionally, we create
an out-of-distribution dataset Ref-Adv by ask-
ing crowdworkers to perturb in-domain exam-
ples such that the target object changes. Us-
ing these datasets, we empirically show that
existing methods fail to exploit linguistic struc-
ture and are 12% to 23% lower in perfor-
mance than the established progress for this
task. We also propose two methods, one
based on contrastive learning and the other
based on multi-task learning, to increase the
robustness of VILBERT, the current state-of-
the-art model for this task. Our datasets are
publicly available at https://github.com/
aws/aws-refcocog—-adv.

1 Introduction

Visual referring expression recognition is the task
of identifying the object in an image referred by
a natural language expression (Kazemzadeh et al.,
2014; Nagaraja et al., 2016; Mao et al., 2016; Hu
et al., 2016). Figure 1 shows an example. This
task has drawn much attention due to its ability
to test a model’s understanding of natural lan-
guage in the context of visual grounding and its
application in downstream tasks such as image re-
trieval (Young et al., 2014) and question answer-
ing (Antol et al., 2015; Zhu et al., 2016). To track
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Figure 1: An example of the visual referring expression
recognition task. If the word pastry is present in the
referring expression, models prefer the bounding box
rl (highlighted in green) irrespective of the change in
linguistic structure (word order).

progress on this task, various datasets have been
proposed, in which real world images are anno-
tated by crowdsourced workers (Kazemzadeh et al.,
2014; Mao et al., 2016). Recently, neural mod-
els have achieved tremendous progress on these
datasets (Yu et al., 2018; Lu et al., 2019). However,
multiple studies have suggested that these models
could be exploiting strong biases in these datasets
(Cirik et al., 2018b; Liu et al., 2019). For example,
models could be just selecting a salient object in an
image or a referring expression without recourse
to linguistic structure (see Figure 1). This defeats
the true purpose of the task casting doubts on the
actual progress.

In this work, we examine RefCOCOg dataset
(Mao et al., 2016), a popular testbed for evaluating
referring expression models, using crowdsourced
workers. We show that a large percentage of sam-
ples in the RefCOCOg test set indeed do not rely
on linguistic structure (word order) of the expres-
sions. Accordingly, we split RefCOCOg test set
into two splits, Ref-Easy and Ref-Hard, where lin-
guistic structure is key for recognition in the latter
but not the former (§2). In addition, we create a
new out-of-distribution' dataset called Ref-Adv us-
ing Ref-Hard by rewriting a referring expression

"This is a contrast set according to Gardner et al. (2020)
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such that the target object is different from the orig-
inal annotation (§3). We evaluate existing models
on these splits and show that the true progress is at
least 12-23% behind the established progress, indi-
cating there is ample room for improvement (§4).
We propose two new models, one which make use
of contrastive learning using negative examples,
and the other based on multi-task learning, and
show that these are slightly more robust than the
current state-of-the-art models (§5).

2 Importance of linguistic structure

RefCOCOg is the largest visual referring expres-
sion benchmark available for real world images
(Mao et al., 2016). Unlike other referring ex-
pression datasets such as RefCOCO and Ref-
COCO+ (Kazemzadeh et al., 2014), a special care
has been taken such that expressions are longer
and diverse. We therefore choose to examine the
importance of linguistic structure in RefCOCOg.

Cirik et al. (2018b) observed that when the words
in a referring expression are shuffled in random
order, the performance of existing models on Re-
JCOCOg drops only a little. This suggests that
models are relying heavily on the biases in the data
than on linguistic structure, i.e., the actual sequence
of words. Ideally, we want to test models on sam-
ples where there is correlation between linguistic
structure and spatial relations of objects, and any
obscurity in the structure should lead to ambiguity.
To filter out such set, we use humans.

We randomly shuffle words in a referring ex-
pression to distort its linguistic structure, and ask
humans to identify the target object of interest via
predefined bounding boxes. Each image in Ref-
COCOg test set is annotated by five Amazon Me-
chanical Turk (AMT) workers and when at least
three annotators select a bounding box that has high
overlap with the ground truth, we treat it as a cor-
rect prediction. Following Mao et al. (2016), we set
0.5 IoU (intersection over union) as the threshold
for high overlap. Given that there are at least two
objects in each image, the optimal performance
of a random choice is less than 50%.> However,
we observe that human accuracy on distorted ex-
amples is 83.7%, indicating that a large portion
of RefCOCOg test set is insensitive to linguistic
structure. Based on this observation, we divide the
test set into two splits for fine-grained evaluation
of models: Ref-Easy contains samples insensitive

’On average, there are 8.2 bounding boxes per image.

Ref-Easy Ref-Hard  Ref-Adv
data size 8034 1568 3704
(83.7% of RefCOCOg) (16.3% of RefCOCOg)
avg. length 8.0 10.2 11.4

in words

Table 1: Statistics of Ref-Easy, Ref-Hard and Ref-Adv.
Ref-Easy and Ref-Hard indicate the proportion of sam-
ples in RefCOCOg test set that are insensitive and sen-
sitive to linguistic structure respectively.

to linguistic structure and Ref-Hard contains sen-
sitive samples (statistics of the splits are shown in
Table 1).

3 An out-of-distribution dataset

Due to unintended annotation artifacts in Ref-
COCOg, it is still possible that models could per-
form well on Ref-Hard without having to rely on
linguistic structure, e.g., by selecting frequent ob-
jects seen during training time. Essentially, Ref-
Hard is an in-distribution split. To avoid this, we
create Ref-Adv, an adversarial test set with samples
that may be fall out of training distribution.

We take each sample in Ref-Hard and collect
additional referring expressions such that the tar-
get object is different from the original object. We
chose the target objects which humans are most
confused with when the referring expression is
shuffled (as described in the previous section). For
each target object, we ask three AMT workers to
write a referring expression while retaining most
content words in the original referring expression.
In contrast to the original expression, the modified
expression mainly differs in terms of the structure
while sharing several words. For example, in Fig-
ure 1, the adversarial sample is created by swapping
pastry and blue fork and making plate as the head
of pastry. We perform an extra validation step to
filter out bad referring expressions. In this step,
three additional AMT workers select a bounding
box to identify the target object, and we only select
the samples where at least two workers achieve IoU
> (.5 with the target object.

Since the samples in Ref-Adv mainly differ in
linguistic structure with respect to Ref-Hard, we
hope that a model which does not make use of
linguistic structure (and correspondingly spatial
relations between objects) performs worse on Ref-
Adv even when it performs well on Ref-Hard due
to exploiting biases in the training data.

Figure 2 shows several examples from the Ref-
Easy, Ref-Hard, and Ref-Adv splits. We note that
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it

. Adv: The purse which is hanging from a
chair

Easy: Bus

Hard: Bus in the middle of the crowd
Adv: The crowd that the bus is in the
middle of

g Easy: The larger of two giraffes

® Hard: A giraffe eating leaves off the tree
# Adv: The giraffe that is not eating leaves
4 off the tree

Easy: A blue snowboard
Hard: A woman wearing a blue jacket
and orange glasses next to a woman with
a white hood
Adv: A woman with a white hood, next
to a woman wearing orange glasses and a
blue jacket.

Ref-Adv expressions are longer on average than
Ref-Easy and Ref-Hard (Figure 6 in appendix) and
consists of rich and diverse spatial relationships
(Figure 7 in appendix).

Concurrent to our work, Gardner et al. (2020)
also propose perturbed test splits for several tasks
by modifying in-domain examples. In their setup,
the original authors of each task create perturbed
examples, whereas we use crowdworkers. Clos-
est to our work is from Kaushik et al. (2020) who
also use crowdworkers. While we use perturbed ex-
amples to evaluate robustness, they also use them
to improve robustness (we propose complemen-
tary methods to improve robustness §5). Moreover,
we are primarily concerned with the robustness
of models for visual expression recognition task,
while Gardner et al. and Kaushik et al. focus on
different tasks (e.g., sentiment, natural language
inference).

3.1 Human Performance on Ref-Easy,
Ref-Hard and Ref-Ady

We conducted an additional human study (on AMT)
to compare the human performance on Ref-Easy,
Ref-Hard and Ref-Adv splits. First, we randomly
sampled 100 referring expressions from each of
the three splits. Each referring expression is then
assigned to three AMT workers and are asked to
select a bounding box to identify the target object.
We considered a sample to be correctly annotated
by humans if at least two out of three workers select

Easy: Water in a tall, clear glass

Hard: The glass of water next to the
saucer with the cup on it

Adv: The cup on the saucer, next to the
glass of water

. Easy: The short blue bike on the right
43 Hard: The blue bike behind the red car
H Adv: The red car behind the blue bike

. Easy: The man with the glasses on

. Hard: A man holding a cake that is not
wearing a tie

Adv: The man holding a cake that is wear-
ing a tie

Easy: A green cushion couch with a pil-
low

Hard: A green couch across from a white
couch

Adv: A white couch across from a green
couch

ilp

Figure 2: Examples from Ref-Easy, Ref-Hard, and Ref-Adv splits. As seen, Ref-Hard and Ref-Adv have several
words in common but differ in their linguistic structure and the target object of interest.

the ground-truth annotation. Through this evalua-
tion, we obtained human performance on each of
the three splits Ref-Easy, Ref-Hard, and Ref-Adv
as 98%, 95%, and 96% respectively.

4 Diagnosing Referring Expression
Recognition models

We evaluate the following models, most of which
are designed to exploit linguistic structure.

CMN (Compositional Modular Networks; Hu et al.
2017; Andreas et al. 2016) grounds expressions
using neural modules by decomposing an expres-
sion into <subject, relation, object> triples. The
subject and object are localized to the objects in
the image using a localization module while the
relation between them is modeled using a relation-
ship module. The full network learns to jointly
decompose the input expression into a triple while
also recognizing the target object.

GroundNet (Cirik et al., 2018a) is similar to CMN,
however it makes use of rich linguistic structure
(and correspondingly rich modules) as defined by
an external syntactic parser.

MattNet (Yu et al., 2018) generalizes CMN to flex-
ibly adapt to expressions that cannot be captured
by the fixed template of CMN. It introduces new
modules and also uses an attention mechanism to
weigh modules.

VILBERT (Lu et al., 2019), the state-of-the-art
model for referring expression recognition, uses a
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Figure 3: Multi-task learning model for referring expression recognition with GQA

pretrain-then-transfer learning approach to jointly
learn visiolinguistic representations from large-
scale data and utilizes them to ground expressions.
This is the only model that does not explicitly
model compositional structure of language, but
BERT-like models are shown to capture syntactic
structure latently (Hewitt and Manning, 2019).

4.1 Results and discussion

We trained on the full training set of RefCOCOg
and performed hyperparameter tuning on a develop-
ment set. We used the development and test splits
of Mao et al. (2016). Table 2 shows the model ac-
curacies on these splits and our proposed datasets.
The models are trained to select ground truth bound-
ing box from a set of predefined bounding boxes.
We treat a prediction as positive if the predicted
bounding box has IoU > 0.5 with the ground truth.

Although the overall performance on the test
set seem high, in reality, models excel only at Ref-
Easy while performing poorly on Ref-Hard. The
difference in performance between Ref-Easy and
Ref-Hard ranges up to 15%. This indicates that
current models do not exploit linguistic structure
effectively. When tested on Ref-Adv, the perfor-
mance goes down even further, increasing the gap
between Ref-Easy and Ref-Adv (up to 26%). This
suggests that models are relying on reasoning short-
cuts found in training than actual understanding.
Among the models, GroundNet performs worse,
perhaps due to its reliance on rigid structure pre-
dicted by an external parser and the mismatches
between the predicted structure and spatial rela-
tions between objects. VILBERT achieves the high-
est performance and is relatively more robust than
other models. In the next section, we propose meth-
ods to further increase the robustness of VILBERT.

Model Dev Test Easy Hard Adv

GroundNet 66.50 65.80 67.11 54.47 42.90
CMN 70.00 69.40 69.55 68.63 49.50
MattNet ~ 79.21 78.51 80.96 65.94 54.64
VIiLBERT 83.39 83.63 85.93 72.00 70.90

Table 2: Accuracy of models on RefCOCOg standard
splits and our splits Ref-Easy, Ref-Hard and Ref-Adv.

5 Increasing the robustness of VILBERT

We extend ViLBERT in two ways, one based on
contrastive learning using negative samples, and
the other based on multi-task learning on GQA
(Hudson and Manning, 2019), a task that requires
linguistic and spatial reasoning on images.

Contrastive learning using negative samples
Instead of learning from one single example, con-
trastive learning aims to learn from multiple ex-
amples by comparing one to the other. In order
to increase the sensitivity to linguistic structure,
we mine negative examples that are close to the
current example and learn to jointly minimize the
loss on the current (positive) example and maxi-
mize the loss on negative examples. We treat the
triplets (i, e, b) in the training set as positive ex-
amples, where i, e, b stands for image, expres-
sion and ground truth bounding box. For each
triplet (z’, e, b) , we sample another training exam-
ple (7/,¢/,V'), and use it to create two negative
samples, defined by (i’, e, b’) and (i, e, b), ie., we
pair wrong bounding boxes with wrong expres-
sions. For efficiency, we only consider negative
pairs from the mini-batch. We modify the batch
loss function as follows:

L(i,e,b)=F oo [¢(i,e,b) — £(i,€/,b) — 7]
+F i) [((i,e,b) —£(i',e,b) — 7]

+

+
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Model Dev Test Easy Hard Adv

VILBERT (VB) 83.39 83.63 85.93 72.00 70.90
VB+Sum-H 81.61 83.00 85.93 70.60 72.30
VB+Max-H 82.93 82.70 86.58 70.46 73.35
VB+MTL (GQA) 83.45 84.30 86.23 73.79 73.92

Table 3: Accuracy of enhanced VILBERT models.

Here ¢(i, e, b) is the cross-entropy loss of ViL-
BERT, [z], is the hinge loss defined by max (0, z),
and 7 is the margin parameter. F' indicates a func-
tion over all batch samples. We define F' to be
either sum of hinges (Sum-H) or max of hinges
(Max-H). While Sum-H takes sum over all nega-
tive samples, If batch size is n, for each (L e, b),
there will be n— 1 triplets of (¢/, e, b’) and (i, €, b).
For (i, e, b), there will be one (z”, e, b’) and one
(¢,¢',b). Similar proposals are known to increase
the robustness of vision and language problems
like visual-semantic embeddings and image de-
scription ranking (Kiros et al., 2014; Gella et al.,
2017; Faghri et al., 2018).

Multi-task Learning (MTL) with GQA In or-
der to increase the sensitivity to linguistic structure,
we rely on tasks that require reasoning on linguis-
tic structure and learn to perform them alongside
our task. We employ MTL with GQA (Hudson
and Manning, 2019), a compositional visual ques-
tion answering dataset. Specifically, we use the
GQA-Rel split which contains questions that re-
quire reasoning on both linguistic structure and
spatial relations (e.g., Is there a boy wearing a red
hat standing next to yellow bus? as opposed to Is
there a boy wearing hat?). Figure 3 depicts the neu-
ral architecture. We share several layers between
the tasks to enable the model to learn representa-
tions useful for both tasks. Each shared layer con-
stitute a co-attention transformer block (Co-TRM;
Lu et al. 2019) and a transformer block (TRM;
Vaswani et al. 2017). While in a transformer, at-
tention is computed using queries and keys from
the same modality, in a co-attention transformer
they come from different modalities (see cross ar-
rows in Figure 3). The shared representations are
eventually passed as input to task-specific MLPs.
We optimize each task using alternative training
(Luong et al., 2015).

Results and discussion Table 3 shows the exper-
imental results on the referring expression recogni-
tion task. Although contrastive learning improves

el The ladder that is
raised the tallest

el’: The ladder in front of e2: A wooden boat €2’: A pair of skis

the raised ladder carries 5 boys with skis  in the boat

Figure 4: Predictions of VILBERT and MTL model
(GT denotes ground-truth). e1’ and e2’ are adversarial
expressions of el and e2 respectively.

the robustness of VILBERT on Ref-Adv (+1.4%
and +2.5% for Sum-H and Max-H respectively),
it comes at a cost of slight performance drop on
the full test (likely due to sacrificing biases shared
between training and test sets). Whereas MTL im-
proves the robustness on all sets showing that multi-
task learning helps (we observe 2.3% increase on
GQA §A.5.2). Moreover, the performance of MTL
on Ref-Hard and Ref-Adv are similar, suggesting
that the model generalizes to unseen data distribu-
tion. Figure 4 shows qualitative examples compar-
ing MTL predictions on Ref-Hard and Ref-Adv par-
allel examples. These suggest that the MTL model
is sensitive to linguistic structure. However, there
is still ample room for improvement indicated by
the gap between Ref-Easy and Ref-Hard (12.4%).

6 Conclusion

Our work shows that current datasets and models
for visual referring expressions fail to make ef-
fective use of linguistic structure. Although our
proposed models are slightly more robust than ex-
isting models, there is still significant scope for
improvement. We hope that Ref-Hard and Ref-Adv
will foster more research in this area.
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A Appendix

In this supplementary material, we begin by provid-
ing more details on RefCOCOg dataset to supple-
ment Section 2 of the main paper. We then provide
Ref-Adv annotation details, statistics, analysis, and
random examples, to supplement Section 3 of the
main paper. Finally, we provide details of our mod-
els (initialization & training, hyper-parameters) and
show additional results to supplement Section 5 of
the main paper.

A.1 RefCOCOg vs Other Referring
Expressions Datasets

RefCOCO, RefCOCO+ (Kazemzadeh et al., 2014)
and RefCOCOg (Google-RefCOCO; Mao et al.
2016) are three commonly studied visual referring
expression recognition datasets for real images. All
the three data sets are built on top of MSCOCO
dataset (Lin et al., 2014) which contains more than
300,000 images, with 80 categories of objects. Re-
JCOCO, RefCOCO+ were collected using online
interactive game. RefCOCO dataset is more bi-
ased towards person category. RefCOCO+ does
not allow the use of location words in the expres-
sions, and therefore contains very few spatial re-
lationships. RefCOCOg was not collected in an
interactive setting and therefore contains longer
expressions.

For our adversarial analysis, we chose Ref-
COCOg for the following three important reasons:
Firstly, expressions are longer (by 2.5 times on av-
erage) in RefCOCOg and therefore contains more
spatial relationships compared to other two datasets.
Secondly, RefCOCOg contains at least 2 to 4 in-
stances of the same object type within the same
image referred by an expression. This makes the
dataset more robust, and indirectly puts higher im-
portance on grounding spatial relationships in find-
ing the target object. Finally, as shown in Table 4,
RefCOCO and RefCOCO+ are highly skewed to-
wards Person object category (== 50%) whereas Re-
JCOCOg is relatively less skewed (= 36%), more
diverse, and less biased.

A.2 Importance of Linguistic Structure

Cirik et al. (2018b) observed that existing models
for RefCOCOg are relying heavily on the biases in
the data than on linguistic structure. We perform
extensive experiments to get more detailed insights
into this observation. Specifically, we distort lin-
guistic structure of referring expressions in the Re-
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RefCOCO RefCOCO+ RefCOCOg

Outdoor 0.89% 0.88% 1.65%
Food 10.16% 10.07% 8.10%
Indoor 3.10% 3.09% 2.59%
Appliance 0.67% 0.68% 1.03%
Kitchen 3.95% 3.95% 5.40%
Accessory 2.33% 2.33% 2.85%
Person 49.50% 49.70% 37.02%
Animal 13.26% 13.27% 15.05%
Vehicle 7.23% 7.22% 10.71%
Sports 0.73% 0.74% 1.91%
Electronic 1.94% 1.95% 2.56%
Furniture 6.14% 6.12% 11.09%

Table 4: Distribution of object categories in RefCOCO,
RefCOCO+, and RefCOCOg datasets.

JFCOCOg test split and evaluate the SOTA models
that are trained on original undistorted RefCOCOg
training split. Similar to (Cirik et al., 2018b), we
distort the test split using two methods: (a) ran-
domly shuffle words in a referring expression, and
(b) delete all the words in the expression except
for nouns and adjectives. Table 5 shows accuracies
for the models with (column 3 and 4) and without
(column 2) distorted referring expressions. Except
for the VILBERT model(Lu et al., 2019), the drop
in accuracy is not significant indicating that spa-
tial relations are ignored in grounding the referring
expression.

Using the relatively robust VILBERT model, we
repeat this analysis on our splits Ref-Easy, Ref-
Hard and Ref-Adv. We randomly sampled 1500
expressions from each of these splits and then com-
pare performance of VILBERT on these three sets.
As shown in Table 6, we find a large difference in
model’s accuracy on Ref-Hard and Ref-Adv. This
clearly indicates that grounding expressions in both
of these splits require linguistic and spatial reason-
ing.

A.3 Ref-Adv Annotation

We construct Ref-Adv by using all the 9602 refer-
ring expressions from RefCOCOg test data split.
As shown in Figure 5, we follow a three stage ap-
proach to collect these new samples:

Stage 1: For every referring expression in Ref-
COCOg test split, we perturb its linguistic structure
by shuffling the word order randomly. We show
each of these perturbed expression along with im-

Model Original Shuf N+J
CMN (Huetal,,2017) 694 664 67.4
GroundNet (Ciriketal., 65.8 57.6 62.8
2018a)
MattNet (Yu et al., 785 753 76.1
2018)
ViLBERT (Lu et al., 83.6 714 73.6
2019)

Table 5: RefCOCOg test accuracies of SOTA mod-
els on (a) original undistorted split, (b) after randomly
shuffling words (Shuf) in the referring expression, and
(c) after deleting all the words except for nouns and ad-
jectives (N+J). VILBERT is relatively more robust than
other baselines.

Test Original Shuf  N+J

Ref-Easy 86.40  75.06 76.00
Ref-Hard 72773  51.13 56.60
Ref-Adv 71.08  50.23 57.40

Table 6: Ref-Easy, Ref-Hard, and Ref-Adv test accura-
cies of VILBERT on (a) original undistorted split, (b)
after randomly shuffling words (Shuf) in the referring
expression, and (c) after deleting all the words except
for nouns and adjectives (N+J).

ages and all object bounding boxes to five qualified
Amazon Mechanical Turk (AMT) workers and ask
them to identify the ground-truth bounding box for
the shuffled referring expression. We hired work-
ers from US and Canada with approval rates higher
than 98% and more than 1000 accepted HITs. At
the beginning of the annotation, we ask the turkers
to go through a familiarization phase where they
become familiar with the task. We consider all the
image and expression pairs for which at least 3 out
of 5 annotators failed to locate the object correctly
(with IoU < 0.5 ) as hard samples (Ref-Hard). We
refer to the image-expressions for which at least 3
out of 5 annotators were able to localize the object
correctly as easy samples (Ref-Easy). On average,
we found that humans failed to localize the objects
correctly in 17% of the expressions.

Stage 2: We take Ref-Hard images and ask turk-
ers to generate adversarial expressions such that the
target object is different from the original object.
More concretely, for each of the hard samples, we
identify the most confused image regions among
human annotators as the target objects in stage 1.
For each of these target objects, we then ask three
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is cutting

Hard Expression
A table and cake the priest

Adversarial Expression

A priest in black cutting a cake
that’s sitting on a fable

Stage 1 Stage 2 Stage 3
o Shuffle words o Consider most o Filter m_)isy adversarial
o  Annotation by 5 confused object in expressions
turkers per sample Stage 1 as target object o Annotation by 3 turkers
o  Split into Ref~Easy o Ask 3 turkers to write

and Ref-Hard splits

adversarial expression

Figure 5: Overview of our three-stage Ref-Adv construction process. Given the image, referring expression, ground-
truth bounding boxes for all the samples in RefCOCOg test split, we first filter out the hard samples and then
construct adversarial expressions using them. Please refer to section 2 for further detail.

Referring Expressions 3704
Unique Images 976
Vocabulary 2319
Avg. Length of Expression 114

Table 7: Ref-Adv Statistics

turkers to write a referring expression while retain-
ing at least three content words (nouns and adjec-
tives) in the original referring expression. This
generates adversarial expressions for the original
ground-truth Ref-Hard referring expressions.

Stage 3: We filter out the noisy adversarial ex-
pressions generated in stage 2 by following a vali-
dation routine used in the generation of RefCOCOg
dataset. We ask three additional AMT workers to
select a bounding box to identify the target object
in the adversarial expression and then remove the
noisy samples for which the inter-annotator agree-
ment among workers is low. The samples with at
least 2 out of 3 annotators achieving IoU > 0.5 will
be added to Ref-Adv dataset.

A.4 Dataset Analysis, Comparison, and
Visualization

In Table 7 we summarize the size and complexity
of our Ref-Adv split. Figure 6 shows expression
length distribution of Ref-Easy, Ref-Hard, and Ref-
Adv. It should be noted that Ref-Adv expressions
are longer on average than Ref-Easy and Ref-Hard.

Ref Expression Distribution by # words :
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o Ref-Hard
©'0.08|
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10 15
Number of words

Figure 6: Referring expression length distribution for
Ref-Easy, Ref-Hard, Ref-Adv datasets.

Distribution of object categories in Ref-Easy, Ref-
Hard and Ref-Adv is shown in Table 8. In compar-
ison to Ref-Easy and Ref-Hard, Ref-Adv is more
balanced and less biased towards Person cate-
gory. Figure 7 shows the relative frequency of the
most frequent spatial relationships in all the three
splits. As we can see, Ref-Adv comprises of rich
and diverse spatial relationships. In Table 2, we
show random selection of the Ref-Easy, Ref-Hard,
and Ref-Adv splits.

A.5 Model and other Experiment Details

A.5.1 Datasets

GQA (Hudson and Manning, 2019) contains 22M
questions generated from Visual Genome (Krishna
et al., 2017) scene graphs. However, in our our
multi-task training (MTL), we leverage only 1.42M
questions that require reasoning on both linguistic
structure and spatial relations. We filter these re-
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Figure 7: Relative frequency of the most frequent spatial relationships in Ref-Easy, Ref-Hard, and Ref-Adv

Ref-Easy Ref-Hard Ref-Adv
8034 samples 1568 samples 3704 samples

Outdoor 1.21% 1.90% 1.97%
Food 7.94% 9.80% 9.63%
Indoor 2.81% 2.83% 2.76%
Appliance 0.80% 1.07% 1.11%
Kitchen 4.52% 5.73% 5.77%
Accessory 3.20% 5.44% 5.29%
Person 37.26% 20.88% 21.01%
Animal 1595% 13.92% 13.90%
Vehicle 1091% 10.40% 10.26%
Sports 1.45% 5.04% 5.13%
Electronic 2.62% 3.20% 331%
Furniture 11.28% 19.73%  19.83%

Table 8: Distribution of object categories in Ref-Easy,
Ref-Hard, and Ref-Adv splits.

lational questions by applying the following con-
straint on question types: type.Semantic=‘rel’. We
also apply this constraint for filtering the devel-
opment set. We denote this subset as GQA-Rel.
We considered GQA-Rel instead of GQA for two
reasons: 1) GQA-Rel is a more related task to Ref-
COCOg; and 2) MTL training with the full GQA
set is computationally expensive. For each question
in the dataset, there exists a long answer (free-form
text) and a short answer (containing one or two
words). We only consider the short answers for
the questions and treat the unique set of answers
as output categories. While the full GQA dataset
has 3129 output categories, GQA-Rel contains only
1842 categories.

We follow Yu et al. (2018) in creating the train
(80512 expressions), val (4896 expressions), and
test (9602 expressions) splits of RefCOCOg. For
all our experiments in this paper, we directly use
the ground-truth bounding box proposals.

A.5.2 Training

ViLBERT Pre-training We used pre-trained
VIiLBERT model that is trained on 3.3 million
image-caption pairs from Conceptual Captions
dataset (Sharma et al., 2018).3

Single-Task Fine-tuning on RefCOCOg In or-
der to fine-tune the baseline VILBERT (Lu et al.,
2019) model on RefCOCOg dataset, we pass the
VIiLBERT visual representation for each bounding
box into a linear layer to predict a matching score
(similar to RefCOCO+ training in Lu et al. 2019).
We calculate accuracy using IoU metric (prediction
is correct if IoU(predicted_region, ground-truth re-
gion) > 0.5). We use a binary cross-entropy loss
and train the model for a maximum of 25 epochs.
We use early-stopping based on the validation per-
formance. We use an initial learning rate of 4e-5
and use a linear decay learning rate schedule with
warm up. We train on 8 Tesla V100 GPUs with a
total batch size of 512.

Negative Mining We used a batch size of 512
and randomly sample negatives from the mini-
batch for computational efficiency. We sampled 64
negatives from each batch for both Sum of Hinges
and Max of Hinges losses. We fine-tune the margin

3VILBERT 8-Layer model at the link https://
github.com/jiasenlu/vilbert_beta
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Split Before MTL After MTL
GQA-Rel Dev  53.7% 56.0%
GQA Dev 40.24% 42.1%
GQA Test 36.64% 39.2%

Table 9: Performance on GQA-Rel Dev, GQA-Dev and
GQA-Test splits before and after MTL training with
RefCOCOg (Note: MTL training for all the three rows
is performed using GQA-Rel and RefCOCOyg).

ViLBERT |Ref-Dev|Ref-Test|Ref-Ady
Without TL and MTL| 83.39 | 83.63 | 70.90
TL with VQA 82.26 | 84.14 | 72.96
TL with GQA 80.60 | 82.08 | 70.41
TL with GQA-Rel | 81.05 | 83.12 | 70.78
MTL with VQA 81.20 | 82.10 | 70.82
MTL with GQA-Rel | 83.45 | 84.30 | 73.92

Table 10: Comparing VILBERT’s Multi-task Learning
(MTL) with Transfer Learning (TL) experiments. Ref-
Dev and Ref-Test correspond to: RefCOCOg-Dev and
RefCOCOg-Test splits respectively.

parameters based on development split. We train
the model for a maximum of 25 epochs. We use
early-stopping based on the validation performance.
We use an initial learning rate of 4e-5 and use a
linear decay learning rate schedule with warm up.
We train on 8 Tesla V100 GPUs with a total batch
size of 512.

Multi-Task Learning (MTL) with GQA-Rel
The multi-task learning architecture is shown in
Figure 3 in the main paper. The shared lay-
ers constitute transformer blocks (TRM) and co-
attentional transformer layers (Co-TRM) in ViL-
BERT (Lu et al., 2019). The task-specific layer for
GQA task is a two-layer MLP and we treat it as a
multi-class classification task and the task-specific
layer for RER is a linear layer that predicts a match-
ing score for each of the image regions given an
input referring expression. The weights for the task-
specific layers are randomly initialized, whereas
the shared layers are initialized with weights pre-
trained on 3.3 million image-caption pairs from
Conceptual Captions dataset (Sharma et al., 2018).
We use a binary cross-entropy loss for both tasks.
Similar to Luong et al. (2015), during training, we
optimize each task alternatively in mini-batches
based on a mixing ratio. We use early-stopping
based on the validation performance. We use an

initial learning rate of 4e-5 for RefCOCOg and 2e-
5 for GQA, and use a linear decay learning rate
schedule with warm up. We train on 4 RTX 2080
GPUs with a total batch size of 256.

GQA MTL Results Table 3 in the main paper
showed that MTL training with GQA-Rel signifi-
cantly improved the performance of model on Ref-
Hard and Ref-Adv splits. In addition, we also ob-
served a significant improvement in GQA-Rel de-
velopment, GQA development and test splits as
shown in the Table 9.

A.5.3 Additional Experiments

In this subsection, we present results of additional
experiments using transfer learning (TL) and multi-
task learning (MTL) with ViLBERT on VQA,
GQA, and GQA-Rel tasks. As shown in Table 10,
TL with VQA showed slight improvement. How-
ever, TL with GQA, TL with GQA-Rel, and MTL
with VQA did not show any improvements .

“We could not perform MTL with GQA as it requires large
number of computational resources.
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