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Abstract

We use coherence relations inspired by compu-
tational models of discourse to study the infor-
mation needs and goals of image captioning.
Using an annotation protocol specifically de-
vised for capturing image–caption coherence
relations, we annotate 10,000 instances from
publicly-available image–caption pairs. We in-
troduce a new task for learning inferences in
imagery and text, coherence relation predic-
tion, and show that these coherence annota-
tions can be exploited to learn relation clas-
sifiers as an intermediary step, and also train
coherence-aware, controllable image caption-
ing models. The results show a dramatic im-
provement in the consistency and quality of
the generated captions with respect to informa-
tion needs specified via coherence relations.

1 Introduction

The task of image captioning is seemingly straight-
forward to define: use natural language to generate
a description that captures the salient content of
an image. Initial datasets, such as MSCOCO (Lin
et al., 2014) and Flickr (Young et al., 2014), ap-
proached this task directly, by asking crowd work-
ers to describe images in text. Unfortunately, such
dedicated annotation efforts cannot yield enough
data for training robust generation models; the re-
sulting generated captions are plagued by content
hallucinations (Rohrbach et al., 2018; Sharma et al.,
2018) that effectively preclude them for being used
in real-world applications.

In introducing the Conceptual Captions dataset,
Sharma et al. (2018) show that this dataset is large
enough, at 3.3M examples, to significantly allevi-
ate content hallucination. However, because the
technique for creating such a large-scale resource
relies on harvesting existing data from the web, it
no longer guarantees consistent image–text rela-
tions. For example, along with descriptive captions

Figure 1: Output of a coherence-aware model for vari-
ous coherence relations. Content that establishes the in-
tended relation is underlined. (Photo credit: Blue Des-
tiny / Alamy Stock Photo)
Visible: horse and rider jumping a fence.
Meta: horse and rider jumping a fence during a race.
Subjective: the most beautiful horse in the world.
Story: horse competes in the event.

(e.g.,“this is a person in a suit”), the dataset also
includes texts that provide contextual background
(e.g., “this is the new general manger of the team”)
and subjective evaluations (e.g., “this is stylish”).
As a result, current captioning models trained on
Conceptual Captions avoid content hallucination
but also introduce different, more subtle and harder-
to-detect issues related to possible context halluci-
nations (i.e., is this actually the new general man-
ager?) or subjective-judgement hallucinations (i.e.,
whose judgment is this anyway?).

In this paper, we propose to tackle this issue
of large-scale image-caption consistency using a
coherence-aware approach inspired by the frame-
work of discourse coherence theory (Hobbs, 1978;
Phillips, 1977). This framework characterizes the
inferences that give discourse units a coherent joint
interpretation using a constrained inventory of co-
herence relations. In multimodal presentations, dis-
course units can be images as well as text, so we
appeal to new image–text coherence relations that
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capture the structural, logical, and purposeful rela-
tionships between the contributions of the visual
modality and the contributions of the textual modal-
ity. For instance, a Visible relation characterizes
grounding texts that serve to make key aspects of
the image content common ground (perhaps to a
visually-impaired reader), analogous to Restate-
ment relations between one text unit and another;
Visible relations are key to traditional descriptive
captions such as “this is a person in a suit.” Mean-
while, a Story relation characterizes texts that de-
velop the circumstances depicted in the image in
pursuit of free-standing communicative goals, anal-
ogous to Occasion or Narration relations in text;
Story relations can go far beyond image content (“I
hiked this mountain as we found it on a list for good
hikes for kids”) and so pinpoint one kind of risk
for context hallucinations. The key contribution of
our work is to show that image–text coherence can
be systematized, recognized, and used to control
image captioning models.

To support our argument, we create a coherence-
relation annotation protocol for image-caption
pairs, which we use to annotate 10,000 image-
caption pairs over images coming from the Concep-
tual Captions (Sharma et al., 2018) and Open Im-
ages (Kuznetsova et al., 2020) datasets. We release1

this dataset, named Clue, to facilitate follow-up re-
search. By annotating these coherence relations in
the context of image captioning, we open up the
possibility of analyzing patterns of information in
image–text presentations at web scale.

In addition, we show that we can exploit these
coherence-relation annotations by training models
to automatically induce them, as well as by build-
ing models for coherence-aware image captioning.
Because they are driven by input coherence rela-
tions, these captioning models can be used to gen-
erate captions that are better suited to meet specific
information needs and goals.

2 Prior Work

There are diverse ways to characterize the com-
municative functions of text and images in multi-
modal documents (Marsh and Domas White, 2003),
any of which can provide the basis for computa-
tional work. Some studies emphasize the distinc-
tive cognitive effects of imagery in directing atten-
tion; engaging perceptual, spatial and embodied

1https://github.com/malihealikhani/Cross-
modal Coherence Modeling

reasoning; or eliciting emotion (Kruk et al., 2019;
Shuster et al., 2019). Some look at contrasts across
style and genre (Guo et al., 2019). Others look
holistically at the content of text and imagery as
complementary or redundant (Otto et al., 2019;
Vempala and Preotiuc-Pietro, 2019). Unlike our
approach, none of these methodologies attempt to
characterize information-level inferences between
images and text, so none is suitable for building
generation models that control the information that
text provides.

While coherence theory has been applied to a
range of multimodal communication, including
comics (McCloud, 1993), gesture (Lascarides and
Stone, 2009), film (Cumming et al., 2017), and
demonstrations and other real-world events (Hunter
et al., 2018; Stojnic et al., 2013), applying coher-
ence theory specifically to text–image presentations
is less well explored. The closest work to ours is
Alikhani et al. (2019), who explore coherence re-
lations between images and text in a multimodal
recipe dataset. Their relations are specialized to
instructional discourse and they do not build ma-
chine learning models combining imagery and text.
We consider more general coherence relations and
a broader range of machine learning methods.

We use our relations and introduce a coherence-
aware caption generation model that improves the
rate of good Visible captions by around 30%. This
is a considerable improvement over the recent mod-
els that have tried to achieve more control over neu-
ral language generation using an enhanced beam
search (Anderson et al., 2017), a memory network
with multiple context information (Chunseong Park
et al., 2017), forced attentions (Sadler et al., 2019)
and modeling and learning compositional seman-
tics using fine-grained annotations of entities in
MSCOCO (Cornia et al., 2019).

3 Coherence in Images and Captions

The first step toward our goals is to characterize
image–text coherence and annotate a sizable corpus
of image–text pairs with coherence relations.

We use an overlapping set of high-level rela-
tions, inspired both by theoretical work linking
discourse coherence to discourse structure and dis-
course goals (Roberts, 2012; Webber et al., 1999),
and by previous successful discourse annotation
campaigns (Prasad et al., 2008). Crucially, fol-
lowing previous work on text (Rohde et al., 2018)
and multimodal discourse (Alikhani et al., 2019),
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Visible, Meta

(a) CAPTION: forest on a
sunny day

Visible, Action, Subjective

(b) CAPTION: young happy
boy swimming in the lake.

Meta, Action, Story

(c) CAPTION: approaching
our campsite, at 1550m of el-
evation on the slopes.

Irrelevant

(d) CAPTION: young girl
walking on the dry grass field
under daylight.

Figure 2: We use a constrained set of coherence relations to summarize the structural, logical and purposeful
relationships between the contributions of text and the contributions of images. Multiple coherence relations can
be found simultaneously. (Image–caption pairs are chosen from the Conceptual Caption dataset; photo credits:
Dmytro Zinkevych; Shutterstock user yauhenka; Danilo Hegg; Andre Seale)

we assume that several of these relations can hold
concurrently. The relations are:
• Visible, where text presents information that

is intended to recognizably characterize what
is depicted in the image, analogous to Restate-
ment relations in text (Prasad et al., 2008).
• Subjective, where the text describes the

speaker’s reaction to, or evaluation of, what is
depicted in the image, analogous to Evalua-
tion relations in text (Hobbs, 1985);
• Action, where the text describes an extended,

dynamic process of which the moment cap-
tured in the image is a representative snap-
shot, analogous to Elaboration relations in
text (Prasad et al., 2008);
• Story, where the text is understood as provid-

ing a free-standing description of the circum-
stances depicted in the image, analogous to
the Occasion relation of Hobbs (1985) but in-
cluding instructional, explanatory and other
background relations; and
• Meta, where the text allows the reader to draw

inferences not just about the scene depicted
in the image but about the production and
presentation of the image itself, analogous to
Meta-talk relations in text (Schiffrin, 1980).

Figures 2(a), (b) and (c) show examples of
image–caption pairs and the associated coherence
relations. We can see that image–caption pairs of-
ten have multiple relations. For completeness, we
also present in Figure 2(d) an example of an image–
caption pair that does not fall into any of the above
categories (and it is therefore labeled Irrelevant).

3.1 Data Collection
Clue includes a total of 10,000 annotated image–
caption pairs. A first subset of 5,000 image–caption

pairs was randomly selected from the training
split of the Conceptual Captions dataset (Sharma
et al., 2018), as a representative sample of human-
authored image captions. The Conceptual Captions
dataset is a collection of web-harvested images
paired with their associated ALT-TEXT, created by
human authors under various non-public guidelines
(regarding style, objectivity, etc.) for over 111,000
web pages including news articles, advertisements,
educational posts, blogs, etc.

A second subset of 5,000 image–caption pairs,
to be used as a representative sample of machine-
authored captions, is obtained from the outputs of
5 of the top models that participated in the image-
captioning challenge for the Conceptual Caption
Workshop at the 2019 Conference on Computer
Vision and Pattern Recognition (CVPR). These
machine-authored captions are over a set of 1,000
images from the Open Images Dataset (Kuznetsova
et al., 2020), and are publicly available.2

Protocol Although specific inferences have been
shown to be realizable by crowd workers (Alikhani
et al., 2019), the results of our pilot studies for
annotating these more general relations with the
help of crowd workers were not satisfactory. We
have found that expert raters’ decisions, however,
have high agreement on our discourse categories.
The study has been approved by Rutgers’s IRB; the
annotators, two undergraduate linguistics students,
were paid a rate of $20/h.

In our annotation protocol, we ask the annotators
to label the main relations described in Section 3,
as well as certain fine-grained sub-relations. The
following briefly summarizes our guidelines; our
GitHub repository includes an exact copy of what

2http://www.conceptualcaptions.com/winners-and-data
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the annotators used.
Annotations of Visible are given for captions

that present information intended to recognizably
characterize what is depicted in the image, while
annotations of Meta indicate not only information
about the scene depicted but also about the produc-
tion and presentation of the image itself. The Meta
labels have additional fine-grained labels such as
When, How, and Where. A few details regarding
these fine-grained labels are worth mentioning: lo-
cation mentions such as “in the city” are labeled
as Meta-Where, but generic states, e.g., “in the
snow,” are merely annotated as Visible. Captions
considering the view or the photo angles, or a pho-
tos composition, i.e. “portrait” or “close-up”, are
annotated as Meta-How.

Annotations of Subjective are primarily given
for captions that included phrases with no objec-
tive truth value, i.e. phrases using predicates of
personal taste. For example, captions including
noun phrases like “pretty garden” are annotated as
Subjective: whether the garden is pretty or not can-
not be determined except by appeal to the opinions
of an implicit judge. Note that first-person reports,
like “I want ...” or “I need ...” are not annotated
as Subjective but rather as Story, because they de-
scribe the speaker’s definite state rather than an
implicit judgment.

Captions annotated as Story cover a much wider
range compared to captions in other categories,
including Meta and Subjective. These captions
range from those that read like instructions, i.e.
“how to ...”, to those that present speaker desires,
i.e. “I want ...” or “I need ...”, to those that give
background information not captured in the image,
i.e. “she is an actress and model”, and more.

Other and Irrelevant Some of these image–
caption pairs contain incomplete captions that are
hard to understand. A number of these examples in-
clude images that contained text. The text in these
cases is relevant to the image and the accompany-
ing captions; in this cases, the coherence relations
are marked as Other–Text (Figure 3). Some exam-
ples of such instances are images containing signs
with text, greetings on cards, or text that does not
affect the interpretation of the image or caption,
such as city names or watermarks.

Other times, the caption text is irrelevant and
indicate that the image and caption do not correlate.
Some examples of these instances are captions of
“digital art selected for” paired with an irrelevant

Other–Text

(a) CAPTION: a gardener
may water the plant daily
but fruits grow only in the
season.

Other–Gibberish

(b) CAPTION: actor in retail
at the mother.

Figure 3: Examples of image–caption pairs in the
Other category. (Photo credit: santabanta.com; Mary
Sollosi)

image, and images that clearly do not match the
caption, such as an image of a man walking with the
caption “a field of strawberries”. We have specifi-
cally labeled cases where the caption is almost true
or almost relevant to the image at hand, such as the
caption “horses in a field” with an image containing
donkeys with “minor error”. Other cases include
images that look like powerpoint slides with bullets
and text. Our GitHub repository includes detailed
examples and explanations.

Experiment Interface We have developed soft-
ware for annotating coherence relations in image–
text presentations that can flexibly and easily ac-
commodate various annotation schema. The anno-
tators used this software for annotating the image–
text pairs. They had the option of choosing multiple
items and leaving comments.

Agreement To assess the inter-rater agreement,
we determine Cohens κ. For this, we randomly
chose 300 image–caption pairs from the Concep-
tual Caption ground-truth data and assigned them
to two annotators. The resulting κ coefficient is
0.81, which indicates a high agreement on these
categorical decisions.

3.2 Analysis

In this section we present the overall statistics of the
dataset annotations, the limitations of the caption-
generation models, and the correlation of the distri-
bution of the coherence relations with genre.

Overall statistics The exact statistics over the re-
sulting annotations are presented in Table 1 and
Table 2. Overall, Visible captions constitute around
65% and 70% of captions for the ground-truth la-
bels and the model outputs, respectively. The rate
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Visible Subjective Action Story Meta Irrelevant

Ground-truth 64.97% 9.77% 18.77% 29.84% 24.59% 3.09%
Model output 69.72% 1.99% 11.22% 17.19% 58.94% 16.97%

Ground-truth + Model 66.91% 6.58% 15.68% 24.67% 38.65% 8.77%

Table 1: Distribution of coherence relations over the ground-truth and the model outputs.

When How Where
Ground-truth 33.74% 64.40% 28.60%
Model output 21.75 % 72.84% 41.03%

Table 2: Distribution of fine-grain relations in the Meta
category over the ground-truth and the model outputs.

of Subjective and Story captions decreases signifi-
cantly for the model outputs (compared to ground-
truth), indicating that the models learn to favor
the Visible relation at the expense of Subjective
and Story. However, the rate of Meta captions in-
creases by around 25% in the model outputs, which
points to potential context hallucination effects in-
troduced by these models. As expected, the rate
of Irrelevant captions increases to around 17% in
the model-generated captions, compared to 3% in
the ground-truth captions. Moreover, it appears
that the models have some ability to learn to gen-
erate the locations that events take place; however,
there is a drop in their ability to generate temporal
information (see Table 2).

In terms of overlap, Visible and Meta overlap
22.49% of the time for the ground-truth captions,
whereas this rate goes up to 54.55% in the model
outputs. This “conflation” of these two relations
is highly problematic, and one of the main motiva-
tions for building caption-generation models that
have control over the type of discourse relation they
create (see Section 5). Our GitHub page includes
additional statistics about overlapping relations.

Coherence relations indicate Genre Coher-
ence relations are indicative of the discourse type
and its goals, and therefore our annotations corre-
late with the genre under which the captions have
been produced. That is, image–caption pairs from
different publication sources have different distri-
butions of coherence relations. For instance, pairs
from the Getty Images domain mostly come with
the Meta and Visible relations. In contrast, from
the Daily Mail domain are mostly story-like, and
include very few captions that describe an action,

compared with the Getty Images and picdn do-
mains. Figure 4 shows the distribution of the co-
herence labels for the top four domains from the
Conceptual Caption dataset.

Figure 4: Different resources have different kinds
image–caption pairs. The graph shows the distribution
of labels in the top four domains present in the Concep-
tual Captions dataset.

4 Predicting Coherence Relations

In this section, we introduce the task of predicting
cross-modal coherence relations. We describe a
number of preliminary experiments that justify the
potential of machine learning models in classify-
ing coherence relations in text and imagery. To
this end, we train and test different models on the
Clue dataset to automatically predict the coherence
labels given an image and its caption.

4.1 Multi-Label Prediction
We first treat the relation prediction problem in its
original multi-label setting. The train–test split for
all the models described in this section is 80%–
20% and the numbers are reported using 5-fold
cross validation.

As a baseline, we report the results of a SVM
classifier that uses only the text to predict the rela-
tionship between image-caption pairs. We extract
bag-of-words features by using N-grams (for N
from 1 to 5), and pass them to the SVM classifier
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Visible Subjective Action Story Meta Irrelevant Weighted

SVM (text-only) 0.83 0.12 0.32 0.21 0.19 0.00 0.48
GloVe (text-only) 0.80 0.44 0.58 0.57 0.44 0.08 0.63
BERT (text-only) 0.82 0.35 0.62 0.62 0.44 0.06 0.65
GloVe + ResNet 0.81 0.36 0.58 0.60 0.45 0.07 0.64
BERT + ResNet 0.83 0.36 0.69 0.62 0.44 0.06 0.67

Table 3: The F1 scores of the multi-class classification methods described in Section 4.1; 80-20 train-test split;
5-fold cross validation.

as input. Next, we discuss two multi-modal clas-
sifiers for predicting the image–caption coherence
relations.

GloVe + ResNet-50 This model contains a text
encoder for textual-feature extraction and an image
encoder for image-feature extraction. For the im-
age encoder, we use a ResNet-50 (He et al., 2016)
pre-trained on ImageNet followed by a Batch-
Norm layer, a fully connected layer and a ReLU
activation function. The text encoder takes as input
word embeddings from the GloVe model (Penning-
ton et al., 2014), and consists of an LSTM layer,
a Batch-Norm layer, a fully connected layer with
tanh activation function.

BERT + ResNet-50 To test the impact of the text
encoder in this setup, we reuse the setup of the pre-
vious model with a different textual-feature extrac-
tor. We train and test using an encoder that takes
sentence embeddings as input using the 〈CLS〉 rep-
resentation produced by the BERT-base model (De-
vlin et al., 2018).

Results The results of all of our models are pre-
sented in Table 3, where we present the F1 scores
over each of the individual relations, as well as
an overall weighted average. The BERT+ResNet
model achieves the highest performance (|t| >
9.54, p < 0.01), with an overall F1 score of 0.67.
For the interested reader, we present in the GitHub
page the top features of the Naive Bayes SVM clas-
sifier (Wang and Manning, 2012).

4.2 Single-Label Prediction

To achieve the goal of generating captions with a
desired coherence relation to the image, it is im-
portant to clearly differentiate between often co-
occurring label types (such as Visible and Meta).
To this end, we introduce a label-mapping strategy
for predicting coherence relations, such that each
image–caption pair is assigned a single coherence

label. We map the set of human-annotated coher-
ence relations for an image–caption pair to a single
label using the following heuristic:

1. If the set contains the Meta label, then the
image–caption pair is assigned the Meta label.

2. If the set contains the Visible label and does
not contain either Meta or Subjective, then the
image–caption pair is set to Visible.

3. If none of the above rules are met for this
image–caption pair, we randomly sample a
label from its set of labels.

The distribution of labels after this mapping is
given in the first row of Table 4. As opposed to
the ground-truth label distribution in Table 1, these
values add up to 100%.

Using the label mapping described above, we
retrain and evaluate the BERT+ResNet classifier
presented in Sec. 4.1. In addition, we perform ad-
ditional experiments in which the caption text in
encoded using the pre-trained Universal Sentence
Encoder3 (USE) (Cer et al., 2018), which returns
a 512-dimensional embedding for the text. On
the image encoding side, we also experiment with
the pre-trained Graph-Regularized Image Seman-
tic Embedding model (Juan et al., 2020), which is
trained over ultra-fine–grained image labels over
web-sized amounts of data – roughly 260M exam-
ples over roughly 40M labels; this model returns
a compact, 64-dimensional representation for the
image. We concatenate the text and image features
into a single vector, and feed it to a fully-connected
neural network with 3 hidden layers of 256 units
each with ReLU activations (for all but the last
one), followed by a softmax layer which computes
the logits for the 6 target classes. We divide the
3910 labeled image–text pairs from the ground-
truth split of our data into training and test sets,
with 3400 and 510 samples, respectively. We use
dropout with probability of 0.5, and tune the model

3tfhub.dev/google/universal-sentence-encoder-large/3
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Visible Subjective Action Story Meta Irrelevant Weighted

Ground-truth Distribution 46.65% 7.07% 1.31% 19.09% 23.42% 2.46%
BERT + ResNet 0.64 0.26 0.02 0.52 0.46 0.07 0.52
BERT + GraphRise 0.59 0.15 0.00 0.42 0.34 0.00 0.45
USE + GraphRise 0.69 0.45 0.00 0.57 0.48 0.00 0.57

Table 4: The F1 scores of coherence relation classifiers with label mapping. The aggregated Weighted scores use
the numbers in the first row as weights.

parameters using the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 10−6.

Results Table 4 shows the results of the single-
label prediction experiments, where we present
the F1 scores over each of the individual rela-
tions, as well as an overall weighted average. The
USE+GraphRise model using the label mapping
achieves the highest performance, with an overall
F1 score of 0.57. Next, we describe how we use
this classifier’s predictions to annotate the train-
ing and validation splits of the Conceptual Caption
dataset (3.3 million image–captions pairs), in order
to train a controllable caption-generation model.

5 Generating Coherent Captions

We use the coherence label predictions on the
Conceptual Captions dataset (Section 4) to train
a coherence-aware caption generation model.

Transformer 
Encoder

Transformer Decoder

Image
Features
Extractor

Object 
Classifier

Coherence 
Label

Start 
Token

Image

Coherence-Aware 
Caption

Trainable Components
Pre-trained Components
Model Outputs
Model Inputs

Figure 5: Coherence-aware image captioning model

Model We model the output caption using a
sequence-generation approach based on Trans-
former Networks (Vaswani et al., 2017). The output
is the sequence of sub-tokens comprising the target
caption. The input is obtained by concatenating the
following features.

Image Features We obtain a 64 dimensional rep-
resentation for the image using the Graph-RISE (?)
feature extractor, which employs a ResNet-101 net-
work to classify images into some 40M classes.
We do not fine tune this image encoder model. We
use the 64-dimensional feature available immedi-
ately before the classification layer, and embed into
the Transformer encoder embedding space using a
trainable dense layer.

Detected Objects We obtain object labels for the
image using Google Cloud Vision API.4 We repre-
sent each label using pre-trained 512-dimensional
vectors trained to predict co-occurring objects on
web pages, in a similar fashion as the word2vec
model (Mikolov et al., 2013). We embed each
of these into the Transformer encoder embedding
space using a trainable dense layer.

Coherence relation label This is an input label
fed at training time, for which we use the inferred
coherence relation for the image–caption pair; at
inference time, the label input is used to control the
information in the generated caption. Embeddings
for the coherence labels are trainable model param-
eters. Additionally, the relationship label serves as
the start token for the Transformer decoder (Fig-
ure 5), i.e., it is made available both for the en-
coder network and directly for the decoder network.
When training and evaluating a coherence-agnostic
model, this label is set to a special symbol, such
as NONE, essentially running the model without
coherence information. For all models described in
this paper, the Transformer network has 6 encoder
layers, 6 decoder layers, 8 attention heads, and a
512-dimensional embedding space.

6 Results and Evaluation

In what follows, we discuss evidence for our hy-
potheses: (a) a coherence-aware model presents
information that is aligned with the goal of the

4cloud.google.com/vision
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Coherence
agnostic

Visible
coherence-aware

Subjective
coherence-aware

Story
coherence-aware

Meta
coherence-aware

Visible 52.1% 79.9% 31.7% 25.0% 42.80%
Subjective 11.4% 2.6% 24.4% 2.6% 1.9%
Action 10.7% 10.8% 6.3% 8.8% 11.4%
Story 51.3% 16.0% 45.0% 58.8% 17.34%
Meta 31.2% 32.8% 15.1% 17.7% 46.5%
Irrelevant 12.2% 12.3% 10.7% 9.9% 21.40%
When 9.5% 5.6% 4.1% 17.7% 9.6%
How 21.3% 21.3% 9.6% 25.0% 30.26%
Where 5.3% 8.6% 4.1% 8.8% 16.6%

Table 5: The distribution of coherence relations in image–caption pairs when captions are generated with the
discourse–aware model vs the discourse agnostic model (the mode of the distribution in bold).

(a) coherence-aware Meta: A
girl in the winter forest.
coherence–agnostic: beauti-
ful girl in a red dress.

(b) coherence-aware Visible:
the pizza at restaurant is seen.
coherence–agnostic: the best
pizza in the world.

(c) coherence-aware Subjec-
tive: beautiful chairs in a
room.
coherence–agnostic: the liv-
ing room of the home.

(d) coherence-aware Story:
how to spend a day.
coherence–agnostic: dogs
playing on the beach.

Figure 6: Captions generated by the coherence-aware and coherence-agnostic models. (Photo credits: YesVideo;
TinnaPong; Sok Chien Lim; GoPro)

discourse; and (b) a coherence-aware model can
significantly improve caption quality.

Evaluation by expert annotators We train the
model described above with the predicted discourse
relation labels for image–caption pairs in the Con-
ceptual Captions training and validation sets. The
checkpoint with highest CIDEr (Vedantam et al.,
2015) score on the validation set is selected for
inference and human evaluations. We asked our
annotators to annotate a subset of randomly se-
lected image–caption pairs generated by this model.
These evaluation images were selected from the
Conceptual Captions evaluation set based on their
predicted coherence label using the single-label
classifier (Section 4) on the captions generated by
the coherence-agnostic model (Section 5).

According to our sensitivity power analysis, with
a sample size of 1500 image–text pairs, 300 in each
category, we are able to detect effect sizes as small
as 0.1650 with a power and significance level of
95%. Table 5 shows the result distributions for the
coherence-agnostic and coherence-aware model.
Differences greater than 3% are statistically sig-

nificant with (p < 0.05, t > 2.5). The ability to
control the generated caption using an input coher-
ence relation is clear: when asking for Visible (the
column under Visible), 79.85% of the captions are
evaluated to fit the Visible label (non-overlapping),
an absolute increase of 27.7% over the coherence-
agnostic model (with only 52.09% Visible); at the
same time, the rate of Story and Subjective captions
reduces significantly. This reduction is particularly
noteworthy in the light of eliminating potential con-
text hallucinations, which are likely to be found
under the Story and Subjective labels.

A similar trend is observed when asking for, e.g.,
Meta: 46.49% of the captions are evaluated to fit
the Meta label (non-overlapping; the column un-
der Meta), up 15.3% over the coherence-agnostic
model (with 31.18% Story). A qualitative analy-
sis of the generated captions shows that captions
generated under the Meta label include terms such
as “screenshot” and “view”, while Subjective cap-
tions come with adjectives such as “beautiful” or
“favorite”. Figure 6 shows several examples.
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Crowdsouring and Automatic Metrics For the
following experiments, a subset of the Conceptual
Captions validation data was selected where the
ground-truth captions are labeled as Visible.

To compare the quality of the generated captions
using our framework with other models, we fol-
low the same crowdsourcing protocol that Sharma
et al. (2018) employed for quality assessment. We
asked subjects whether the generated captions are
“good” or not. 86% of the captions generated by
the coherence-aware model were selected as “good”
captions, whereas only 74% of the captions gen-
erated by the coherence-agnostic model were se-
lected as “good” captions. Note that, based on
the human-evaluation data published5 for the Con-
ceptual Caption Workshop at CVPR 2019, this
rate is on average 67% “good” captions for the
participating state-of-the-art models in 2019. Fur-
thermore, in a follow-up experiment we ask sub-
jects to choose between a caption generated by the
coherence-aware model and one generated by the
coherence-agnostic model: 68.2% of the time sub-
jects preferred the coherence-aware result, versus
31.8% for the coherence-agnostic one.

In addition, we study the quality and the rele-
vance of the captions generated by our model as
suggested by (van der Lee et al., 2019). On a scale
of 0 to 5, the average scores of the quality of the
captions generated by the coherence-aware and the
coherence-agnostic model are, respectively, 3.44
and 2.83. The average score of the relevance for
the coherence-aware and the coherence-agnostic
conditions are, respectively, 4.43 and 4.40. Note
that subjects rated the quality and the relevance of
the captions while seeing the questions on the same
page. Screenshots and code for the experiments
can be found on our GitHub page.

With the exception of the relevance condition,
the results of the other questions that we asked in
the crowdsourcing experiments are statistically sig-
nificantly different (p < 0.05, t > |3.1|), which
indicates that subjects prefer captions generated by
the coherence-aware model. We also mention here
that this difference in quality, albeit significant from
a human-rating perspective, is not reflected in the
CIDEr score computed on the same data (against
the available reference captions). The CIDEr score
of the captions generated by the coherence-aware
and the coherence-agnostic models are, respec-
tively, 0.958 and 0.964. This is not surprising, as

5http://www.conceptualcaptions.com/winners-and-data

the reference captions used by CIDEr are subject
to the same distribution over coherence relations
as the rest of the data, and therefore generating
caption outputs with a different coherence-relation
distribution (Table 5) is unlikely to have a positive
impact on reference-driven metrics such as CIDEr.

7 Conclusions and Future Work

Representing coherence in image–text presenta-
tions can provide a scaffold for organizing, dis-
ambiguating and integrating the interpretation of
communication across modalities. We show that
cross-modal coherence modeling significantly im-
proves the consistency and quality of the generated
text with respect to information needs. This is a
step forward towards designing systems that learn
commonsense inferences in images and text and
use that to communicate naturally and effectively
with the users. In addition, the presented dataset,
Clue, provides opportunities for further theoretical
and computational explorations. The experiments
described for the coherence relation prediction task
set the stage for designing better models for infer-
ring coherence for images–text pairs.

The presented work has limitations that can be
addressed in future research. According to the
description of the Conceptual Captions dataset, its
captions have been hypernymized. However, by
studying the examples in the Other category, we
discovered an additional coherence relation that
exists between an image and caption, in which the
caption identifies an object or entity in the image–
Identification. Examples of this relation involves a
caption that mentions the brand of a product or the
name of the person in the image. Identification is
easy to annotate but missing from this work due to
the properties of the corpus we annotated. Future
work should study this additional relation in the
context of caption annotation and generation.
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