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Abstract
Named Entity Recognition (NER) is a funda-
mental task in Natural Language Processing,
concerned with identifying spans of text ex-
pressing references to entities. NER research
is often focused on flat entities only (flat NER),
ignoring the fact that entity references can be
nested, as in [Bank of [China]] (Finkel and
Manning, 2009). In this paper, we use ideas
from graph-based dependency parsing to pro-
vide our model a global view on the input via
a biaffine model (Dozat and Manning, 2017).
The biaffine model scores pairs of start and end
tokens in a sentence which we use to explore
all spans, so that the model is able to predict
named entities accurately. We show that the
model works well for both nested and flat NER
through evaluation on 8 corpora and achieving
SoTA performance on all of them, with accu-
racy gains of up to 2.2 percentage points.

1 Introduction

‘Nested Entities’ are named entities containing ref-
erences to other named entities as in [Bank of
[China]], in which both [China] and [Bank of
China] are named entities. Such nested entities
are frequent in data sets like ACE 2004, ACE 2005
and GENIA (e.g., 17% of NEs in GENIA are nested
(Finkel and Manning, 2009), altough the more
widely used set such as CONLL 2002, 2003 and
ONTONOTES only contain so called flat named en-
tities and nested entities are ignored.

The current SoTA models all adopt a neural net-
work architecture without hand-crafted features,
which makes them more adaptable to different
tasks, languages and domains (Lample et al., 2016;
Chiu and Nichols, 2016; Peters et al., 2018; De-
vlin et al., 2019; Ju et al., 2018; Sohrab and Miwa,
2018; Straková et al., 2019). In this paper, we in-
troduce a method to handle both types of NEs in
one system by adopting ideas from the biaffine de-
pendency parsing model of Dozat and Manning

(2017). For dependency parsing, the system pre-
dicts a head for each token and assigns a relation
to the head-child pairs. In this work, we reformu-
late NER as the task of identifying start and end
indices, as well as assigning a category to the span
defined by these pairs. Our system uses a biaffine
model on top of a multi-layer BiLSTM to assign
scores to all possible spans in a sentence. After
that, instead of building dependency trees, we rank
the candidate spans by their scores and return the
top-ranked spans that comply with constraints for
flat or nested NER. We evaluated our system on
three nested NER benchmarks (ACE 2004, ACE

2005, GENIA) and five flat NER corpora (CONLL

2002 (Dutch, Spanish) CONLL 2003 (English, Ger-
man), and ONTONOTES). The results show that our
system achieved SoTA results on all three nested
NER corpora, and on all five flat NER corpora with
substantial gains of up to 2.2% absolute percentage
points compared to the previous SoTA. We provide
the code as open source1.

2 Related Work

Flat Named Entity Recognition. The majority of
flat NER models are based on a sequence labelling
approach. Collobert et al. (2011) introduced a neu-
ral NER model that uses CNNs to encode tokens
combined with a CRF layer for the classification.
Many other neural systems followed this approach
but used instead LSTMs to encode the input and
a CRF for the prediction (Lample et al., 2016; Ma
and Hovy, 2016; Chiu and Nichols, 2016). These
latter models were later extended to use context-
dependent embeddings such as ELMo (Peters et al.,
2018). Clark et al. (2018) quite successfully used
cross-view training (CVT) paired with multi-task
learning. This method yields impressive gains for

1The code is available at https://github.com/
juntaoy/biaffine-ner

https://github.com/juntaoy/biaffine-ner
https://github.com/juntaoy/biaffine-ner
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Figure 1: The network architectures of our system.

a number of NLP applications including NER. De-
vlin et al. (2019) invented BERT, a bidirectional
transformer architecture for the training of lan-
guage models. BERT and its siblings provided bet-
ter language models that turned again into higher
scores for NER.

Lample et al. (2016) cast NER as transition-
based dependency parsing using a Stack-LSTM.
They compare with a LSTM-CRF model which
turns out to be a very strong baseline. Their
transition-based system uses two transitions (shift
and reduce) to mark the named entities and handles
flat NER while our system has been designed to
handle both nested and flat entities.

Nested Named Entity Recognition. Early
work on nested NER, motivated particularly by the
GENIA corpus, includes (Shen et al., 2003; Beat-
rice Alex and Grover, 2007; Finkel and Manning,
2009). Finkel and Manning (2009) also proposed
a constituency parsing-based approach. In the last
years, we saw an increasing number of neural mod-
els targeting nested NER as well. Ju et al. (2018)
suggested a LSTM-CRF model to predict nested
named entities. Their algorithm iteratively contin-
ues until no further entities are predicted. Lin et al.
(2019) tackle the problem in two steps: they first
detect the entity head, and then they infer the entity
boundaries as well as the category of the named
entity. Straková et al. (2019) tag the nested named
entity by a sequence-to-sequence model exploring
combinations of context-based embeddings such
as ELMo, BERT, and Flair. Zheng et al. (2019)
use a boundary aware network to solve the nested
NER. Similar to our work, Sohrab and Miwa (2018)

enumerate exhaustively all possible spans up to a
defined length by concatenating the LSTMs out-
puts for the start and end position and then using
this to calculate a score for each span. Apart from
the different network and word embedding config-
urations, the main difference between their model
and ours is there for the use of biaffine model. Due
to the biaffine model, we get a global view of the
sentence while Sohrab and Miwa (2018) concate-
nates the output of the LSTMs of possible start
and end positions up to a distinct length. Dozat
and Manning (2017) demonstrated that the biaffine
mapping performs significantly better than just the
concatenation of pairs of LSTM outputs.

3 Methods

Our model is inspired by the dependency parsing
model of Dozat and Manning (2017). We use both
word embeddings and character embeddings as in-
put, and feed the output into a BiLSTM and finally
to a biaffine classifier.

Figure 1 shows an overview of the architecture.
To encode words, we use both BERTLarge and fast-
Text embeddings (Bojanowski et al., 2016). For
BERT we follow the recipe of (Kantor and Glober-
son, 2019) to obtain the context dependent embed-
dings for a target token with 64 surrounding tokens
each side. For the character-based word embed-
dings, we use a CNN to encode the characters of
the tokens. The concatenation of the word and
character-based word embeddings is feed into a
BiLSTM to obtain the word representations (x).

After obtaining the word representations from
the BiLSTM, we apply two separate FFNNs to
create different representations (hs/he) for the
start/end of the spans. Using different representa-
tions for the start/end of the spans allow the system
to learn to identify the start/end of the spans sep-
arately. This improves accuracy compared to the
model which directly uses the outputs of the LSTM
since the context of the start and end of the entity
are different. Finally, we employ a biaffine model
over the sentence to create a l× l×c scoring tensor
(rm), where l is the length of the sentence and c is
the number of NER categories + 1(for non-entity).
We compute the score for a span i by:

hs(i) = FFNNs(xsi)

he(i) = FFNNe(xei)

rm(i) = hs(i)
>Umhe(i)

+ Wm(hs(i) ⊕ he(i)) + bm
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where si and ei are the start and end indices of the
span i, Um is a d × c × d tensor, Wm is a 2d × c
matrix and bm is the bias.

The tensor rm provides scores for all possible
spans that could constitute a named entity under the
constrain that si ≤ ei (the start of entity is before
its end). We assign each span a NER category y′:

y′(i) = arg max rm(i)

We then rank all the spans that have a category
other than ”non-entity” by their category scores
(rm(iy′)) in descending order and apply follow-
ing post-processing constraints: For nested NER,
a entity is selected as long as it does not clash the
boundaries of higher ranked entities. We denote a
entity i to clash boundaries with another entity j if
si < sj ≤ ei < ej or sj < si ≤ ej < ei, e.g. in
the Bank of China, the entity the Bank of clashes
boundary with the entity Bank of China, hence only
the span with the higher category score will be se-
lected. For flat NER, we apply one more constraint,
in which any entity containing or is inside an entity
ranked before it will not be selected. The learning
objective of our named entity recognizer is to as-
sign a correct category (including the non-entity)
to each valid span. Hence it is a multi-class classi-
fication problem and we optimise our models with
softmax cross-entropy:

pm(ic) =
exp(rm(ic))∑C
ĉ=1 exp(rm(iĉ))

loss = −
N∑
i=1

C∑
c=1

yic log pm(ic)

4 Experiments

Data Set. We evaluate our system on both nested
and flat NER, for the nested NER task, we use the
ACE 20042, ACE 20053, and GENIA (Kim et al.,
2003) corpora; for flat NER, we test our system on
the CONLL 2002 (Tjong Kim Sang, 2002), CONLL

2003 (Tjong Kim Sang and De Meulder, 2003)
and ONTONOTES4 corpora.

For ACE 2004, ACE 2005 we follow the same
settings of Lu and Roth (2015) and Muis and Lu
(2017) to split the data into 80%,10%,10% for train,
development and test set respectively. To make a

2https://catalog.ldc.upenn.edu/LDC2005T09
3https://catalog.ldc.upenn.edu/LDC2006T06
4https://catalog.ldc.upenn.edu/LDC2013T19

Parameter Value

BiLSTM size 200
BiLSTM layer 3
BiLSTM dropout 0.4
FFNN size 150
FFNN dropout 0.2
BERT size 1024
BERT layer last 4
fastText embedding size 300
Char CNN size 50
Char CNN filter widths [3,4,5]
Char embedding size 8
Embeddings dropout 0.5
Optimiser Adam
learning rate 1e-3

Table 1: Major hyperparameters for our models.

fair comparson we also used the same documents
as in Lu and Roth (2015) for each split.

For GENIA, we use the GENIA v3.0.2 corpus. We
preprocess the dataset following the same settings
of Finkel and Manning (2009) and Lu and Roth
(2015) and use 90%/10% train/test split. For this
evaluation, since we do not have a development set,
we train our system on 50 epochs and evaluate on
the final model.

For CONLL 2002 and CONLL 2003, we evaluate
on all four languages (English, German, Dutch and
Spanish). We follow Lample et al. (2016) to train
our system on the concatenation of the train and
development set.

For ONTONOTES, we evaluate on the English
corpus and follow Strubell et al. (2017) to use the
same train, development and test split as used in
CoNLL 2012 shared task for coreference resolution
(Pradhan et al., 2012).

Evaluation Metric. We report recall, precision
and F1 scores for all evaluations. The named en-
tity is considered correct when both boundary and
category are predicted correctly.

Hyperparameters We use a unified setting for
all of the experiments, Table 1 shows hyperparam-
eters for our system.

5In Sohrab and Miwa (2018), the last 10% of the training
set is used as a development set, we include their result mainly
because their system is similar to ours.

6The revised version is provided by the shared task organ-
iser in 2006 with more consistent annotations. We confirmed
with the author of Akbik et al. (2018) that they used the revised
version.
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Model P R F1

ACE 2004

Katiyar and Cardie (2018) 73.6 71.8 72.7
Wang et al. (2018) - - 73.3
Wang and Lu (2018) 78.0 72.4 75.1
Straková et al. (2019) - - 84.4
Luan et al. (2019) - - 84.7
Our model 87.3 86.0 86.7

ACE 2005

Katiyar and Cardie (2018) 70.6 70.4 70.5
Wang et al. (2018) - - 73.0
Wang and Lu (2018) 76.8 72.3 74.5
Lin et al. (2019) 76.2 73.6 74.9
Fisher and Vlachos (2019) 82.7 82.1 82.4
Luan et al. (2019) - - 82.9
Straková et al. (2019) - - 84.3
Our model 85.2 85.6 85.4

GENIA

Katiyar and Cardie (2018) 79.8 68.2 73.6
Wang et al. (2018) - - 73.9
Ju et al. (2018) 78.5 71.3 74.7
Wang and Lu (2018) 77.0 73.3 75.1
Sohrab and Miwa (2018)5 93.2 64.0 77.1
Lin et al. (2019) 75.8 73.9 74.8
Luan et al. (2019) - - 76.2
Straková et al. (2019) - - 78.3
Our model 81.8 79.3 80.5

Table 2: State of the art comparison on ACE 2004, ACE
2005 and GENIA corpora for nested NER.

5 Results on Nested NER

Using the constraints for nested NER, we first eval-
uate our system on nested named entity corpora:
ACE 2004, ACE 2005 and GENIA. Table 2 shows
the results. Both ACE 2004 and ACE 2005 contain
7 NER categories and have a relatively high ratio of
nested entities (about 1/3 of then named entities are
nested). Our results outperform the previous SoTA
system by 2% (ACE 2004) and 1.1% (ACE 2005),
respectively. GENIA differs from ACE 2004 and
ACE 2005 and uses five medical categories such
as DNA or RNA. For the GENIA corpus our sys-
tem achieved an F1 score of 80.5% and improved
the SoTA by 2.2% absolute. Our hypothesise is
that for GENIA the high accuracy gain is due to our
structural prediction approach and that sequence-to-
sequence models rely more on the language model

Model P R F1
ONTONOTES

Chiu and Nichols (2016) 86.0 86.5 86.3
Strubell et al. (2017) - - 86.8
Clark et al. (2018) - - 88.8
Fisher and Vlachos (2019) - - 89.2
Our model 91.1 91.5 91.3

CONLL 2003 English

Chiu and Nichols (2016) 91.4 91.9 91.6
Lample et al. (2016) - - 90.9
Strubell et al. (2017) - - 90.7
Devlin et al. (2019) - - 92.8
Straková et al. (2019) - - 93.4
Our model 93.7 93.3 93.5

CONLL 2003 German

Lample et al. (2016) - - 78.8
Straková et al. (2019) - - 85.1
Our model 88.3 84.6 86.4

CONLL 2003 German revised6

Akbik et al. (2018) - - 88.3
Our model 92.4 88.2 90.3

CONLL 2002 Spanish

Lample et al. (2016) - - 85.8
Straková et al. (2019) - - 88.8
Our model 90.6 90.0 90.3

CONLL 2002 Dutch

Lample et al. (2016) - - 81.7
Akbik et al. (2019) - - 90.4
Straková et al. (2019) - - 92.7
Our model 94.5 92.8 93.7

Table 3: State of the art comparison on CONLL 2002,
CONLL 2003, ONTONOTES corpora for flat NER.

embeddings which are less informative for cate-
gories such as DNA, RNA. Our system achieved
SoTA results on all three corpora for nested NER
and demonstrates well the advantages of a struc-
tural prediction over sequence labelling approach.

6 Results on Flat NER

We evaluate our system on five corpora for flat NER
(CONLL 2002 (Dutch, Spanish), CONLL 2003 (En-
glish, German) and ONTONOTES. Unlike most of
the systems that treat flat NER as a sequence la-
belling task, our system predicts named entities by
considering all possible spans and ranking them.
The ONTONOTES corpus consists of documents
form 7 different domains and is annotated with 18
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F1 ∆

Our model 89.9
- biaffine 89.1 0.8
- BERT emb 87.5 2.4
- fastText emb 89.5 0.4
- Char emb 89.8 0.1

Table 4: The comparison between our full model and
ablated models on ONTONOTES development set.

fine-grained named entity categories. To predict
named entities for this corpus is more difficult than
for CONLL 2002 and CONLL 2003. These corpora
use coarse-grained named entity categories (only
4 categories). The sequence-to-sequence models
usually perform better on the CONLL 2003 English
corpus (see Table 3), e.g. the system of Chiu and
Nichols (2016); Strubell et al. (2017). In contrast,
our system is less sensitive to the domain and the
granularity of the categories. As shown in Table 3,
our system achieved an F1 score of 91.3% on the
ONTONOTES corpus and is very close to our system
performance on the CONLL 2003 corpus (93.5%).
On the multi-lingual data, our system achieved F1
scores of 86.4% for German, 90.3% for Spanish
and 93.5% for Dutch. Our system outperforms the
previous SoTA results by large margin of 2.1%,
1.5%, 1.3% and 1% on ONTONOTES, Spanish, Ger-
man and Dutch corpora respectively and is slightly
better than the SoTA on English data set. In ad-
dition, we also tested our system on the revised
version of German data to compare with the model
by Akbik et al. (2018), our system again achieved
a substantial gain of 2% when compared with their
system.

7 Ablation Study

To evaluate the contribution of individual compo-
nents of our system, we further remove selected
components and use ONTONOTES for evaluation
(see Table 4). We choose ONTONOTES for our ab-
lation study as it is the largest corpus.

Biaffine Classifier We replace the biaffine map-
ping with a CRF layer and convert our system into
a sequence labelling model. The CRF layer is fre-
quently used in models for flat NER, e.g. (Lample
et al., 2016). When we replace the biaffine model
of our system with a CRF layer, the performance
drops by 0.8 percentage points (Table 4). The large
performance difference shows the benefit of adding

a biaffine model and confirms our hypothesis that
the dependency parsing framework is an important
factor for the high accuracy of our system.

Contextual Embeddings We ablate BERT em-
beddings and as expected, after removing BERT
embeddings, the system performance drops by a
large number of 2.4 percentage points (see Table
4). This shows that BERT embeddings are one of
the most important factors for the accuracy.

Context Independent Embeddings We re-
move the context-independent fastText embedding
from our system. The context-independent em-
bedding contributes 0.4% towards the score of our
full system (Table 4). Which suggests that even
with the BERT embeddings enabled, the context-
independent embeddings can still make quite no-
ticeable improvement to a system.

Character Embeddings Finally, we remove the
character embeddings. As we can see from Table 4,
the impact of character embeddings is quite small.
One explanation would be that English is not a mor-
phologically rich language hence does not benefit
largely from character-level information and the
BERT embeddings itself are based on word pieces
that already capture some character-level informa-
tion.

Overall, the biaffine mapping and the BERT em-
bedding together contributed most to the high ac-
curacy of our system.

8 Conclusion

In this paper, we reformulate NER as a structured
prediction task and adopted a SoTA dependency
parsing approach for nested and flat NER. Our sys-
tem uses contextual embeddings as input to a multi-
layer BiLSTM. We employ a biaffine model to
assign scores for all spans in a sentence. Further
constraints are used to predict nested or flat named
entities. We evaluated our system on eight named
entity corpora. The results show that our system
achieves SoTA on all of the eight corpora. We
demonstrate that advanced structured prediction
techniques lead to substantial improvements for
both nested and flat NER.
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