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Abstract

Training a task-oriented dialogue agent with
reinforcement learning is prohibitively expen-
sive since it requires a large volume of inter-
actions with users. Human demonstrations
can be used to accelerate learning progress.
However, how to effectively leverage demon-
strations to learn dialogue policy remains less
explored. In this paper, we present that ef-
ficiently learns dialogue policy from demon-
strations through policy shaping and reward
shaping. We use an imitation model to dis-
till knowledge from demonstrations, based on
which policy shaping estimates feedback on
how the agent should act in policy space. Re-
ward shaping is then incorporated to bonus
state-actions similar to demonstrations explic-
itly in value space encouraging better explo-
ration. The effectiveness of the proposed
S?Agent is demonstrated in three dialogue do-
mains and a challenging domain adaptation
task with both user simulator evaluation and
human evaluation.

1 Introduction

With the flourishment of conversational assistants
in daily life (like Google Assistant, Amazon Alexa,
Apple Siri, and Microsoft Cortana), task-oriented
dialogues that are able to serve users on certain
tasks have increasingly attracted research efforts.
Dialogue policy optimization is one of the most
critical tasks of dialogue modeling. One of the
most straightforward approaches is the rule-based
method, which contains a set of expert-defined
rules for dialogue modeling. Though rule-based
dialogue systems have a reasonable performance
in some scenarios, handcrafting such kinds of rules
is time-consuming and not scalable.

Recently, dialogue policy learning is formulated
as a reinforcement learning (RL) problem and tack-
led with deep RL models (Li et al., 2017; Lipton
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et al., 2018; Peng et al., 2017). It has shown great
potentials of using the RL-based method for build-
ing robust dialogue systems automatically. How-
ever, due to its interactive nature, RL-based agents
demand of an environment to operate in. As illus-
trated in Figure 1, RL-based dialogue agents need
to interact with human users and update its pol-
icy in an online fashion requiring that the agents
have a good online performance from the start of
training. In addition, one of the biggest challenges
of RL approaches is reward sparsity issue, which
leads to exploration in large action space inefficient.
As a consequence, training RL-based agents ex-
pects a prohibitively large number of interactions to
achieve acceptable performance, which may incur a
significant amount of expense (Pietquin et al., 2011;
Lipton et al., 2016; Peng et al., 2018b). Several at-
tempts are made to improve learning efficiency and
tackle reward sparsity issues. Different types of
heuristics has been proposed in the form of intrin-
sic rewards to guide exploration more efficiently
(Lipton et al., 2016; Mohamed and Rezende, 2015;
Peng et al., 2017, 2018a; Takanobu et al., 2019).
When building a dialogue system, it is typically
affordable to recruit experts to gather some demon-
strations about the expected agent behaviors. We
therefore aim to address the aforementioned chal-
lenges from a different perspective and assume hav-
ing access to human-provided demonstrations. In
this paper, we investigate how to efficiently lever-
age these demonstrations to alleviate reward spar-
sity and improve policy learning quality. Previous
work (Lipton et al., 2016) used a simple technique
termed as Replay Buffer Spiking (RBS) to pre-fill
experience replay buffer with human demonstra-
tions, which yields good performance, especially in
the beginning. (Hester et al., 2018) proposed Deep
Q-learning from Demonstrations (DQfD) that com-
bines temporal difference updates with a supervised
classification loss of actions in demonstrations to
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improve learning efficiency in gaming domains.
However, whether it is feasible and how to effec-
tively leverage human demonstration in dialogue
scenarios are less explored.

Hence, in this paper, we propose a new strat-
egy of leveraging human demonstrations to learn
dialogue policy efficiently. Our dialogue agent,
termed as S?Agent', learns dialogue policy from
demonstrations trough policy shaping and reward
shaping. Policy shaping (Griffith et al., 2013) is
an approach to incorporating human feedback to
advise how policy should behave like experts. It
estimates feedback of a state-action pair from hu-
man demonstrations and then utilizes the feedback
to reconcile the policy from any RL-based agents.
This method speeds up learning progress in gaming
domains but has not yet been studied in dialogue.
However, directly applying policy shaping to dia-
logue faces several challenges. The original policy
shaping uses a tabular analogous method to esti-
mate feedback. This method limits its feasibility for
complex problems like dialogue that has large state
action representations. To deal with this issue, we
propose to use deep neural networks, which repre-
sent state-action space with function approximation
and distill knowledge from human demonstrations,
to estimate feedback. In addition, policy shaping
calibrates agents’ behavior in policy space, and it
is inherently not designed to tackle reward spar-
sity issues. Considering this, we further introduce
reward shaping to bonus these state-action pairs
that are similar to demonstrations. It can be viewed
as a shaping mechanism explicitly in value space
to guide policy exploration towards actions which
human experts likely conduct. Our contributions in
this work are two-fold:

e We propose a novel S?Agent that can effec-
tively leverage human demonstrations to im-
prove learning efficiency and quality through
policy shaping and reward shaping.

e We experimentally show that S?Agent can effi-
ciently learn good policy with limited demon-
strations on three single domain dialogue
tasks and a challenging domain adaptation
task using both simulator and human evalua-
tions.

! Agent with policy Shaping and reward Shaping

2 Related Work

Dialogue policy learning Deep reinforcement
learning (RL) methods have shown great poten-
tial in building a robust dialog system automati-
cally (Young et al., 2013; Su et al., 2016; Williams
et al., 2017; Peng et al., 2017, 2018a,b; Lipton
et al., 2018; Li et al., 2020; Lee et al., 2019). How-
ever, RL-based approaches are rarely used in real-
world applications, for these algorithms often re-
quire (too) many experiences for learning due to
the sparse and uninformative rewards. A lot of
progress is being made towards mitigating this
sample complexity problem by incorporating prior
knowledge. (Su et al., 2017) utilizes a corpus of
demonstration to pre-train the RL-based models
for accelerating learning from scratch. (Chen et al.,
2017b) attempts to accelerate RL-based agents by
introducing extra rewards from a virtual rule-based
teacher. However, the method requires extra efforts
to design a rule-based dialogue manager. (Hes-
ter et al., 2018) improve RL learning by utilizing
a combination of demonstration, temporal differ-
ence (TD), supervised, and regularization losses.
(Chen et al., 2017a) introduced a similar approach
called companion teaching to incorporate human
teacher feedback into policy learning. Neverthe-
less, companion teaching assumes that there is a
human teacher to directly give a correct action dur-
ing policy learning process and meanwhile train an
action prediction model for reward shaping based
on human feedback.

Policy shaping Policy Shaping is an algorithm
that enables introducing prior knowledge into pol-
icy learning. (Griffith et al., 2013) formulates hu-
man feedback on the actions from an agent pol-
icy as policy feedback and proposes Advise algo-
rithm to estimate humans Bayes feedback policy
and combine it with the policy from the agent. It
shows significant improvement in two gaming envi-
ronment. (Misra et al., 2018) uses policy shaping to
bias the search procedure towards semantic parses
that are more compatible with the text and achieve
excellent performance.

Reward shaping Reward shaping leverages
prior knowledge to provides a learning agent with
an extra intermediate reward F' in addition to envi-
ronmental reward 7, making the system learn from
a composite signal R + F' (Ng et al., 1999). How-
ever, it is not guaranteed that with reward shaping,
an MDP can still have an optimal policy that is
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Figure 1: Illustration of the S2Agent for dialogue pol-
icy learning.

identical to the original problem unless the shaping
is potential-based reward shaping(Ng et al., 1999;
Marthi, 2007). (Su et al., 2015) proposes to use
RNNs to predict turn-level rewards and use the pre-
dicted reward as informative reward shaping poten-
tials. (Peng et al., 2018a; Takanobu et al., 2019) use
inverse reinforcement learning to recover reward
functions from demonstrations for reward shaping.
However, the estimated reward using these meth-
ods inevitably contains noise and failed to conform
to potential-based reward function to guarantee the
optimal policy. Inspired by (Brys et al., 2015), we
directly estimate potential-based reward function
from demonstrations.

3 Approach

Our S?Agent is illustrated in Figure 1, consisting
of four modules. 1) Dialogue policy model which
selects the best next action based on the current
dialogue state.; 2) Imitation Model is formulated as
a classification task that takes dialogue states as in-
put and predicts associated dialogue action, aiming
to distill behaviors from human demonstrations.; 3)
Policy Shaping provides feedback on how policy
should behave like demonstrations. It then recon-
ciles a final action based on actions from the policy
model and imitation model attempting to gener-
ate more reliable exploration trajectories; 4) Fol-
lowed by a reward shaping module that encourages
demonstration similar state-actions by providing
extra intrinsic reward signals.

3.1 Policy Model

We consider dialogue policy learning as a Markov
Decision Process (MDP) problem and improve
the policy with Deep Q-network (DQN) (Mnih

et al., 2015).2 In each turn, the agent observes
the dialogue state s, and then execute the action
a with e-greedy exploration that selects a random
action with probability € or adopts a greedy policy
a = argmax, Q(s,d’;0), where Q(s,a’;0) ap-
proximates the value function, implemented as a
multi-layer perceptron (MLP) parameterized by 6.
The agent then receives the reward r, perceives the
next user response to a*, and updates the state to
s'. The tuple (s, a,r, s') is stored in the experience
replay D®. This loop continues until the dialogue
terminates. The parameters of Q(s,a’; ) are up-
dated by minimizing the following square loss with
stochastic gradient descent:

L£(6) =
Y =

]E(s,a,r,s’)NDa [(yl - Q(57 a; 9))2]
r+ymax Q'(s',d’; ) M
a

where v € [0, 1] is a discount factor, and Q(.) is
the target value function that is only periodically
updated (line 26 in Algorithm 1). By differentiating
the loss function with regard to 8, we derive the
following gradient:

VGL(H) = E(s,a,r,s’)wD“[(T+
ymaxQ'(s',d50)— ()
Q(s,4;0))VeQ(s,a;0)]

As shown in lines 25-26 in Algorithm 1, in each
iteration, we update ()(.) using minibatch Deep
Q-learning.

3.2 Imitation Model

We assume having access to a corpus of human-
human dialogues either from a log file or pro-
vided by recruited experts, which in this paper
are termed as human demonstrations D¢. D°
usually consists of a set of state-action pairs
[(s1,a1), (82,a2), ..., (Sn,an)]. Theoretically, if
D¢ is large enough to cover all the possible states,
then the agent can respond perfectly by looking up
the corresponding action from D®.

However, in practice, D¢ is usually limited and
can not cover all the states. Hence, we propose to
use a supervised learning model (denoted as Imi-
tation Model) to parameterize the relation of the

2Qur shaping methods are compatible with any policy
optimizer. In this paper, we employ DQN due to its simplicity
and robustness in training. However, replacing with other
methods like Actor-Critic is straightforward.

6357



states and actions expecting it to generalize to un-
seen state. We formulate the task as a classification
problem. It takes dialogue s; as input and is trained
with cross-entropy to minimize loss between action
a; and predicted action a. There are multiple mod-
els like RNN, CNN can be used for this purpose,
but for simplicity, we choose to use MLP.

3.3 Policy Shaping

Incorporating human feedback into RL can accel-
erate its learning progress (Griffith et al., 2013;
Cederborg et al., 2015). Policy shaping is a rep-
resentative that estimates human’s Bayes optimal
feedback policy and then combine the feedback
policy with the policy of an underlying RL model.
The feedback policy is computed with the follow-
ing equation:

CAs.a
= CAs,a + (1 — C)As,a

Te(als) 3)
where A, , is the difference between the number
of positive feedback and negative feedback, i.e. the
number of occurrence of (s, a) in human demon-
strations. C here means the probability of consis-
tency feedback from demonstrations 3. For ex-
ample, C = 0.7 means with 0.7 probability the
feedback from the demonstrations is considered re-
liable. Otherwise, if C = 0.5, then policy shaping
is meaningless since it treats every action equally.

However, A, , is difficult to estimate from the
demonstrations in dialogue scenarios since the state
and action are large and sparse. To deal with this
issue, we propose to use the aforementioned Im-
itation Model to estimate feedback from demon-
strations. Specifically, we samples N times from
imitation model policy 7, (a|s) to form a commit-
tee ay, as, ..., ay denoting N votes. Then we count
for each action to generate c, as positive feedback
from human demonstrations. We use the expecta-
tion of binomial distribution N * (1 — C) as the
number of negative feedback. Such that, in dia-
logue, we use:

Agag=ca—Nx*x(1-C) 4)

Finally, the policy is reconciled from the policy
model and the imitation model by multiplying them
together:

ma(als) X me(als)
2o Talals) x me(als)

31t is a parameter to control noise in the demonstrations.

m(als) =

)

Policy shaping operates in the policy space and
can be viewed as a mechanism of biasing the
agent learning towards the policy distilled from
the demonstrations to improve learning efficiency.
The reconciled policy in equ. 5 allows the under-
lying RL model surpass the imitation model 7.

Algorithm 1 S?Agent learining algorithm

Input: N,¢ 6,C, D*, D¢, ~,Z
Output: Qs(s,a).
. init experience replay D® as empty.
2: init Qo(s, a) and Qy/ (s, a) with § = 6.
3: init demo buffer D¢ with human conversation data. Train
Expert with D¢ and load 7°(a|s).

4: for n=1:N do
5:  user starts a dialogue with user action a®.
6: init dialogue state s.
7: while s is not terminal do
8: with probability € select a random action a.
9: otherwise select a = argmax, Q(s, a;0).
10: #policy shaping starts
11: count the number of occurrence for each action and
then compute A, with equ.4.
12: obtain shaped action distribution from policy shaper
following equ.3.
13: reconcile the final action distribution as 5 and sam-
ple action a.
14: #policy shaping ends
15: execute a, obtain next state s’, receive reward r.
16: calculate ¢, (s, a) with equ.9.
17: if n > 1 then
18: #reward shaping starts
19: obtain Fp with equ.7.
20: Store transition (s, a,r + Fp, s') in D*
21: #reward shaping ends
22: end if

23: end while

24:  Sample mini batch of (s, a,r, s") from D*

25:  update (Qy via minibatch Q-learning according to gra-
dient of equ.1.

26:  every Z steps reset Qo = Qp.

27: end for

3.4 Reward Shaping

Most of the reward functions in dialogue scenar-
ios are usually manually defined. Typically, a -1
for each turn and a significant positive or negative
reward indicating the status of the dialogue at the
end of a session. Such sparse reward is one of
the reasons that RL agents have poor learning ef-
ficiency. Initially, the agents are fain to explore
state-action uniformly at random. To this end, we
propose to use reward shaping to integrate priors
into RL learning to alleviate reward sparsity.
Reward shaping is a popular method to integrate
prior knowledge into reward function to improve
policy exploration (Brys et al., 2015). It provides
the learning agent with an extra intermediate and
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task-related reward that enriches the original re-
ward signal:

v (s,a) =r(s,a) + Fp(-) (6)

Where Fp denotes rewards from demonstrations.
However, modifying the reward function may
change the original MDPs and make the agent con-
verge to a suboptimal point. (Wiewiora et al., 2003)
proved that the MDP keeps unchanged and main-
tains convergency property if Fp(-) is defined as:

FD(S,(Z, S/,CL,) = ’}/qu(S,,CL,) - ¢D(Saa) (7)

where ¢p(s,a) is a potential function of state-
action pair. Its definition is intuitive. We bonus
these policy paths that were consistent with the
demonstrations. As such, the value of ¢p (s, a) is
expected to be high when action a is demonstrated
in a state s¢ similar to s, and if s is completely
different from s%, ¢p(s,a) should be close to 0.
To achieve this, multi-variate Gaussian is used to
compute the similarity between state-action pairs.

e(—%(s—sg)TE’I(s—s d

g))’a:a

G(s,a, sd,ad) = {

0 otherwise

8)
We search through the demonstrations to obtain the
sample with highest similarity:

op(s,a) = nﬁXG(s,sg) 9
Using reward shaping to learn policy has several
advantages. It leverages demonstrations to bonus
these state-actions that are similar to demonstra-
tions. The reward calculated from reward shaping
is more informative and demonstration guided than
the human-defined reward, which mitigates the re-
ward sparsity issue to some degree.

4 Experiments and Results

We evaluate the proposed S?Agent with a user sim-
ulator on several public task-oriented datasets, in-
cluding movie ticket booking, restaurant reserva-
tion, and taxi reservation. Additionally, to asses the
generalization capability of shaping mechanism,
We conduct domain adaptation experiments. Fi-
nally, human evaluation results are reported.

4.1 Dataset

The raw conversation data in the movie ticket book-
ing task are collected through Amazon Mechanical

Turk, and the data for the restaurant reservation and
taxi calling scenario is provided by Microsoft Di-
alogue Challenge *. The three datasets have been
manually labeled based on a schema defined by
domain experts. We extend and annotated movie
booking task with a payment scenario to simulate
the situation of extending the dialogue system with
new slots and values. All datasets contain 11 in-
tents. The movie dataset contains 13 slots, and the
other three contain 29 slots. Detailed information
about the intents and slots is provided in Appendix
A table 3.

4.2 Baseline Agents

To benchmark the performance of the shaping
mechanism, we have developed different versions
of task-completion dialogue agents for comparison
as follows:

o Imitation Model (IM) agent is implemented
with Multi-Layer Perception and trained with
the human demonstrations data to predict ac-
tions given dialogue states.

e DQN agent is learned with Deep Q-Network.

e EAPC Teaching via Example Action with Pre-
dicted Critique (EAPC) introduced in (Chen
et al.,, 2017a) leverages real-time human
demonstrations to improve policy learning.
EAPC assumes the existence of human teach-
ers during the learning process. It receives
example actions from human teachers and,
in the meantime, trains an action prediction
model with the example actions as a critic
for turn-level reward shaping. Since human
teachers are not available in our case, we im-
plement EAPC in the absence of teachers but
use the same amount of human demonstra-
tions to train a weak action prediction model.
If the predicted action is identical to the action
given by the policy model, the agent receives
an extra positive reward otherwise an extra
negative reward. This method can be viewed
as a variant of S2Agent with only reward shap-
ing using noise reward estimations from the
imitation model.

o DQFD (Hester et al., 2018) agent also lever-
ages human demonstrations to improve pol-
icy learning. It adds additional classification

*https://github.com/xiul-msr/e2e_

dialog_challenge
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Figure 2: Learning curves of all the agents in Movie, Restaurant and Taxi domains. All the agents use the same

amount of human demonstrations.

Table 1: The performance of the average turn and average reward of different agents in different domains. w/o rs
denotes S2Agent without reward shaping; w/o ps denotes S?Agent without policy shaping;* denotes significant
level p < 0.05 with other baselines except DQfD in movie domain. Succ. denotes success rate.

Agent Movie Restaurant Taxi Movie-Ext
Succ.t Turn] Reward? Succ.t Turn| Rewardf Succ.t Turn] Rewardt Succ.t Turn] Rewardf
M 0.33 3262 -1147 0.16 3756 -52.03 022 15.07 -2733 037 3538 -8.84
DQN 082 37.13 2157 0.51 50.84 -31.65 0.84 4569 -10.08 0.66 57.01 -40.37
EAPC 0.82 30.66 4222 0.53 48.07 -2486 088 3871 19.10 0.65 5534 -31.50
DQD 081 2753 5057 052 4390 510 086 3488 3233 061 5364 -1934
S2Agent*  0.82 21.25 72.68 0.57 3835 1640 0.87 2725 6150 0.70 4997  3.39
w/o rs 0.82 2330 6920 057 39.66 11.85 0.88 28.14 5547 0.67 51.03 -493
w/o ps 0.80 31.68 40.28 0.57 4540 -9.45 0.85 3539 2820 0.65 53.68 -19.27

loss from human demonstrations to DQN to
ensure that the agent predicts correct actions
on human demonstrated states. In the early
learning phase, DQfD is trained only with the
demonstrations to obtain a policy that mimics
the human. Then, accumulated experiences
mixed with the demonstration are used to train
DQfD.

e S?Agent is our proposed agent that is trained
with both policy shaping and reward shaping,
as described in Algorithm 1.

e S2Agent wlo rs is a variant of S?Agent which
learns policy with only policy shaping to rec-
oncile the final action.

e S2?Agent wlo ps is a variant of S?Agent but
only has reward shaping to bonus state-actions
similar to demonstrations.

Implementation Details Imitation model agents
for all domains are single layer MLPs with 50 hid-
den dimensions and tanh as the activation func-
tion. The IM agent is also used in policy shaping
to reconcile the policy. All RL-based agents (DQN,
DQfD, S?Agent ) are MLPs with tanh activations.
Each policy network Q(.) has one hidden layer with

60 hidden nodes. All the agents are trained with the
same set of hyper-parameters. e-greedy is utilized
for policy exploration. We set the discount factor
as v = 0.9. The target network is updated at the
end of each epoch. To mitigate warm-up issues, We
build a naive but occasionally successful rule-based
agent to provide experiences in the beginning. For
a fair comparison, we pre-fill the experience replay
buffer D® with human demonstrations for all the
variants of agents (Lipton et al., 2016). Confidence
factor C' used in policy shaping is set 0.7. As for
the reward shaping, v in equ.7 is set as 1.

4.3 User Simulator

Training RL-based dialogue agents require an en-
vironment to interact with, and it usually needs a
large volume of interactions to achieve good per-
formance, which is not affordable in reality. It is
commonly acceptable to employ a user simulator
to train RL-based agents (Jain et al., 2018; Li et al.,
2016; Schatzmann et al., 2007).

We adopt a public available agenda-based user
simulator (Li et al., 2016) for our experiment setup.
During training, the simulator provides the agent
with responses and rewards. The reward is defined
as -1 for each turn to encourage short turns and a
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Figure 3: The effect of number of human demonstration on the performance. The moving averaged success rate
is calculated within 120 epochs for Movie, 200 epochs for Restaurant, and 200 epochs for Taxi.

large positive reward (2L) for successful dialogue
or a negative reward of L for failed one, where L
(set as 70) is the maximum number of turns in each
dialogue. A dialogue is considered successful only
if the agent helps the user simulator accomplish the
goal and satisfies all the user’s search constraints.
In addition, the average number of turns and the
average reward are also reported to evaluate each
model.

4.4 Simulator Evaluation

Main Results. The main simulation results are
shown in Table 1 and Figure.2, 3, 4. The re-
sults show that with shaping mechanisms, S?Agent
learns much faster and performs consistently better
than DQN and DQIfD in all the domains with a
statistically significant margin.

Figure 2 shows the learning curve of different
agents in different domains. Firstly, the DQN agent
performs better than the IM agent, which is not
surprising since it interacts with the simulator and
is optimized to solve user goals. DQfD and EAPC
agents leverage human demonstrations to mitigate
the reward sparsity issues. Their performances are
consistently better than DQN. Besides, S2Agent
w/o ps uses reward shaping to alleviate reward spar-
sity by bonusing additional rewards for states that
are consistent with demonstrations. As a conse-
quence, it performs better than DQN in all the do-
mains. Though EAPC has a similar reward shaping
mechanism, its reward estimation relies heavily on
the qualify of the action prediction model. As such,
EAPC performs slightly worse than S?Agent w/o
ps. In addition, policy shaping reconciles the agent
action with knowledge learned from human demon-
strations. It biases the agent to explore these ac-
tions which human expert does. As shown in figure
2, S%2Agent w/o rs learn the dialogue policy much

faster than all the baselines. In the Movie domain,
it achieves nearly a 60% success rate using only 20
epochs. By contrast, the second-best agent DQfD
only achieves a 20% successful rate at epoch 20.
Similar results are also observed in Restaurant and
Taxi domains. When integrating both policy shap-
ing and reward shaping to DQN, S?Agent achieves
the best performance and is more data-efficient. For
example, S?Agent in the Taxi domain achieves ap-
proximately 60% successful rate at 50 epoch while
the following competitor only has around 40% suc-
cessful rate. The above observation also confirms
that policy shaping and reward shaping operate in
different dimensions, which means policy shaping
improves the learning by directly calibrating in the
action space and reward shaping in the value func-
tion space, and are mutual-complementary. Noted
that the improvement of combining policy shaping
and reward shaping in the Movie domain is not as
significant as that in Restaurant and Taxi. This is
too large degree attributed to the increased com-
plexity of Restaurant and Taxi dataset, which have
two times more slots than the Movie dataset, mean-
ing that the state-action space is much larger than
the movie domain and posing more challenges in
exploration. Under this situation, policy shaping
and reward shaping benefit the S?Agent to a large
extent.

Results of training with varying number of
demonstrations. Intuitively, the number of hu-
man demonstrations has a large impact on policy
learning. The imitation model agent might be able
to summarize a good expert policy when a large vol-
ume of human demonstrations is available. How-
ever, we hope the shaping mechanism is capable of
improving learning efficiency with limited human
demonstrations for RL-base agents. As such, we
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experiment with different sizes of demonstrations
between 25 and 125 to asses the effect of different
numbers of human demonstration on learning ef-
ficiency and quality. Figure 3 shows the average
performance of each agent during learning, which
indicates the learning speed and quality. Our pro-
posed shaping mechanisms improve policy learn-
ing speed and quality and are robust to the number
of demonstrations. Even with the small number of
human demonstrations as 25, S?Agent achieves a
5% higher success rate than DQfD and EAPC in
the Movie domain and 10% in the Taxi domain. As
the number of demonstrations increases, the gap
between DQfD and S2Agent becomes larger, show-
ing that policy mechanisms can still benefit from
more human demonstrations available.

Results of domain extension Typically, RL-
based agents are built with a fixed ontology. How-
ever, a dialogue system should be able to evolve
as being used to handle new intents, slots, unan-
ticipated actions from users. To asses the ability
of quickly adapting to the new environment, we
extend existing movie user simulator, denoted as
Movie-Ext, to simulate domain adaption scenario.
Movie-Ext has an additional payment task requir-
ing the agent to converse with users to firstly book
a ticket and then finish the payment. Details about
the extended intent/slots can be found in the in
appendix Table.3. All the agents are continually
optimized from the previously trained agents for
the movie ticket booking task. Meanwhile, we ad-
ditionally collect a small number of human demon-
strations to update the IM agent. Figure 4 shows the
learning curves of different agents on the extended
task. As we can see, both S?Agent and S%Agent

w/o rs can quickly adapt to the new environment
and outperform the IM agent, with only 150 epochs
it achieves around 50% success rate. Though DQfD
explicitly leverages human demonstrations, it still
lags behind w/o rs, showing that shaping in the
policy space is more effective than solely adding
supervised learning loss for Q-learning. Reward
shaping also benefits DQN to explore better pol-
icy. These observations confirm that S?Agent with
shaping mechanism is capable of quickly adapting
to the new environment.

4.5 Human Evaluation

User simulators are not necessary to reflect the
complexity of human users (Dhingra et al., 2017).
To further evaluate the feasibility of S2Agent in
real scenarios, We deploy the agents in Table 1 to

interact with real human users in Movie and Movie-
5

Ext domains °.
Table 2: Human evaluation results on Movie and
Movie-Ext domains. We use models at epoch 50 and
epoch 200 for Movie domain and Movie-Ext, respec-
tively. w/o rs denotes S?Agent without reward shap-
ing; w/o ps denotes S?Agent without policy shaping;
* denotes significant level p < 0.05 with other agents.
Succ. denotes success rate.

Movie Movie-Ext
Model
Succ.t Ratingt Succ.t Rating?

M 0.42 3.92 0.40 1.96
DQN 0.56 3.36 0.26 2.68
EAPC 0.68 3.96 0.34 3.12
DQfD 0.72 3.92 0.50 3.24
SZAgent* 0.74 4.36 0.62 3.56
w/o rs 0.72 4.26 0.46 2.94
w/o ps 0.70 4.12 0.52 3.20

All evaluated agents are trained with 50 epochs
and 200 epochs for Movie and Movie-Ext respec-
tively. In each dialogue session, one of the agents
is randomly selected to converse with a human user.
Each user is assigned with a goal sampled from the
corpus and is instructed to converse with the agent
to complete the task. Users have the choice of ter-
minating the task and ending the session at any
time if users believe that the dialogue is unlikely
to succeed or simply because the agent repeats for
several turns. In such a case, the session is con-
sidered as a failure. Finally, at the end of each
session, users are required to give explicit feedback
on whether the dialogue succeeded (i.e., whether

For the time and cost consideration, we only conduct
experiments on Movie and Movie-Ext domains.
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the movie tickets were booked (and paid) with all
the user constraints satisfied). Additionally, users
are requested to rate the session on a scale from 1
to 5 about the quality/naturalness (5 is the best, 1 is
the worst). We collect 50 dialogue sessions for each
agent. The results are listed in Table 2. S%Agent
and S2?Agent w/o rs perform consistently better
than DQN and DQfD, which is consistent with
what we have observed in simulation evaluation. In
addition, S?Agent achieves the best performance
in terms of success rate and user rating.

5 Conclusion

In this paper, we present a new strategy for learning
dialogue policy with human demonstrations. Com-
pared with previous work, our proposed S?Agent is
capable of learning in a more efficient manner. By
using policy shaping and reward shaping, S?Agent
can leverage knowledge distilled from the demon-
strations to calibrate actions from underlying RL
agents for better trajectories, and obtains extra re-
wards for these state-actions similar to demonstra-
tions alleviating reward sparsity for better explo-
ration. The results of simulation and human evalu-
ation show that our proposed agent is efficient and
effective in both single domain and a challenging
domain adaptation setting.
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Table 3: The data annotation schema.

Movie Restaurant Taxi Movie-Ext
Slots | city, numberof- | city, closing, date, | car type, city, clos- | city, numberofpeo-
people, theater, | distanceconstraints, | ing, car level, date, | ple, theater,zip,
zZip, distancecon- | cuisine,  greeting, | distanceconstraints, | distanceconstraints,
straints, theater | restaurantname, dropoff location, | theater chain,
chain, video format, | numberofpeople, greeting, name, | video format, state,
state, starttime, date, | numberofkids, driver id, numberof- | starttime, date,
moviename, ticket, | taskcomplete, other, | people, other, pickup | moviename, ticket,
taskcomplete pricing,  starttime, | location, dropoff | taskcomplete, bill,
state, zip, address, | location city, budget, | cost, tax, bill num-
reservation, theater, | pickup location city, | ber, bank, service
atmosphere, rating, | pickup time, speed, | fee, pay type,
dress code, food, | state, cost, taxi | discount, consump-
mealtype, choice, | company, mc list, | tion point, credit
seating,  occasion, | taskcomplete, taxi, | card point
personfullname, zip, result, driver
phonenumber, level, numberofkids,
restauranttype emergency degree
Intent | request, inform ,confirm question, confirm answer, greeting, closing, multiple choice, thanks,
welcome, deny, not sure

Table 4: The performance of Imitation Model on dif-
ferent dataset.

Domain  #Pair Precision Recall Fl1-score
Movie 50 0.76 0.86 0.81
Restaurant 50 0.73 0.80 0.76
Taxi 50 0.83 0.90 0.86
Movie-Ext 100 0.84 0.83 0.82

A Appendices

Table 3 lists all annotated dialogue acts and slots
Table 4 lists the training results of
Imitation Model on all dataset.

in details.
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