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Abstract

Recent studies in dialogue state tracking
(DST) leverage historical information to deter-
mine states which are generally represented
as slot-value pairs. However, most of them
have limitations to efficiently exploit relevant
context due to the lack of a powerful mech-
anism for modeling interactions between the
slot and the dialogue history. Besides, ex-
isting methods usually ignore the slot imbal-
ance problem and treat all slots indiscrimi-
nately, which limits the learning of hard slots
and eventually hurts overall performance. In
this paper, we propose to enhance the DST
through employing a contextual hierarchical
attention network to not only discern relevant
information at both word level and turn level
but also learn contextual representations. We
further propose an adaptive objective to alle-
viate the slot imbalance problem by dynami-
cally adjust weights of different slots during
training. Experimental results show that our
approach reaches 52.68% and 58.55% joint ac-
curacy on MultiwWOZ 2.0 and MultiwWOZ 2.1
datasets respectively and achieves new state-
of-the-art performance with considerable im-
provements (+1.24% and +5.98%). !

1 Introduction

Recently, task-oriented dialogue systems have at-
tracted increasing attention in both industry and
academia due to their broad application for help-
ing users accomplish tasks through spoken interac-
tions (Young, 2002; Young et al., 2013; Gao et al.,
2019a). Dialogue state tracking (DST) is an essen-
tial part of dialogue management in task-oriented
dialogue systems. Given current utterances and
dialogue history, DST aims to determine the set of
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*Yang Feng is the corresponding author.
!Code is available at https://github.com/ictnlp/CHAN-DST

User: Hello, I'm looking for a resraurant with fair
prices.
State: price range=moderate

Sys: OK. There are Golden Wok Chinese restaurant and
Nirala which serves Indian food, which one do you like?
User: Are they both have a reasonable price ?

State: price range=moderate

Sys: Of course.
User: Please tell me the address of Golden Wok.
State: price range=moderate; food=chinese

Table 1: An example dialogue. At the last turn, it is nec-
essary to capture relevant information in dialogue his-
tory to correctly predict the value of slot “food”, which
is underlined. “User” and “Sys” represent user utter-
ance and system response respectively, and the italic
text means dialogue states.

goals that a user tries to inform at each turn which
are represented as slot-value pairs (Williams et al.,
2013; Henderson et al., 2014a).

As Table 1 shows, the dialogue state is usually
dependent on relevant context in the dialogue his-
tory, which is proven in previous studies (Sharma
etal., 2019; Wu et al., 2019). However, traditional
DST models usually determine dialogue states by
considering only utterances at current turn (Hen-
derson et al., 2014b; MrkSi¢ et al., 2017; Zhong
et al., 2018; Chao and Lane, 2019) which neglects
the use of dialogue history. Recent researches at-
tempt to address this problem through introducing
historical dialogue information into the prediction
of slot-value pairs. Most of them leverage a naive
attention between slots and concatenated historical
utterances (Wu et al., 2019; Zhou and Small, 2019;
Gao et al., 2019b; Zhang et al., 2019; Le et al.,
2020a,b) or only utilize partial history (Ren et al.,
2019; Kim et al., 2019; Sharma et al., 2019) or lack
direct interactions between slots and history (Ren
et al., 2018; Lee et al., 2019; Goel et al., 2019).
Briefly, these methods are deficient in exploiting
relevant context from dialogue history.
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Furthermore, there are differences in the fre-
quency of different slots and different slot-value
pairs. For example, in MultiWwOZ 2.0 train set,
there are 15384 samples related to the slot “train-
day” while 5843 for the slot “attraction-name’;
the slot-value pair (attraction-area, center) occurs
5432 times and (taxi-departure, royal spice) occurs
only 9 times; etc. We refer to this problem as “slot
imbalance”, which makes the learning difficulties
of different slots varies (Refer to Appendix for de-
tails). However, existing approaches usually ignore
the slot imbalance problem and treat all slots in-
discriminately, which limits the learning of those
hard slots and eventually damages the overall per-
formance.

To address the two aforementioned problems,
we propose an effective model equipped with a
contextual hierarchical attention network (CHAN)
to fully exploit relevant context from dialogue his-
tory, and an adaptive objective to alleviate the slot
imbalance problem. In CHAN, the slot firstly re-
trieves word-level relevant information from utter-
ances at each turn. Then, these word-level relevant
information will be encoded into contextual rep-
resentations by rich interactions. Finally, the slot
aggregates all contextual representations into turn-
level relevant information and then we combine it
with word-level relevant information to obtain the
outputs. To further enhance the ability to exploit
relevant context, we employ a state transition pre-
diction task to assist DST learning. For the slot
imbalance problem, our adaptive objective can dy-
namically evaluate the difficulties in an accuracy-
sensitive manner and then adaptively adjust the
learning weights for different slots. Thus, it can
balance the learning of all slots as far as possible.

We evaluate the effectiveness of our model on
MultiwOZ 2.0 and MultiWOZ 2.1 datasets. Ex-
perimental results show that our model reaches
52.68% and 58.55% joint accuracy, outperforming
previous state-of-the-art by +1.24% and +5.98 %,
respectively. The ablation study also demonstrates
each module’s effectiveness in our model. Our
contributions are as follows:

e We propose an effective contextual hierarchi-
cal attention network to fully exploit relevant
context from dialogue history and employ a
state transition prediction task to further en-
hance it.

e We design an adaptive objective to address
the slot imbalance problem by dynamically

adjusting the weight of each slot. To the best
of our knowledge, our method is the first to
address the slot imbalance problem in DST.

e Experimental results show that our model
achieves state-of-the-art performance with sig-
nificant improvements over all previous mod-
els.

2 Approach

As shown in Figure 1, the proposed model consists
of three components: 1) the contextual hierarchical
attention network (CHAN); 2) the state transition
prediction module; 3) the adaptive objective. We
share all the model parameters for each slot to keep
our model universal for all slots.

2.1 Problem Statement

Given a dialogue X = {(U1, R1), ..., (Ur, Rr)}
of T  turns where U, represents user utterance and
R, represents system response of turn ¢, we de-
fine the dialogue state at each turn ¢ as B; =
{(s,v),s € S} where S is a set of slots and v;
is the corresponding value of the slot s. Follow-
ing Lee et al. (2019), we use the term “slot” to
refer to the concatenation of a domain name and
a slot name in order to represent both domain and
slot information. For example, “restaurant-food”.
Similar to (Ren et al., 2018; Lee et al., 2019), we
decompose the dialogue state tracking to a multi-
label classification problem where we score each
value with slot-related features in a non-parametric
way and then choose the best candidate. We also
add a literally “none” into the value set of each slot
to represent that no corresponding value is tracked.

2.2 Contextual Hierarchical Attention
Network

Recently the pre-trained BERT language model
(Devlin et al., 2019) shows powerful ability in uni-
versal contextual semantics representation, thus
we employ BERT to encode utterances, slots and
values. To better retrieve relevant context from
dialogue history, we devise Slot-Word Attention
and Slot-Turn Attention to query both relevant key-
words and turns. Specifically, we exploit a Con-
text Encoder between word-level and turn-level
attention to capture contextual representations of
relevant information from dialogue history. Fur-
thermore, we devise a Global-Local Fusion Gate
to balance the information from global context and
local utterances.
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Figure 1: The architecture of our model. At turn ¢, the slot retrieves relevant information among {1, ..., ¢} turns
at both word level and turn level. Specifically, we utilize a context encoder between word level and turn level to
capture the relationships between historical relevant information. Finally, we combine the global relevant context

cturm and local dialogue information c“‘o“’ as outputs. During training, we first train the DST task and the state

transmon prediction task jointly, then fine-tune our model with the adaptive objective.

Sentence Encoder. BERT leverages a special
token [CLS] to aggregate the whole representa-
tion of a sentence and a special token [SEP] to
indicate the end of a sentence. For user utter-
ance U; = {w},...,w;'} and system response
Ry = {wf, ..., w} } at dialogue turn ¢, we concate-
nate them with special tokens and encode them into
contextual word representations h; as follows:

h; = BERTfinetune([Rt; Ut}) (D

where BERT f;pctune means that it will be fine-
tuned during training. Therefore, BERT finetune
will learn a corresponding generalization of sen-
tence representations and adapt to dialogue state
tracking task.

For slot s and value v;, we adopt another pre-
trained BERT ;¢4 to encode them into contextual
semantics vectors h® and hy respectively. Different
from utterances, we use the output vector of the
special token [CLS] to obtain the whole sentence
representation:

h® = BERTfmed(S)
hg = BERTfixed(Ut)

2)

where the weights of BERT f;,.q are fixed dur-
ing training thus our model can be scalable to any
unseen slots and values with sharing the original
BERT representation.

Slot-Word Attention. The slot-word attention is a

multi-head attention (MultiHead(Q, K, V)), which
takes a query matrix Q, a key matrix K and a
value matrix V as inputs. Refer to (Vaswani et al.,
2017) for more details. For each slot s, the slot-
word attention summarizes word-level slot-related
information from each turn ¢ into a d-dimensional

vector c”;”g”d which can be determined as follows:
3)

c¢r = MultiHead(h®, hy, hy)
Context Encoder. The context encoder is a
unidirectional transformer encoder, which is de-
vised to model the contextual relevance of the ex-
tracted word-level slot-related information among
{1,...,t} turns. The context encoder contains
a stack of N identical layers. Each layer has
two sub-layers. The first sub-layer is a masked
multi-head self-attention (MultiHead), in which
Q = K = V. The second sub-layer is a position-
wise fully connected feed-forward network (FFN),
which consists of two linear transformations with a
ReL.U activation (Vaswani et al., 2017).

4)

FFN(z) = max(0, zWj 4 b1)Wa + bo
ctx

Formally, the output of the context encoder c'Z,
can be denoted as follows:

=FFN(MultiHead (m =l mn1y)
In0 _[ word + PE( ) word + PE( )]
c?ﬁt rnN &)
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where m" is the output of the n-th layer of con-
text encoder and PE(-) denotes positional encoding
function. Note that residual connection and layer
normalization are omitted in the formula.
Slot-Turn Attention. To retrieve turn-level rele-
vant information from contextual representation,
we devise a slot-turn attention which is the multi-
head attention as follows:

turn

cgi " = MultiHead (h?, f;‘tﬁt, Cgtit) (6)

Therefore, the model can access word-level and
turn-level relevant information from the historical
dialogues.

Global-Local Fusion Gate. To balance the infor-
mation of global context and local utterances, we
propose to dynamically control each proportion of
contextual information and current turn informa-
tion so that the model can not only benefit from
relevant context but also keep a balance between
global and local representations. Similar to Hochre-
iter and Schmidhuber (1997), we leverage a fusion
gate mechanism, which computes a weight to de-
cide how much global and local information should
be combined according to c“’%”"d and ci,%m. It can
be defined as follows:

gst = (W ® [ word7cgutrn]) (7)
g?&te = gst® C;Uz(fwd +(1—gst) ® Ctum

where W, € R24%d are parameters, o means sig-
moid activation function, ® and ® mean the point-
wise and element-wise multiplication respectively.
Finally, we use a linear projection to obtain query
results with layer normalization and dropout:

05+ = LayerNorm(Linear(Dropout(c gate))) (8)

We follow Ren et al. (2018) to adopt L2 norm
to compute the distance. Therefore, the probability
distribution of value v; and the training objective
can be defined as:

_exp(—|los,t—h{lly)
p(/Ut|U§t7R§t75) — Z eXP(*HOs,t*hy/HQ)
v/ EVg

T
Last = Z Z

seSt=1

—log(p(0¢|U<¢, R<t,5)) (9)

where Vs is the candidate value set of slot s and
Ut € Vs is the ground-truth value of slot s.

2.3 State Transition Prediction

To better capture relevant context, we further in-
troduce an auxiliary binary classification task to
jointly train with DST: State Transition Prediction

(STP), which is to predict if the value for a slot is
updated compared to previous turn. This module

¢ te - .
reads ¢J) and ¢ as inputs and the transition

probability p P can be calculated as follows:
c? = tanh(W.®c?") (10)
t tp. st
pei = o(Wpoleiicii )

where W, € R4 W, € R?? are parameters.
Note that when ¢ = 1, we simply concatenate c;'7
with zero vectors.

For this task, we calculate the binary cross en-
tropy loss between ground-truth transition labels
ye and the transition probability p3'y, which is

defined as follows:
Lotp=) Z —y3t - log(py})
seS t=1

2.4 Adaptive Objective

1D

Essentially, the slot imbalance problem can be con-
sidered as a kind of class imbalance because there is
an imbalance among both different slots and differ-
ent samples. Instead of treating all slots indiscrim-
inately, it is important to balance the learning of
different slots. Recently, Lin et al. (2017) propose
a soft-sampling method, Focal Loss, to re-weight
the losses of different classes.

Inspired by their work, we design a novel adap-
tive objective for DST which evaluates the diffi-
culty from each slot’s accuracy on the validation
set and adaptively adjusts the weight of each slot
during optimization. We define the accuracy of slot
s on validation set as acc?®. Our adaptive objec-
tive is based on the following intuitions:

(DO If accgal < accg,al; then slot s is more difficult
than slot s’. Suppose this slot-level difficulty is
defined as «; then

l—acc““l
S S e D
s'eS
(2)  Suppose there are two samples
{(U, Ry), (s,v)} and  {(Uy,Ry),(s',v¢)}.

If the former confidence is lower than the latter,
then sample {(U:, R:), (s,v¢)} is more difficult
than {(Uy, Ry), (s, vp)}. Suppose this sample-
level difficulty is defined as 3; then

B(s,vr) = (1 —p(s,v))” (13)

where p(s,v¢) is the confidence of sample
{(Ut, Ry), (s,v4)} and ~ is a hyper-parameter.
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Thus, the adaptive objective is defined as follows:

£adapt(37 Ut) = _asﬁ(37 Ut) log(p(s, Ut)) (14)

Focal Loss assigns static learning weights on
slots and doesn’t change them anymore during the
whole training. Compared to Focal Loss, our adap-
tive objective can fit data better by dynamically
evaluate the difficulties in an accuracy-sensitive
manner and then adaptively control the learning
weights for different slots, which is proved in our
experiments. If the difficulty of slot s is greater
than the average difficulty of all slots, o would
increase and enlarge the loss of s. Similarly, the
optimization of sample {(Uy, R;), (s,v;)} with a
low confidence p(s, v;) would be encouraged by
a larger loss. When an epoch ends, the adaptive
objective re-evaluates the difficulty of each slot and
updates «;. Therefore, it can not only encourage
the optimization of those hard slots and samples
but also balance the learning of all slots.

2.5 Optimization

In our model, we firstly jointly train the DST and
STP tasks to convergence and then fine-tune DST
task with the adaptive objective.

During joint training, we optimize the sum of
these two loss functions as following:

Ejoz'nt = ﬁdst + ['stp (15)

At the fine-tuning phase, we adopt the adaptive
objective to fine-tune DST task as following:

T
Efinetune = Z Z ﬁadapt(& @t)

(16)
seS t=1
3 Experiments Setup
3.1 Datasets & Metrics
Hotel Train Attraction Restaurant Taxi
price,
type, L. food,
parking, destination, .
price, L
stay, departure, destination,
area, area,
day, day, departure,
Slots R name, name, R
people, arrive by, . arrive by,
type time,
area, leave at, da leave by
stars, people eoy ,le
internet, peop
name
Train 3381 3103 2717 3813 1654
Valid 416 484 401 438 207
Test 394 494 395 437 195

Table 2: The dataset statistics of MultiwOZ 2.0 & 2.1.

We evaluate our model on MultiwOZ 2.0
(Budzianowski et al., 2018) and MultiwOZ 2.1
(Eric et al., 2019), which are two of the largest

public task-oriented dialogue datasets, including
about 10,000 dialogues with 7 domains and 35
domain-slot pairs. MultiWwOZ 2.1 shares the same
dialogues with MultiWwOZ 2.0 but it fixed previous
annotation errors. The statistics are shown in Ta-
ble 2. Following (Wu et al., 2019), we use only 5
domains {restaurant, hotel, train, attraction, taxi}
excluding hospital and police since these two do-
mains never occur in the test set. We preprocess
the datasets following (Lee et al., 2019).

We use joint accuracy and slot accuracy as our
evaluation metrics. Joint accuracy is the accuracy
of the dialogue state of each turn and a dialogue
state is evaluated correctly only if all the values of
slots are correctly predicted. Slot accuracy only
considers individual slot-level accuracy.

3.2 Baseline Models

We compare our results with the following compet-
itive baselines:
DSTreader proposes to model DST as a machine
reading comprehension task and extract spans from
dialogue history (Gao et al., 2019b).
GLAD-RCEFS uses a heuristic rule to extract rele-
vant turns and lets slot-value pairs to query relevant
context from them (Sharma et al., 2019).
HyST employs a hierarchical encoder and takes a
hybrid way combining both predefined-ontology
and open-vocabulary settings (Goel et al., 2019).
TRADE encodes the whole dialogue context and
decodes the value for every slot using a copy-
augmented decoder (Wu et al., 2019).
DST-QA proposes to model DST as a question an-
swering problem and uses a dynamically-evolving
knowledge graph to learn relationships between
slot pairs (Zhou and Small, 2019).
SOM-DST considers the dialogue state as an ex-
plicit fixed-size memory and proposes a selectively
overwriting mechanism (Kim et al., 2019).
SUMBT exploits BERT as the encoder of the utter-
ances, slots and values. It scores every candidate
slot-value pair in a non-parametric manner using a
distance measurement (Lee et al., 2019).
DST-picklist performs matchings between candi-
date values and slot-context encoding considering
all slots as picklist-based slots (Zhang et al., 2019).
GLAD-RCFS, HyST, SUMBT, DST-picklist are
predefined-ontology models as well as our model
and DSTreader, TRADE, DST-QA, SOM-DST are
open-vocabulary models.

*https://github.com/SKTBrain/SUMBT
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Model Ontology | MultiwOZ 2.0 MultiwOZ 2.1
Joint (%) Slot (%) | Joint (%) Slot (%)

DSTreader (Gao et al., 2019b) X 39.41 - 36.40* -
GLAD-RCFS (Sharma et al., 2019) v 46.31 - - -
HyST (Goel et al., 2019) v 42.33 - 38.10* -
TRADE (Wu et al., 2019) X 48.60 96.92 45.60* -
DST-QA (Zhou and Small, 2019) X 51.44 97.24 51.17 97.21
SOM-DST (Kim et al., 2019) X 51.38 - 52.57 -
SUMBT (Lee et al., 2019) v 48.811 97.33f 52.75% 97.56%
DST-picklist (Zhang et al., 2019) v - - 53.30 -
Our Model v 52.68 97.69 58.55 98.14

Table 3: Joint accuracy & slot accuracy on the test sets of MultiwOZ 2.0 and 2.1. The ontology column indicates
if a model is based on predefined ontology or not. T means the updated results on SUMBT’s GitHub? and { means
our reproduction results using source code of SUMBT 2. * means we borrow results from (Eric et al., 2019).

3.3 Settings

We employ the pre-trained BERT model that has
12 layers of 784 hidden units and 12 self-attention
heads 3. For the multi-head attention, we set heads
count and hidden size to 4 and 784, respectively.
For the context encoder, we set the transformer
layers to 6. We set the max sequence length of all
inputs to 64 and the batch size to 32. In all training,
we use Adam optimizer (Kingma and Ba, 2015)
and set the warmup proportion to 0.1. Specifically,
in the joint training phase, we set the peak learning
rate to le-4. At the fine-tuning phase, we set v to
2, peak learning rate to le-5. The training stopped
early when the validation loss was not improved
for 15 consecutive epochs. For all experiments,
we report the mean joint accuracy over multiple
different random seeds to reduce statistical errors.

4 Experiment Results

4.1 Main Results

Table 3 shows the joint accuracy of our model and
other baselines on the test sets of MultiwOZ 2.0
and 2.1. Our model beats all baselines whether they
are based on predefined ontology or open vocabu-
lary, and achieves 52.68% and 58.55% joint accu-
racy with considerable improvements (1.24% and
5.98%) over previous best results on MultiwOZ
2.0 and 2.1, respectively. Also, our model achieves
97.69% and 98.14% slot accuracy with 0.36% and
0.58% improvements over the previous best results
on MultiWwOZ 2.0 and 2.1, respectively. Similar to
(Kim et al., 2019), we find that our model achieves
much higher improvements on MultiwOZ 2.1 than

31t is published as bert-base-uncased model in
https://github.com/huggingface/pytorch-transformers

Model MultiwOZ 2.1
Our Model 58.55

- state transition prediction 57.86 (-0.69)

- adaptive objective fine-tuning 57.45 (-1.10)

- above two (only CHAN)f 57.00 (-1.55)
Our Model (FL (a=1,y=2))* 58.10 (-0.45)

Table 4: The ablation study of the state transition pre-
diction and the adaptive objective on the MultiwWOZ
2.1 test set with joint accuracy (%). 1 means remov-
ing above two modules and remaining CHAN only. *
means fine-tuning with focal loss instead.

that on MultiwOZ 2.0. This is probably because
MultiWOZ 2.1 fixes lots of notation errors in Mul-
tiWwOZ 2.0 and our model can benefit more from
more accurate relevant context.

4.2 Ablation Study

As shown in Table 4, we estimate the effectiveness
of the proposed state transition prediction and adap-
tive objective on the MultiWwOZ 2.1 test set. The
results show that both state transition prediction
task and adaptive objective can boost the perfor-
mance. Removing the state transition prediction
task reduces joint accuracy by 0.69%, and the joint
accuracy decreases by 1.10% without the adap-
tive objective fine-tuning. Moreover, when we re-
move the state transition prediction task and don’t
fine-tune our model with adaptive objective (only
CHAN remains), the joint accuracy decreases by
1.55%. Also, to explore the importance of adjusting
the o adaptively, we replace the adaptive objec-
tive with original focal loss (w = 1,y = 2), which
leads to 0.45% drop.

To prove the effectiveness of each module of the
proposed CHAN, we conduct ablation experiments
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Dialogue Example

Turn1, U:iam looking for a cheap restaurant in the center of the
city.

Turn 2, R:do you have any specific type of food you would like?
U: no, i' m not picky as long as the prices are low.
Turn 3,  R: there is a cheap chinese restaurant called the dojo noodle

bar located in the centre of town. would you like to book a
table?

U: yes please, for 8 people at 18 : 30 on thursday.

Turn 4, R:iamsorry but dojo noodle bar is solidly booked at that
time. i can try a different time or day for you.
U: can you try to book it at 17 : 30 .

Turn 5, R: all set. your reference number is k2bo09vq.
U: thanks. i ' m also looking for some entertainment close to
the restaurant. any suggestions?
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[SEP]
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[SEP]
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Figure 2: The turn-level and word-level attention visualization of our model on an example from MultiwWOZ 2.1
test set, which is predicting the value of slot “restaurant-name” at the 5th turn. The columns “0,1,2,3” are the
index of each head of multi-head attention. Although there is no slot-related information at 5th turn, our model
still makes the correct prediction by attending to historiacal relevant words “dojo noodle bar” and relevant turns
{3,4}, which is highlighted in red. Best viewed in color.

on the MultiwOZ 2.1 test set as shown in Table
5. We observe that a slight joint accuracy drop of
0.24% after removing the global-local fusion gate,
which proves the effectiveness of fusing global con-
text and local utterances. Moreover, removing the
slot-turn attention and context encoder leads to a
decrease by 0.15% and 1.72% respectively, which
demonstrates that the turn-level relevant informa-
tion and the contextual representations of word-
level relevant information are effective to improve
the performance. Moreover, after we remove the
aforementioned three modules and sum the word-
level relevant information of {1,--- ¢} turns as
output, the joint accuracy reduces by 6.72%, which
is much higher than the sum of above three reduc-
tions. It demonstrates that effectively modeling
interactions with word-level relevant information
of dialogue history is crucial for DST.

4.3 Attention Visualization

Figure 2 shows the visualization of turn-level and
word-level attention of the “restaurant-name” slot
on a prediction example of our model at turn 5. The
turn-level attention visualization indicates that our
model attends to the turns {3, 4} that are semanti-
cally related to the given slots “restaurant-name”

Model MultiwOZ 2.1
CHAN 57.00

- global-local fusion gate  56.76 (-0.24)

- slot-turn attention 56.85 (-0.15)

- context encoder 55.28 (-1.72)

- above three! 50.28 (-6.72)

Table 5: The ablation study of the CHAN on the Mul-
tiWOZ 2.1 test set with joint accuracy (%). ' means
removing above three modules and summing the word-
level relevant information of {1, - - - , ¢} turns as output.

while almost pays no attention to turns {1,2}. And
from the word-level attention visualization, we can
easily find that the “restaurant-name” slot attends
to the “dojo noodle bar” with the highest weight
in both turn 3 and turn 4. Although there is no
slot-related information at turn 5, our model still
makes the correct decision by exploiting relevant
context from the historical dialogue.

4.4 Effects of Adaptive Obj. on Acc. per Slot

As Figure 3 shows, we draw the accuracy changes
of each slot on MultiWOZ 2.1 test set after fine-
tuning our model with adaptive objective. We sort
all slots in ascending order according to their fre-
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Figure 3: The accuracy changes (%) of each slot on the
MultiWOZ 2.1 test set after fine-tuning with adaptive
objective. We sort all slots in ascending order accord-
ing to their frequency (Please refer to Appendix for de-
tailed accuracy results).

quency (The detailed accuracy results are in the
Appendix). Thus, slots on the left side are rela-
tively more difficult than slots on the right side.
After fine-tuning with the adaptive objective, most
slots on the left side achieve significant improve-
ments, which proves the adaptive objective can
encourage the learning of the hard slots. Although
adaptive objective tends to decrease the weight of
slots on the right side, they also benefit from the
fine-tuning. We think that this is because encourag-
ing the optimizing of hard slots enhances our model
by tracking more complicated dialogue states. It
proves that our adaptive objective can not only im-
prove the performance of relatively hard slots but
also boost the performance of relatively easy slots.

4.5 Qualitative Analysis

To explore the advantages of our model compared
to baseline models, we conduct a human evaluation
on a subset of the MultiWOZ 2.1 test set where our
model makes correct predictions while SUMBT
(a previous strong baseline) fails. We predefine
three types of improvements: historical informa-
tion inference improvement which means infer-
ring historical information is necessary for correct
decisions, current information inference improve-
ment which means inferring current information is
enough for correct decisions, and other improve-
ments. As shown in Table 6, 64.49% improvements
come from historical information inference, which
demonstrates that our model can better exploit rele-
vant context from the dialogue history.

5 Related Work

Traditional statistical dialogue state tracking mod-
els combine semantics extracted by spoken lan-

Improvement Type Percentage
Historical Information 64.499%
Inference Improvement
Current  Information 34.86%
Inference Improvement

Others 0.65%

Table 6: Qualitative analysis on the improvements
of our model compared to a previous strong baseline
SUMBT. It is evaluated by human on a subset of Mul-
tiWOZ 2.1 test set where our model makes correct pre-
dictions while SUMBT fails.

guage understanding modules to predict the current
dialogue state (Williams and Young, 2007; Thom-
son and Young, 2010; Wang and Lemon, 2013;
Williams, 2014) or to jointly learn speech under-
standing (Henderson et al., 2014b; Zilka and Jur-
cicek, 2015; Wen et al., 2017). One drawback is
that they rely on hand-crafted features and complex
domain-specific lexicons besides the ontology, and
they are hard to extend and scale to new domains.
Recent neural network models are proposed for
further improvements (Mrksi¢ et al., 2015; Hori
et al., 2016; Mrksi¢ et al., 2017; Lei et al., 2018;
Xu and Hu, 2018; Zhong et al., 2018; Nouri and
Hosseini-Asl, 2018; Wu et al., 2019; Ren et al.,
2019; Balaraman and Magnini, 2019). Ren et al.
(2018) and Lee et al. (2019) use an RNN to encode
the slot-related information of each turn, where
slots can not attend to relevant information of past
turns directly. Sharma et al. (2019) employ a heuris-
tic rule to extract partial dialogue history and then
integrate the historical information into prediction
in a coarse manner. Goel et al. (2019) encode the
dialogue history into a hidden state and then simply
combine it with the slot to make decisions. These
models are deficient in fully exploiting the relevant
context in dialogue history.

Gao et al. (2019b) introduce a slot carryover
model to decide whether the values from the previ-
ous turn should be used or not and Kim et al. (2019)
introduce a state operation predictor to decide the
operation with the previous state. Different from
them, we consider the state transition prediction
as an additional enhancement while they integrate
it into their DST pipelines. Besides, Zhong et al.
(2018) only employ local modules to model the
slot-specific representations, which neglects the
slot imbalance problem.

The general backbone of our model is a hierarchi-
cal attention network that can effectively aggregate
query-related information at multiple levels (Yang

6329



et al., 2016; Ying et al., 2018; Wang et al., 2018;
Xing et al., 2018; Aujogue and Aussem, 2019; Naik
et al., 2018; Liu and Chen, 2019).

6 Conclusion

We introduce an effective model that consists of a
contextual hierarchical attention network to fully
exploit relevant context from dialogue history and
an adaptive objective to alleviate the slot imbalance
problem in dialogue state tracking. Experimental
results show that our model achieves state-of-the-
art performance of 52.68% and 58.55% joint accu-
racy with considerable improvements (+1.24% and
+5.98%) over previous best results on MultiwOZ
2.0 and MultiWOZ2.1 datasets, respectively.

Although our model is based on predefined on-
tology, it is universal and scalable to unseen do-
mains, slots and values. The main contributions
of our model, CHAN and adaptive objective, can
also be applied to open-vocabulary models. We
will explore it in the future.
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A Slot Imbalance

Figure 4 shows the relationships between fre-
quency and accuracy of slots (left) and slot-value
pairs (right). Because the frequency will be the
same for all slots if we consider “none” as well,
we calculate accuracy with “none” value excluded
for slots. Overall, the more the frequency, the
higher the accuracy. It demonstrates that the slot
imbalance problem results in different learning
difficulties for different slots. Moreover, the slot
imbalance problem makes some slots hard to learn
and hence hurts the accuracy, which limits the
overall performance.
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Figure 4: The relationships between frequency and ac-
curacy of slots (left) and slot-value pairs (right). Be-
cause the frequency will be the same for all slots if
we consider “none” as well, we calculate accuracy with
“none” value excluded for slots.

B Acc. per Slot on MultiWwOZ 2.1 Testset

Frequency Our Model without

Domain-Slot . L Our Model A
adaptive objective

taxi-arrive by 1794 99.13 99.25 0.13
taxi-leave at 2165 99.14 99.27 0.13
taxi-departure 4037 98.12 98.37 0.25
taxi-destination 4108 98.1 98.26 0.17
attraction-name 5843 94.16 94.18 0.02
train-book people 6178 97.72 97.76 0.05
restaurant-name 7293 93.67 93.78 0.11
train-arrive by 7488 97.97 97.99 0.02
train-leave at 7563 96.05 96.22 0.16
hotel-internet 8012 97.26 97.16 -0.09
hotel-parking 8179 97.28 97.14 -0.13
hotel-name 8621 95.41 95.52 0.11
hotel-book stay 8715 99.44 99.46 0.01
hotel-book people 8734 99.35 99.28 -0.07
hotel-book day 8745 99.28 99.28 0

restaurant-book time 8958 99.15 99.3 0.16
restaurant-book day 9021 99.31 99.35 0.04
restaurant-book people 9026 99.35 99.35 0

hotel-stars 9330 98.31 98.41 0.1

attraction-area 9766 98.03 98.03 0

hotel-price range 9793 98.69 98.6 -0.09
hotel-type 10110 93.62 94.02 0.41
attraction-type 10525 97.26 97.39 0.12
hotel-area 10885 97.53 97.67 0.15
restaurant-price range 14410 97.66 97.84 0.18
restaurant-area 14741 97.68 97.86 0.19
train-day 15384 99.43 99.42 -0.01
train-departure 15672 98.42 98.48 0.06
train-destination 15951 98.63 98.7 0.07
restaurant-food 16095 97.54 97.61 0.06

Table 7: The detailed results of accuracy (%) per slot
before and after fine-tuning our model with adaptive
objective on MultiWwOZ 2.1 test set. We sort them in
ascending order according to their frequency. A means
the changes of accuracy after fine-tuning.
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