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Abstract

In this paper, we trace the history of neural net-
works applied to natural language understand-
ing tasks, and identify key contributions which
the nature of language has made to the devel-
opment of neural network architectures. We
focus on the importance of variable binding
and its instantiation in attention-based models,
and argue that Transformer is not a sequence
model but an induced-structure model. This
perspective leads to predictions of the chal-
lenges facing research in deep learning archi-
tectures for natural language understanding.

1 Introduction

When neural networks first started being applied to
natural language in the 1980s and 90s, they repre-
sented a radical departure from standard practice
in computational linguistics. Connectionists had
vector representations and learning algorithms, and
they didn’t see any need for anything else. Every-
thing was a point in a vector space, and everything
about the nature of language could be learned from
data. On the other hand, most computational lin-
guists had linguistic theories and the poverty-of-the-
stimulus argument. Obviously some things were
learned from data, but all the interesting things
about the nature of language had to be innate.

A quarter century later, we can say two things
with certainty: they were both wrong. Vector-space
representations and machine learning algorithms
are much more powerful than was thought. Much
of the linguistic knowledge which computational
linguists assumed needed to be innate can in fact
be learned from data. But the unbounded discrete
structured representations they used have not been
replaced by vector-space representations. Instead,
the successful uses of neural networks in computa-
tional linguistics have replaced specific pieces of
computational-linguistic models with new neural

network architectures which bring together contin-
uous vector spaces with structured representations
in ways which are novel for both machine learning
and computational linguistics.

Thus, the great progress which we have made
through the application of neural networks to natu-
ral language processing should not be viewed as a
conquest, but as a compromise. As well as the un-
questionable impact of machine learning research
on NLP, the nature of language has had a profound
impact on progress in machine learning. In this
paper we trace this impact, and speculate on future
progress and its limits.

We start with a sketch of the insights from gram-
mar formalisms about the nature of language, with
their multiple levels, structured representations and
rules. The rules were soon learned with statistical
methods, followed by the use of neural networks
to replace symbols with induced vectors, but the
most effective models still kept structured repre-
sentations, such as syntactic trees. More recently,
attention-based models have replaced hand-coded
structures with induced structures. The resulting
models represent language with multiple levels
of structured representations, much as has always
been done. Given this perspective, we identify re-
maining challenges in learning language from data,
and its possible limitations.

2 Grammar Formalisms versus
Connectionism

2.1 Grammar Formalisms

Our modern understanding of the computational
properties of language started with the introduction
of grammar formalisms. Context Free Grammars
(Chomsky, 1959) illustrated how a formal system
could model the infinite generative capacity of lan-
guage with a bounded grammar. This formalism
soon proved inadequate to account for the diversity
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of phenomena in human languages, and a number
of linguistically-motivated grammar formalisms
were proposed (e.g HPSG (Pollard and Sag, 1987),
TAG (Joshi, 1987), CCG (Steedman, 2000)).

All these grammar formalisms shared certain
properties, motivated by the understanding of the
nature of languages in Linguistics. They all postu-
late representations which decompose an utterances
into a set of sub-parts, with labels of the parts and a
structure of inter-dependence between them. And
they all assume that this decomposition happens
at multiple levels of representation. For example
that spoken utterances can be decomposed into sen-
tences, sentences can be decomposed into words,
words can be decomposed into morphemes, and
morphemes can be decomposed into phonemes, be-
fore we reach the observable sound signal. In the
interests of uniformity, we will refer to the sub-
parts in each level of representation as its entities,
their labels as their properties, and their structure of
inter-dependence as their relations. The structure
of inter-dependence between entities at different
levels will also be referred to as relations.

In addition to these representations, grammar
formalisms include specifications of the allowable
structures. These may take the form of hard con-
straints or soft objectives, or of deterministic rules
or stochastic processes. In all cases, the purpose of
these specifications is to account for the regulari-
ties found in natural languages. In the interests of
uniformity, we will refer to all these different kinds
of specifications of allowable structures as rules.
These rules may apply within or between levels of
representation.

In addition to explicit rules, computational lin-
guistic formalisms implicitly make claims about
the regularities found in natural languages through
their expressive power. Certain types of rules sim-
ply cannot be specified, thus claiming that such
rules are not necessary to capture the regularities
found in any natural language. These claims differ
across formalisms, but the study of the expressive
power of grammar formalisms have identified cer-
tain key principles (Joshi et al., 1990). Firstly, that
the set of rules in a given grammar is bounded.
This in turn implies that the set of properties and
relations in a given grammar is also bounded.

But language is unbounded' in nature, since sen-
tences and texts can be arbitrarily long. Grammar

'A set of things (e.g. the sentences of a language) have

unbounded size if for any finite size there is always some
element in the set which is larger than that.

formalisms capture this unboundedness by allow-
ing an unbounded number of entities in a repre-
sentation, and thus an unbounded number of rule
applications. It is generally accepted that the num-
ber of entities grows linearly with the length of the
sentence (Joshi et al., 1990), so each level can have
at most a number of entities which is linear in the
number of entities at the level(s) below.

Computational linguistic grammar formalisms
also typically assume that the properties and rela-
tions are discrete, called symbolic representations.
These may be atomic categories, as in CFGs, TAGs,
CCG and dependency grammar, or they may be fea-
ture structures, as in HPSG.

2.2 Connectionism

Other researchers who were more interested in the
computational properties of neurological systems
found this reliance on discrete categorical repre-
sentations untenable. Processing in the brain used
real-valued representations distributed across many
neurons. Based on successes following the de-
velopment of multi-layered perceptrons (MLPs)
(Rumelhart et al., 1986b), an approach to mod-
elling cognitive phenomena was developed called
connectionism. Connectionism uses vector-space
representations to reflect the distributed continuous
nature of representations in the brain. Similarly,
their rules are specified with vectors of continu-
ous parameters. MLPs are so powerful that they
are arbitrary function approximators (Hornik et al.,
1989). And thanks to backpropagation learning
(Rumelhart et al., 1986a) in neural network mod-
els, such as MLPs and Simple Recurrent Networks
(SRNs) (Elman, 1990), these vector-space repre-
sentations and rules could be learned from data.

The ability to learn powerful vector-space repre-
sentations from data led many connectionist to ar-
gue that the complex discrete structured representa-
tions of computational linguistics were neither nec-
essary nor desirable (e.g. Smolensky (1988, 1990);
Elman (1991); Miikkulainen (1993); Seidenberg
(2007)). Distributed vector-space representations
were thought to be so powerful that there was no
need for anything else. Learning from data made
linguistic theories irrelevant. (See also (Collobert
and Weston, 2008; Collobert et al., 2011; Sutskever
et al., 2014) for more recent incarnations.)

The idea that vector-space representations are
adequate for natural language and other cognitive
phenomena was questioned from several directions.
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From neuroscience, researchers questioned how a
simple vector could encode features of more than
one thing at a time. If we see a red square to-
gether with a blue triangle, how do we represent
the difference between that and a red triangle with
a blue square, since the vector elements for red,
blue, square and triangle would all be active at the
same time? This is known as the variable bind-
ing problem, so called because variables are used
to do this binding in symbolic representations, as
in red(x) A triangle(z) A blue(y) A square(y).
One proposal has been that the precise timing of
neuron activation spikes could be used to encode
variable binding, called Temporal Synchrony Vari-
able Binding (von der Malsburg, 1981; Shastri and
Ajjanagadde, 1993). Neural spike trains have both
a phase and a period, so the phase could be used
to encode variable binding while still allowing the
period to be used for sequential computation. This
work indicated how entities could be represented
in a neurally-inspired computational architecture.

The adequacy of vector-space representations
was also questioned based on the regularities found
in natural language. In particular, Fodor and
Pylyshyn (1988) argued that connectionist architec-
tures were not adequate to account for regularities
which they characterised as systematicity (see also
(Smolensky, 1990; Fodor and McLaughlin, 1990)).
In essence, systematicity requires that learned rules
generalise in a way that respects structured repre-
sentations. Here again the issue is representing
multiple entities at the same time, but with the ad-
ditional requirement of representing the structural
relationships between these entities. Only rules
which are parameterised in terms of such represen-
tations can generalise in a way which accounts for
the generalisations found in language.

Early work on neural networks for natural lan-
guage recognised the significance of variable bind-
ing for solving the issues with systematicity (Hen-
derson, 1996, 2000). Henderson (1994, 2000) ar-
gued that extending neural networks with temporal
synchrony variable binding made them powerful
enough to account for the regularities found in lan-
guage. Using time to encode variable bindings
means that learning could generalise in a linguis-
tically appropriate way (Henderson, 1996), since
rules (neuronal synapses) learned for one variable
(time) would systematically generalise to other vari-
ables. Although relations were not stored explicitly,
it was claimed that for language understanding it is

adequate to recover them from the features of the
entities (Henderson, 1994, 2000). But these argu-
ments were largely theoretical, and it was not clear
how they could be incorporated in learning-based
architectures.

2.3 Statistical Models

Although researchers in computational linguistics
did not want to abandon their representations, they
did recognise the importance of learning from data.
The first successes in this direction came from
learning rules with statistical methods, such as
part-of-speech tagging with hidden Markov mod-
els. For syntactic parsing, the development of the
Penn Treebank led to many statistical models which
learned the rules of grammar (Collins, 1997, 1999;
Charniak, 1997; Ratnaparkhi, 1999).

These statistical models were very successful
at learning from the distributions of linguistic rep-
resentations which had been annotated in the cor-
pus they were trained on. But they still required
linguistically-motivated designs to work well. In
particular, feature engineering is necessary to make
sure that these statistical machine-learning method
can search a space of rules which is sufficiently
broad to include good models but sufficiently nar-
row to allow learning from limited data.

3 Inducing Features of Entities

Early work on neural networks for natural lan-
guage recognised the potential of neural networks
for learning the features as well, replacing feature
engineering. But empirically successful neural net-
work models for NLP were only achieved with
approaches where the neural network was used to
model one component within an otherwise tradi-
tional symbolic NLP model.

The first work to achieve empirical success in
comparison to non-neural statistical models was
work on language modelling. Bengio et al. (2001,
2003) used an MLP to estimate the parameters of
an n-gram language model, and showed improve-
ments when interpolated with a statistical n-gram
language model. A crucial innovation of this model
was the introduction of word embeddings. The idea
that the properties of a word could be represented
by a vector reflecting the distribution of the word
in text was introduced earlier in non-neural statisti-
cal models (e.g. (Deerwester et al., 1990; Schiitze,
1993; Burgess, 1998; Pad6 and Lapata, 2007; Erk,
2010)). This work showed that similarity in the
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PTB Constituents
model LP LR |F1
Costa et al. (2001) PoS |57.8 64.9|61.1
Henderson (2003) PoS |83.3 84.3|83.8
Henderson (2003) 88.8 89.5(89.1
Henderson (2004) 89.8 90.4190.1
Vinyals et al. (2015) seq2seq <70
Vinyals et al. (2015) attn 88.3
Vinyals et al. (2015) seq2seq semisup 90.5
CoNLLO09 Dependencies
model (transition-based) UAS |LAS
Titov and Henderson (2007a)* 91.44|88.65
Chen and Manning (2014)* 89.17|86.49
Yazdani and Henderson (2015) 90.75|88.14
Stanford Dependencies

model (transition-based) UAS |LAS
Chen and Manning (2014) 91.8089.60
Dyer et al. (2015) 93.10]90.90
Andor et al. (2016) 94.61192.79
Kiperwasser and Goldberg (2016) 93.9 |91.9
Mohammadshahi and Henderson (2019) BERT |95.63|93.81

Table 1: Some neural network parsing results
on Penn Treebank WSJ. LP/LR/F1: labelled con-
stituent precision/recall/F-measure. UAS/LAS: unla-
belled/labelled dependency accuracy. *results re-
ported in (Yazdani and Henderson, 2015).

resulting vector space is correlated with semantic
similarity. Learning vector-space representations of
words with neural networks (rather than SVD) have
showed similar effects (e.g. (Turian et al., 2010;
Mikolov et al., 2013; Levy et al., 2015; Pennington
et al., 2014)), resulting in impressive improvements
for many NLP tasks.

More recent work has used neural network lan-
guage models to learn context-dependent embed-
dings of words. We will refer to such context-
dependent embeddings as token embeddings. For
example, Peters et al. (2018) train a stacked BiL-
STM language model, and these token embeddings
have proved effective in many tasks. More such
models will be discussed below.

For syntactic parsing, early connectionist ap-
proaches (Jain, 1991; Miikkulainen, 1993; Ho and
Chan, 1999; Costa et al., 2001) had limited success.
The first neural network models to achieve em-
pirical success used a recurrent neural network to
model the derivation structure of a traditional syn-
tactic constituency parser (Henderson, 2003, 2004).
The recurrent neural network learns to model the
sequence of parser actions, estimating the proba-
bility of the next parser action given the history
of previous parser actions. This allows the decod-
ing algorithm from the traditional parsing model
to be used to efficiently search the space of possi-

ble parses. These models have also been applied
to syntactic dependency parsing (Titov and Hen-
derson, 2007b; Yazdani and Henderson, 2015) and
joint syntactic-semantic dependency parsing (Hen-
derson et al., 2013).

Crucially, these neural networks do not model
the sequence of parser decisions as a flat sequence,
but instead model the derivation structure it speci-
fies. A derivation structure includes relationships
for the inter-dependencies between nodes in the
parse tree. The pattern of interconnections be-
tween hidden layers of the recurrent neural network
(henceforth referred to as the model structure) is
designed to follow locality in this derivation struc-
ture, thereby giving the neural network a linguis-
tically appropriate inductive bias. More recently,
Dyer et al. (2015) provide a more direct relation-
ship between the derivation structure and the model
structure with their StackLSTM parsing model.

In all these models, the use of recurrent neural
networks allows arbitrarily large parse structures
to be modelled without making any hard indepen-
dence assumptions, in contrast to non-neural statis-
tical models. Feed-forward neural networks have
also been applied to modelling the derivation struc-
ture (Chen and Manning, 2014), but the accuracy
is worse than using recurrent models (see Table 1),
presumably because such models suffer from the
need to make hard independence assumptions.

Representing the parse tree as a derivation se-
quence, rather than a derivation structure, makes it
possible to define syntactic parsing as a sequence-
to-sequence problem, mapping the sentence to its
parse sequence. If a neural network architecture
for modelling sequences (called seg2seq models)
can perform well at this task, then maybe the
structured linguistic representations of natural lan-
guage are not necessary (contrary to Fodor and
Pylyshyn (1988)), not even to predict those struc-
tures. Vinyals et al. (2015) report very poor results
for seq2seq models when trained on the standard
dataset, but good results when trained on very large
automatically-parsed corpora (see Table 1 semisup).
They only achieve good results with the limited
standard dataset by adding attention, which we will
argue below makes the model no longer a seq2seq
model. This indicates that structured representa-
tions really do capture important generalisations
about language.”

See (Collobert and Weston, 2008; Collobert et al., 2011)
for an earlier related line of work.
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In contrast to seq2seq models, there have also
been neural network models of parsing which di-
rectly represent linguistic structure, rather than just
derivation structure, giving them induced vector
representations which map one-to-one with the en-
tities in the linguistic representation. Typically, a
recursive neural network is used to compute em-
beddings of syntactic constituents bottom-up. Dyer
et al. (2015) showed improvements by adding these
representations to a model of the derivation struc-
ture. Socher et al. (2013a) only modelled the lin-
guistic structure, making it difficult to do decoding
efficiently. But the resulting induced constituent
embeddings have a clear linguistic interpretation,
making it easier to use them within other tasks,
such as sentiment analysis (Socher et al., 2013b).
Similarly, models based on Graph Convolutional
Networks have induced embeddings with clear lin-
guistic interpretations within pre-defined model
structures (e.g. (Marcheggiani and Titov, 2017;
Marcheggiani et al., 2018)).

All these results demonstrate the incredible effec-
tiveness of inducing vector-space representations
with neural networks, relieving us from the need to
do feature engineering. But neural networks do not
relieve us of the need to understand the nature of
language when designing our models. Instead of
feature engineering, these results show that the best
accuracy is achieved by engineering the inductive
bias of deep learning models through their model
structure. By designing a hand-coded model struc-
ture which reflects the linguistic structure, locality
in the model structure can reflect locality in the lin-
guistic structure. The neural network then induces
features of the entities in this model structure.

4 Inducing Relations between Entities

With the introduction of attention-based models,
the model structure can now be learned. By choos-
ing the nodes to be linguistically-motivated entities,
learning the model structure in effect learns the sta-
tistical inter-dependencies between entities, which
is what we have been referring to as relations.

4.1 Attention-Based Models and Variable
Binding

The first proposal of an attention-based neural

model learned a soft alignment between the tar-

get and source words in neural machine translation

(NMT) (Bahdanau et al., 2015). The model struc-

ture of the source sentence encoder and the model

structure of the target sentence decoder are both flat
sequences, but when each target word is generated,
it computes attention weights over all source words.
These attention weights directly express how target
words are correlated with source words, and in this
sense can be seen as a soft version of the alignment
structure. In traditional statistical machine trans-
lation, this alignment structure is determined with
a separate alignment algorithm, and then frozen
while training the model. In contrast, the attention-
based NMT model learns the alignment structure
jointly with learning the encoder and decoder, in-
side the deep learning architecture (Bahdanau et al.,
2015).

This attention-based approach to NMT was also
applied to mapping a sentence to its syntactic parse
(Vinyals et al., 2015). The attention function learns
the structure of the relationship between the sen-
tence and its syntactic derivation sequence, but
does not have any representation of the structure
of the syntactic derivation itself. Empirical results
are much better than their seq2seq model (Vinyals
et al., 2015), but not as good as models which ex-
plicitly model both structures (see Table 1).

The change from the sequential LSTM decoders
of previous NMT models to LSTM decoders with
attention seems like a simple addition, but it fun-
damentally changes the kinds of generalisations
which the model is able to learn. At each step in
decoding, the state of a sequential LSTM model
is a single vector, whereas adding attention means
that the state needs to include the unboundedly
large set of vectors being attended to. This use of
an unbounded state is more similar to the above
models with predefined model structure, where an
unboundedly large stack is needed to specify the
parser state. This change in representation leads to
a profound change in the generalisations which can
be learned. Parameterised rules which are learned
when paying attention to one of these vectors (in
the set or in the stack) automatically generalise to
the other vectors. In other words, attention-based
models have variable binding, which sequential
LSTMs do not. Each vector represents the fea-
tures for one entity, multiple entities can be kept
in memory at the same time, and rules generalise
across these entities. In this sense it is wrong to
refer to attention-based models as sequence mod-
els; they are in fact induced-structure models. We
will expand on this perspective in the rest of this
section.
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4.2 Transformer and Systematicity

The generality of attention as a structure-induction
method soon became apparent, culminated in
the development of the Transformer architecture
(Vaswani et al., 2017). Transformer has multiple
stacked layers of self-attention (attention to the
other words in the same sequence), interleaved with
nonlinear functions applied to individual vectors.
Each attention layer has multiple attention heads,
allowing each head to learn a different type of re-
lation. A Transformer-encoder has one column of
stacked vectors for each position in the input se-
quence, and the model parameters are shared across
positions. A Transformer-decoder adds attention
over an encoded text, and predicts words one at a
time after encoding the prefix of previously gener-
ated words.

Although it was developed for encoding and gen-
erating sequences, in Transformer the sequential
structure is not hard-coded into the model struc-
ture, unlike previous models of deep learning for
sequences (e.g. LSTMs (Hochreiter and Schmidhu-
ber, 1997) and CNNs (LeCun and Bengio, 1995)).
Instead, the sequential structure is input in the form
of position embeddings. In our formulation, posi-
tion embeddings are just properties of individual
entities (typically words or subwords). As such,
these inputs facilitate learning about absolute posi-
tions. But they are also designed to allow the model
to easily calculate relative position between entities.
This allows the model’s attention functions to learn
to discover the relative position structure of the
underlying sequence. In fact, explicitly inputting
relative position relations as embeddings into the
attention functions works even better (Shaw et al.,
2018) (discussed further below). Whether input
as properties or as relations, these inputs are just
features, not hard-coded model structure. The at-
tention weight functions can then learn to use these
features to induce their own structure.

The appropriateness and generality for natural
language of the Transformer architecture became
even more apparent with the development of pre-
trained Transformer models like BERT (Devlin
et al., 2019). BERT models are large Transformer
models trained mostly on a masked language model
objective, as well as a next-sentence prediction ob-
jective. After training on a very large amount of un-
labelled text, the resulting pretrained model can be
fine tuned for various tasks, with very impressive
improvements in accuracy across a wide variety

of tasks. The success of BERT has led to vari-
ous analyses of what it has learned, including the
structural relations learned by the attention func-
tions. Although there is no exact mapping from
these structures to the structures posited by linguis-
tics, there are clear indications that the attention
functions are learning to extract linguistic relations
(Voita et al., 2019; Tenney et al., 2019; Reif et al.,
2019).

With variable binding for the properties of enti-
ties and attention functions for relations between
entities, Transformer can represent the kinds of
structured representations argued for above. With
parameters shared across entities and sensitive to
these properties and relations, learned rules are
parameterised in terms of these structures. Thus
Transformer is a deep learning architecture with
the kind of generalisation ability required to exhibit
systematicity, as in (Fodor and Pylyshyn, 1988).

Interestingly, the relations are not stored explic-
itly. Instead they are extracted from pairs of vec-
tors by the attention functions, as with the use of
position embeddings to compute relative position
relations. For the model to induce its own structure,
lower levels must learn to embed its relations in
pairs of token embeddings, which higher levels of
attention then extract.

That Transformer learns to embed relations in
pairs of token embeddings is apparent from re-
cent work on dependency parsing (Kondratyuk
and Straka, 2019; Mohammadshahi and Hender-
son, 2019, 2020). Earlier models of dependency
parsing successfully use BILSTMs to embed syn-
tactic dependencies in pairs of token embeddings
(e.g. (Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2016)), which are then extracted to pre-
dict the dependency tree. Mohammadshahi and
Henderson (2019, 2020) use their proposed Graph-
to-Graph Transformer to encode dependencies in
pairs of token embeddings, for transition-based
and graph-based dependency parsing respectively.
Graph-to-Graph Transformer also inputs previously
predicted dependency relations into its attention
functions (like relative position encoding (Shaw
et al., 2018)). These parsers achieve state of the
art accuracies, indicating that Transformer finds it
easy to input and predict syntactic dependency rela-
tions via pairs of token embeddings. Interestingly,
initialising the model with pretrained BERT re-
sults in large improvements, indicating that BERT
representations also encode syntactically-relevant
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relations in pairs of token embeddings.

4.3 Nonparametric Representations

As we have seen, the problem with vector-space
models is not simply about representations, but
about the way learned rules generalise. In work on
grammar formalisms, generalisation is analysed by
looking at the unbounded case, since any bounded
case can simply be memorised. But the use of
continuous representations does not fit well with
the theory of grammar formalisms, which assumes
a bounded vocabulary of atomic categories. In-
stead we propose an analysis of the generalisation
abilities of Transformer in terms of theory from ma-
chine learning, Bayesian nonparametric learning
(Jordan, 2010). We argue that the representations
of Transformer are the minimal nonparametric ex-
tension of a vector space.

To connect Transformer to Bayesian probabili-
ties, we assume that a Transformer representation
can be thought of as the parameters of a probabil-
ity distribution. This is natural, since a model’s
state represents a belief about the input, and in
Bayesian approaches beliefs are probability distri-
butions. From this perspective, computing a rep-
resentation is inferring the parameters of a proba-
bility distribution from the observed input. This
is analogous to Bayesian learning, where we infer
the parameters of a distribution over models from
observed training data. In this section, we outline
how theory from Bayesian learning helps us under-
stand how the representations of Transformer lead
to better generalisation.

We do not make any specific assumptions about
what probability distributions are specified by a
Transformer representation, but it is useful to keep
in mind an example. One possibility is a mixture
model, where each vector specifies the parame-
ters of a multi-dimensional distribution, and the
total distribution is the weighted sum across the
vectors of these distributions. For example, we
can interpret the vectors x=x1, ..., x, in a Trans-
former’s representation as specifying a belief about
the queries ¢ that will be received from a down-
stream attention function, as in:

P(qlr) = ZP(Z'!%’) P(q|x:)
P(ilz) = exp(3||z:|]*) / ZGXP(%H%HQ)
P(qlz;) = N(q; p=x;,0=1)

With this interpretation of z, we can use the fact

that P(i|z,q) o< P(i|z) P(q|z;) o< exp(q-z;) (ig-
noring factors independent of ¢) to reinterpret a
standard attention function.

Since Transformer has a discrete segmentation of
its representation into positions (which we call enti-
ties), but no explicit representation of structure, we
can think of this representation as a bag of vectors
(BoV, i.e. a set of instances of vectors). Each layer
has a BoV representation, which is aligned with
the BoV representation below it. The final output
only becomes a sequence if the downstream task
imposes explicit sequential structure on it, which
attention alone does not.

These bag of vector representations have two
very interesting properties for natural language.
First, the number of vectors in the bag can grow
arbitrarily large, which captures the unbounded na-
ture of language. Secondly, the vectors in the bag
are exchangeable, in the sense of Jordan (2010).
In other words, renumbering the indices used to
refer to the different vectors will not change the
interpretation of the representation.’ This is be-
cause the learned parameters in Transformer are
shared across all positions. These two properties
are clearly related; exchangeability allows learning
to generalise to unbounded representations, since
there is no need to learn about indices which are
not in the training data.

These properties mean that BoV representations
are nonparametric representations. In other words,
the specification of a BoV representation cannot
be done just by choosing values for a fixed set of
parameters. The number of parameters you need
grows with the size of the bag. This is crucial
for language because the amount of information
conveyed by a text grows with the length of the
text, so we need nonparametric representations.

To illustrate the usefulness of this view of BoVs
as nonparametric representations, we propose to
use methods from Bayesian learning to define a
prior distribution over BoVs where the size of
the bag is not known. Such a prior would be
needed for learning the number of entities in a
Transformer representation, discussed below, using
variational Bayesian approaches. For this exam-
ple, we will use the above interpretation of a BoV
x={z; | 1<i<k} as specifying a distribution over
queries, P(q|z)=>_, P(i|lz)P(q|z;). A prior dis-
tribution over these P(q|z) distributions can be

3These indices should not be confused with position em-

beddings. In fact, position embeddings are needed precisely
because the indices are meaningless to the model.
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specified, for example, with a Dirichlet Process,
DP(a,Gp). The concentration parameter a con-
trols the generation of a sequence of probabilities
p1, P2, - - ., which correspond to the P(i|z) distri-
bution (parameterised by the ||z;||). The base dis-
tribution G controls the generation of the P(q|z;)
distributions (parameterised by the x;).

The use of exchangeability to support generali-
sation to unbounded representations implies a third
interesting property, discrete segmentation into en-
tities. In other words, the information in a BoV
is spread across an integer number of vectors. A
vector cannot be half included in a BoV; it is either
included or not. In changing from a vector space
to a bag-of-vector space, the only change is this
discrete segmentation into entities. In particular,
no discrete representation of structure is added to
the representation. Thus, the BoV representation
of Transformer is the minimal nonparametric ex-
tension of a vector space.

With this minimal nonparametric extension,
Transformer is able to explicitly represent enti-
ties and their properties, and implicitly represent a
structure of relations between these entities. The
continuing astounding success of Transformer in
natural language understanding tasks suggests that
this is an adequate deep learning architecture for
the kinds of structured representations needed to
account for the nature of language.

5 Looking Forward: Inducing Levels
and their Entities

As argued above, the great success of neural net-
works in NLP has not been because they are radi-
cally different from pre-neural computational theo-
ries of language, but because they have succeeded
in replacing hand-coded components of those mod-
els with learned components which are specifically
designed to capture the same generalisations. We
predict that there is at least one more hand-coded
aspect of these models which can be learned from
data, but question whether they all can be.
Transformer can learn representations of entities
and their relations, but current work (to the best of
our knowledge) all assumes that the set of entities is
a predefined function of the text. Given a sentence,
a Transformer does not learn how many vectors it
should use to represent it. The number of positions
in the input sequence is given, and the number
of token embeddings is the same as the number
of input positions. When a Transformer decoder

generates a sentence, the number of positions is
chosen by the model, but it is simply trying to guess
the number of positions that would have been given
if this was a training example. These Transformer
models never try to induce the number of token
embeddings they use in an unsupervised way.*

Given that current models hard-code different
token definitions for different tasks (e.g. character
embeddings versus word embeddings versus sen-
tence embeddings), it is natural to ask whether a
specification of the set of entities at a given level
of representation can be learned. There are models
which induce the set of entities in an input text, but
these are (to the best of our knowledge) not learned
jointly with a downstream deep learning model.
Common examples include BPE (Sennrich et al.,
2016) and unigram language model (Kudo, 2018),
which use statistics of character n-grams to decide
how to split words into subwords. The resulting
subwords then become the entities for a deep learn-
ing model, such as Transformer (e.g. BERT), but
they do not explicitly optimise the performance of
this downstream model. In a more linguistically-
informed approach to the same problem, statistical
models have been proposed for morphology induc-
tion (e.g. (Elsner et al., 2013)). Also, Semi-Markov
CRF models (Sarawagi and Cohen, 2005) can learn
segmentations of an input string, which have been
used in the output layers of neural models (e.g.
(Kong et al., 2015)). The success of these models
in finding useful segmentations of characters into
subwords suggests that learning the set of entities
can be integrated into a deep learning model. But
this task is complicated by the inherently discrete
nature of the segmentation into entities. It remains
to find effective neural architectures for learning
the set of entities jointly with the rest of the neu-
ral model, and for generalising such methods from
the level of character strings to higher levels of
representation.

The other remaining hand-coded component of
computational linguistic models is levels of repre-
sentation. Neural network models of language typ-
ically only represent a few levels, such as the char-
acter sequence plus the word sequence, the word
sequence plus the syntax tree, or the word sequence
plus the syntax tree plus the predicate-argument
structure (Henderson et al., 2013; Swayamdipta

“Recent work on inducing sparsity in attention weights
(Correia et al., 2019) effectively learns to reduce the number
of entities used by individual attention heads, but not by the
model as a whole.
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et al., 2016). And these levels and their entities
are defined before training starts, either in pre-
processing or in annotated data. If we had methods
for inducing the set of entities at a given level (dis-
cussed above), then we could begin to ask whether
we can induce the levels themselves.

One common approach to inducing levels of rep-
resentation in neural models is to deny it is a prob-
lem. Seq2seq and end2end models typically take
this approach. These models only include represen-
tations at a lower level, both for input and output,
and try to achieve equivalent performance to mod-
els which postulate some higher level of represen-
tation (e.g. (Collobert and Weston, 2008; Collobert
et al., 2011; Sutskever et al., 2014; Vinyals et al.,
2015)). The most successful example of this ap-
proach has been neural machine translation. The
ability of neural networks to learn such models is
impressive, but the challenge of general natural
language understanding is much greater than ma-
chine translation. Nonetheless, models which do
not explicitly model levels of representation can
show that they have learned about different levels
implicitly (Peters et al., 2018; Tenney et al., 2019).

We think that it is far more likely that we will
be able to design neural architectures which induce
multiple levels of representation than it is that we
can ignore this problem entirely. However, it is
not at all clear that even this will be possible. Un-
like the components previously learned, no linguis-
tic theory postulates different levels of representa-
tion for different languages. Generally speaking,
there is a consensus that the levels minimally in-
clude phonology, morphology, syntactic structure,
predicate-argument structure, and discourse struc-
ture. This language-universal nature of levels of
representation suggests that in humans the levels
of linguistic representation are innate. This draws
into question whether levels of representation can
be learned at all. Perhaps they are innate because
human brains are not able to learn them from data.
If so, perhaps it is the same for neural networks,
and so attempts to induce levels of representation
are doomed to failure.

Or perhaps we can find new neural network archi-
tectures which are even more powerful than what is
now thought possible. It wouldn’t be the first time!

6 Conclusions

We conclude that the nature of language has influ-
enced the design of deep learning architectures in

fundamental ways. Vector space representations
(as in MLPs) are not adequate, nor are vector spaces
which evolve over time (as in LSTMs). Attention-
based models are fundamentally different because
they use bag-of-vector representations. BoV rep-
resentations are nonparametric representations, in
that the number of vectors in the bag can grow ar-
bitrarily large, and these vectors are exchangeable.

With BoV representations, attention-based neu-
ral network models like Transformer can model the
kinds of unbounded structured representations that
computational linguists have found to be necessary
to capture the generalisations in natural language.
And deep learning allows many aspects of these
structured representations to be learned from data.

However, successful deep learning architectures
for natural language currently still have many hand-
coded aspects. The levels of representation are
hand-coded, based on linguistic theory or available
resources. Often deep learning models only address
one level at a time, whereas a full model would
involve levels ranging from the perceptual input to
logical reasoning. Even within a given level, the
set of entities is a pre-defined function of the text.

This analysis suggests that an important next
step in deep learning architectures for natural lan-
guage understanding will be the induction of enti-
ties. It is not clear what advances in deep learning
methods will be necessary to improve over our
current fixed entity definitions, nor whether the re-
sulting entities will be any different from the ones
postulated by linguistic theory. If we can induce
the entities at a given level, a more challenging
task will be the induction of the levels themselves.
The presumably-innate nature of linguistic levels
suggests that this might not even be possible.

But of one thing we can be certain: the immense
success of adapting deep learning architectures to
fit with our computational-linguistic understanding
of the nature of language will doubtless continue,
with greater insights for both natural language pro-
cessing and machine learning.
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