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Abstract

We present a constituency parsing algorithm
that, like a supertagger, works by assigning
labels to each word in a sentence. In order
to maximally leverage current neural architec-
tures, the model scores each word’s tags in par-
allel, with minimal task-specific structure. Af-
ter scoring, a left-to-right reconciliation phase
extracts a tree in (empirically) linear time. Our
parser achieves 95.4 F1 on the WSJ test set
while also achieving substantial speedups com-
pared to current state-of-the-art parsers with
comparable accuracies.

1 Introduction

Recent progress in NLP, and practical machine
learning applications more generally, has been
driven in large part by increasing availability of
compute. These advances are made possible by
an ecosystem of specialized hardware accelerators
such as GPUs and TPUs, highly tuned kernels
for executing particular operations, and the abil-
ity to amortize computational costs across tasks
through approaches such as pre-training and multi-
task learning. This places particular demands for
a model to be efficient: it must parallelize, it must
maximally use standard subcomponents that have
been heavily optimized, but at the same time it
must adequately incorporate task-specific insights
and inductive biases.

Against this backdrop, constituency parsing
stands as a task where custom architectures are
prevalent and parallel execution is limited. State-
of-the-art approaches use custom architecture com-
ponents, such as the tree-structured networks of
RNNG (Dyer et al., 2016) or the per-span MLPs in
chart parsers (Stern et al., 2017; Kitaev et al., 2019).
Approaches to inference range from autoregressive
generation, to cubic-time CKY, to A* search – none
of which are readily parallelizable. Our goal is to

demonstrate a parsing algorithm that makes effec-
tive use of the latest hardware. The desiderata
for our approach are (a) to maximize parallelism,
(b) to minimize task-specific architecture design,
and (c) to lose as little accuracy as possible com-
pared to a state-of-the-art highly-specialized model.
To do this, we propose an algorithm that reduces
parsing to tagging, where all tags are predicted in
parallel using a standard model architecture such as
BERT (Devlin et al., 2019). Tagging is followed by
a minimal inference procedure that is fast enough
to schedule on the CPU because it runs in linear
time with low constant factors (subject to mild as-
sumptions).

2 Related Work

Label-based parsing A variety of approaches
have been proposed to mostly or entirely reduce
parsing to a sequence labeling task. One family
of these approaches is supertagging (Bangalore
and Joshi, 1999), which is particularly common for
CCG parsing. CCG imposes constraints on which
supertags may form a valid derivation, necessitat-
ing complex search procedures for finding a high-
scoring sequence of supertags that is self-consistent.
An example of how such a search procedure can
be implemented is the system of Lee et al. (2016),
which uses A∗ search. This search procedure is not
easily parallelizable on GPU-like hardware, and
has a worst-case serial running time that is expo-
nential in the sentence length. Gómez-Rodrı́guez
and Vilares (2018) propose a different approach
that fully reduces parsing to sequence labeling, but
the label set size is unbounded: it expands with
tree depth and related properties of the input, rather
than being fixed for any given language. There
have been attempts to address this by adding re-
dundant labels, where the model learns to switch
between tagging schemes in an attempt to avoid
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the problem of unseen labels (Vilares et al., 2019),
but that only increases the label inventory rather
than restricting it to a finite set. Our approach, on
the other hand, uses just 4 labels in its simplest
formulation (hence the name tetra-tagging).

Shift-reduce transition systems A number of
parsers proposed in the literature can be catego-
rized as shift-reduce parsers (Henderson, 2003;
Sagae and Lavie, 2005; Zhang and Clark, 2009;
Zhu et al., 2013). These systems rely on generating
sequences of actions, which need not be evenly dis-
tributed throughout the sentence. For example, the
construction of a deep right-branching tree might
involve a series of shift actions (one per word in
the sentence), followed by equally many consecu-
tive reduce actions that all cluster at the end of the
sentence. Due to the uneven alignment between ac-
tions and locations in a sentence, neural network ar-
chitectures in recent shift-reduce systems (Vinyals
et al., 2015; Dyer et al., 2016; Liu and Zhang, 2017)
generally follow an encoder-decoder approach with
autoregressive generation rather than directly as-
signing labels to positions in the input. Our pro-
posed parser is also transition-based, but there are
guaranteed to be exactly two decisions to make be-
tween one word and the next. This fixed alignment
allows us to predict all actions in parallel rather
than autoregressively.

Chart parsing Chart parsers fundamentally op-
erate over span-aligned rather than word-aligned
representations. For instance, the size of the chart
in the CKY algorithm (Cocke, 1970; Kasami, 1966;
Younger, 1967) is quadratic in the length of the sen-
tence, and the algorithm itself has cubic running
time. This is true for both classical methods and
more recent neural approaches (Durrett and Klein,
2015; Stern et al., 2017). The construction of a
chart involves a non-trivial (quadratic) computa-
tion that is specialized to parsing, and implement-
ing the CKY algorithm on a hardware accelerator
is a nontrivial and hardware-specific task.

Left-corner parsing To achieve all of our
desiderata, we combine aspects of the previously-
mentioned approaches with ideas drawn from
a long line of work on left-corner pars-
ing (Rosenkrantz and Lewis, 1970; Nijholt, 1979;
van Schijndel et al., 2013; Noji et al., 2016; Shain
et al., 2016, inter alia). Much of past work high-
lights the benefits of a left-corner formulation for
memory efficiency, with implications for psycholin-
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Figure 1: An example tree with the corresponding
labels. The nonterminal nodes have been numbered
based on an in-order traversal.

guistic plausibility of the approach. We, on the
other hand, demonstrate how to leverage these
same considerations to achieve parallel tagging
and linear time complexity of the subsequent in-
ference procedure. Further, past work has used
grammars (Rosenkrantz and Lewis, 1970), or trans-
formed labeled trees (Johnson, 1998; Schuler et al.,
2010). On the other hand, it is precisely the lack of
an explicit grammar that allows us to formulate our
linear-time inference algorithm.

3 Method

To introduce our method, we first restrict ourselves
to only consider unlabeled full binary trees (where
every node has either 0 or 2 children). We defer the
discussion of labeling and non-binary structure to
Section 3.5.

3.1 Trees to tags

Consider the example tree shown in Figure 1. The
tree is fully binarized and consists of 5 terminal
symbols (A,B,C,D,E) and 4 nonterminal nodes
(1,2,3,4). For any full binary parse tree, the number
of nonterminals will always be one less than the
number of words, so we can construct a one-to-
one mapping between nonterminals and fenceposts
(i.e. positions between words): each fencepost is
matched with the shortest span that crosses it.

For each node, we calculate the direction of its
parent, i.e. whether the node is a left-child or a
right-child. Although the root node in the tree
does not have a parent, by convention we treat it
as though it were a left-child (in Figure 1, this is
denoted by the dummy parent labeled $).
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Our scheme associates each word and fencepost
in the sentence with one of four labels:

• “ →”: This terminal node is a left-child.

• “← ”: This terminal node is a right-child.

• “ ⇒”: The shortest span crossing this fence-
post is a left-child.

• “⇐ ”: The shortest span crossing this fence-
post is a right-child.

We refer to our method as tetra-tagging because
it uses only these four labels to represent binary
bracketing structure.

3.2 Model

Given a sentence with n words, there are altogether
2n− 1 decisions (each with two options). By the
construction above, it is evident that every tree has
one (and only one) corresponding label representa-
tion. To reduce parsing to tagging, we simply use
a neural network to predict which tag to select for
each of the 2n− 1 decisions required.

Our implementation predicts these tag sequences
from pre-trained BERT word representations. Two
independent projection matrices are applied to the
feature vector for the last sub-word unit within each
word: one projection produces scores for actions
corresponding to that word, and the other for ac-
tions at the following fencepost. A softmax loss is
applied, and the model is trained to maximize the
likelihood of the correct action sequence.

3.3 Tags to trees: transition system

To map from label sequences back to trees, we re-
interpret the four labels (“ →”, “← ”, “ ⇒”, “⇐ ”)
as actions in a left-corner transition system. The
transition system maintains a stack of partially-
constructed trees, where each element of the stack
is one of the following: (a) a terminal symbol, i.e. a
word; (b) a complete tree; or (c) a tree with a single
empty slot, denoted by the special element ∅. An
empty slot must be the rightmost leaf node in its
tree, but may occur at any depth.

The tree operations used are: (a) MAKE-
NODE(left-child, right-child), which creates a new
tree node; and (b) COMBINE(parent-tree, child-
tree), which replaces the empty slot ∅ in the parent
tree with the child tree.

Decoding uses Algorithm 1; an example deriva-
tion is shown in Figure 2.

Algorithm 1 Decoding algorithm
Input: A list of words (words) and a corresponding list of

tetra-tags (actions)
Output: A parse tree

1: stack← []
2: buffer← words
3: for action in actions do
4: switch action do
5: case “ →”
6: leaf ← POP-FIRST(buffer)
7: stack← PUSH-LAST(stack, leaf )
8: end case
9: case “← ”

10: leaf ← POP-FIRST(buffer)
11: stack[−1]← COMBINE(stack[−1], leaf)
12: end case
13: case “ ⇒”
14: stack[−1]← MAKE-NODE(stack[−1], ∅)
15: end case
16: case “⇐ ”
17: tree← POP-LAST(stack)
18: tree← MAKE-NODE(tree, ∅)
19: stack[−1]← COMBINE(stack[−1], tree)
20: end case
21: end switch
22: end for . The stack should only have one element
23: return stack[0]

Each action in the transition system is responsi-
ble for adding a single tree node onto the stack: the
actions “ →” and “← ” do this by shifting in a leaf
node, while the actions “ ⇒” and “⇐ ” construct
a new non-terminal node. The transition system
maintains the invariant that the topmost stack ele-
ment is a complete tree if and only if a leaf node
was just shifted (i.e. the last action was either “ →”
or “← ”), and all other stack elements have a single
empty slot.

The actions “← ” and “⇐ ” both make use of the
COMBINE operation to fill an empty slot on the
stack with a newly-introduced node, which makes
the new node a right-child. New nodes from the
actions “ →” and “ ⇒”, on the other hand, are in-
troduced directly onto the stack and can become
left-children via a later MAKE-NODE operation.
As a result, the behavior of the four actions (“ →”,
“← ”, “ ⇒”, “⇐ ”) matches the label definitions from
the previous section.

3.4 Inference
The goal of inference is to select the sequence of
labels that is assigned the highest probability by
the tagging model. It should be noted that not all
sequences of labels are valid under our transition
system. In particular:

• The first action must be “ →”, because the
stack is initially empty and the only valid ac-
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tion is to shift the first word in the sentence
from the buffer onto the stack.

• The action “⇐ ” relies on there being more
than one element on the stack (lines 17-19 of
Algorithm 1).

• After executing all actions, the stack should
contain a single element. Due to the invariant
that the top stack element after a “ →” or “← ”
action is always a tree with no empty slots,
this single stack element is guaranteed to be a
complete tree that spans the full sentence.

We observe that the validity constraints for our
transition system can be expressed entirely in terms
of the number of stack elements at each point in
the derivation, and do not depend on the precise
structure of those elements. This property enables
an optimal and efficient dynamic program for find-
ing the valid sequence of labels that has the highest
probability under the model.

The dynamic program maintains a table of the
highest-scoring parser state for each combination
of number of actions taken and stack depth. Prior
to taking any actions, the stack must be empty. The
algorithm then proceeds left-to-right through the
sentence to fill in highest-scoring stack configu-
rations after action 1, 2, etc. The dynamic pro-
gram can be visualized as finding the shortest path
through a graph like Figure 3, where each action-
count/stack-depth combination is represented by
a node, and a transition is represented by an edge
with weight equal to the model-predicted score of
the associated tag.

The time complexity of this dynamic program
depends on the number of actions (which is 2n− 1,
where n is the length of the sentence), as well as the
maximum possible depth of the stack (d). A left-
corner transition system has the property that stack
depth tends to be small for parse trees of natural
language (Abney and Johnson, 1991; Schuler et al.,
2010). In practice, the largest stack depth observed
at any point in the derivation for any tree in the
Penn Treebank is 8. By comparison, the median
sentence length in the data is 23, and the longest
sentence contains over 100 words.

As a result, we can cap the maximum stack depth
allowed in our inference procedure to d = 8, which
means that the O(nd2) time complexity of infer-
ence is effectively O(n). In other words, our infer-
ence procedure will, in practice, take linear time in
the length of the sentence.

Action Stack Buffer

(0) empty A B C D E

(1) →
$

A B C D E

(2) ⇒
1

∅
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A
$

B C D E
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1

2
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1
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∅
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$
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Figure 2: An example derivation under our transition
system.

S

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

· · ·

· · ·

· · ·

· · ·

G

2

3

4

→

⇒

⇒

⇒

⇒

⇐

⇐

⇐

←

←

←

←

→

→

→

⇒

⇒

⇒

⇒

⇐

⇐

⇐

←

←

←

←

→

→

→

Figure 3: Paths in this grid correspond to sequences
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valid trees. Numbers represent the number of elements
on the stack.
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Sents/s Hardware F1

Vilares et al. (2019) 942 1x GPU 91.13
Kitaev et al. (2019)∗ 39 1x GPU 95.59
Zhou and Zhao (2019)∗ – – 95.84
This work∗ 1200 1x TPU v3-8 95.44

Table 1: Comparison of F1 scores and inference speeds
on the WSJ test set. ∗Models using BERTLARGE (Devlin
et al., 2019) word representations fine-tuned from the
same initial parameters.

1 2 3 4 5 6 7 8
Stack limit (number of elements)
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Coverage (% of trees representable)
F1

Figure 4: With a modest maximum stack size, the tetra-
tagging transition system has near-complete coverage
of the development data. Our parser’s F1 score closely
tracks the fraction of gold trees that can be represented.

3.5 Handling of labels and non-binary trees
Each of our four actions creates a single node in
the binary tree. Labeling a node can therefore be
incorporated into the corresponding action; for ex-
ample, the action “ ⇒S” will construct an S node
that is a left-child in the tree. We do not impose
any constraints on valid label configurations, so our
inference procedure remains virtually unchanged.

To handle non-binary trees, we first collapse
all unary chains by introducing additional labels.
For example, a clause that consists only of a verb
phrase would be assigned the label S-VP. We then
ensure that each non-terminal node has exactly two
children by applying fully right-branching bina-
rization, where a dummy label is introduced and
assigned to nodes generated as a result of bina-
rization. During inference, a post-processing step
undoes these transformations.

4 Results

Our proposed parser is designed to rank syntactic
decisions entirely in parallel, with inference re-
duced to a minimal linear-time algorithm. Its neu-
ral architecture consists almost entirely of BERT
layers, with the only additions being two trainable
projection matrices. To verify our approach, we
train our parser on the Penn Treebank (Marcus

et al., 1993) and evaluate its efficiency and accu-
racy when running on Cloud TPU v3 hardware.

In Table 1, we compare with two classes of re-
cent work. The parser by Vilares et al. (2019) is
one of the fastest reported in the recent literature,
but it trails the state-of-the-art model by more than
4 F1 points. In contrast, models by Zhou and Zhao
(2019) and Kitaev et al. (2019) achieve the highest-
reported numbers when fine-tuning from the same
initial BERTLARGE checkpoint that we use to train
our tetra-tagger. However, these latter models are
slower than our tetra-tagging approach and fea-
ture inference algorithms with high polynomial
complexity that are difficult to adapt to acceler-
ators such as the TPU. Our approach is able to
achieve both high throughput and high F1, with
only small losses in accuracy compared to the best
BERT-based approaches.

In Figure 4, we plot the parser’s accuracy across
different settings for the maximum stack depth.
The F1 score rapidly asymptotes as the stack size
limit is increased, which validates our claim that
inference can run in linear time.

5 Conclusion

We present a reduction from constituency parsing
to a tagging task with two binary structural deci-
sions and two labeling decisions per word. Re-
markably, probabilities for these tags can be esti-
mated fully in parallel by a simple classification
layer on top of a neural network architecture such
as BERT. We hope that this formulation can be
useful as a simple and low-overhead way of in-
tegrating syntax into any neural NLP model, in-
cluding for multi-task training and to predict syn-
tactic annotations during inference. By reduc-
ing the task-specific architecture components to
a minimum, our method can be rapidly adapted
as new modeling techniques, efficiency optimiza-
tions, and hardware accelerators become avail-
able. Code for our approach is available at
github.com/nikitakit/tetra-tagging.
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