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Abstract

Graphs that capture relations between textual
units have great benefits for detecting salient
information from multiple documents and gen-
erating overall coherent summaries. In this
paper, we develop a neural abstractive multi-
document summarization (MDS) model which
can leverage well-known graph representa-
tions of documents such as similarity graph
and discourse graph, to more effectively pro-
cess multiple input documents and produce
abstractive summaries. Our model utilizes
graphs to encode documents in order to cap-
ture cross-document relations, which is cru-
cial to summarizing long documents. Our
model can also take advantage of graphs to
guide the summary generation process, which
is beneficial for generating coherent and con-
cise summaries. Furthermore, pre-trained lan-
guage models can be easily combined with
our model, which further improve the sum-
marization performance significantly. Empir-
ical results on the WikiSum and MultiNews
dataset show that the proposed architecture
brings substantial improvements over several
strong baselines.

1 Introduction

Multi-document summarization (MDS) brings
great challenges to the widely used sequence-to-
sequence (Seq2Seq) neural architecture as it re-
quires effective representation of multiple input
documents and content organization of long sum-
maries. For MDS, different documents may contain
the same content, include additional information,
and present complementary or contradictory infor-
mation (Radev, 2000). So different from single doc-
ument summarization (SDS), cross-document links
are very important in extracting salient informa-
tion, detecting redundancy and generating overall
coherent summaries for MDS. Graphs that capture
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relations between textual units have great benefits
to MDS, which can help generate more informa-
tive, concise and coherent summaries from multiple
documents. Moreover, graphs can be easily con-
structed by representing text spans (e.g. sentences,
paragraphs etc.) as graph nodes and the semantic
links between them as edges. Graph representa-
tions of documents such as similarity graph based
on lexical similarities (Erkan and Radev, 2004)
and discourse graph based on discourse relations
(Christensen et al., 2013), have been widely used
in traditional graph-based extractive MDS mod-
els. However, they are not well studied by most
abstractive approaches, especially the end-to-end
neural approaches. Few work has studied the effec-
tiveness of explicit graph representations on neural
abstractive MDS.

In this paper, we develop a neural abstractive
MDS model which can leverage explicit graph rep-
resentations of documents to more effectively pro-
cess multiple input documents and distill abstrac-
tive summaries. Our model augments the end-to-
end neural architecture with the ability to incor-
porate well-established graphs into both the docu-
ment representation and summary generation pro-
cesses. Specifically, a graph-informed attention
mechanism is developed to incorporate graphs into
the document encoding process, which enables our
model to capture richer cross-document relations.
Furthermore, graphs are utilized to guide the sum-
mary generation process via a hierarchical graph
attention mechanism, which takes advantage of
the explicit graph structure to help organize the
summary content. Benefiting from the graph mod-
eling, our model can extract salient information
from long documents and generate coherent sum-
maries more effectively. We experiment with three
types of graph representations, including similarity
graph, topic graph and discourse graph, which all
significantly improve the MDS performance.
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Additionally, our model is complementary to
most pre-trained language models (LMs), like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019b). They can be
easily combined with our model to process much
longer inputs. The combined model adopts the ad-
vantages of both our graph model and pre-trained
LMs. Our experimental results show that our graph
model significantly improves the performance of
pre-trained LMs on MDS.

The contributions of our paper are as follows:

• Our work demonstrates the effectiveness of
graph modeling in neural abstractive MDS.
We show that explicit graph representations
are beneficial for both document representa-
tion and summary generation.

• We propose an effective method to incorporate
explicit graph representations into the neural
architecture, and an effective method to com-
bine pre-trained LMs with our graph model to
process long inputs more effectively.

• Our model brings substantial improvements
over several strong baselines on both Wik-
iSum and MultiNews dataset. We also report
extensive analysis results, demonstrating that
graph modeling enables our model process
longer inputs with better performance, and
graphs with richer relations are more benefi-
cial for MDS.1

2 Related Work

2.1 Graph-based MDS
Most previous MDS approaches are extractive,
which extract salient textual units from documents
based on graph-based representations of sentences.
Various ranking methods have been developed to
rank textual units based on graphs to select most
salient ones for inclusion in the final summary.

Erkan and Radev (2004) propose LexRank to
compute sentence importance based on a lexical
similarity graph of sentences. Mihalcea and Ta-
rau (2004) propose a graph-based ranking model
to extract salient sentences from documents. Wan
(2008) further proposes to incorporate document-
level information and sentence-to-document rela-
tions into the graph-based ranking process. A se-
ries of variants of the PageRank algorithm has been

1Codes and results are in: https://github.com/
PaddlePaddle/Research/tree/master/NLP/
ACL2020-GraphSum

further developed to compute the salience of tex-
tual units recursively based on various graph rep-
resentations of documents (Wan and Xiao, 2009;
Cai and Li, 2012). More recently, Yasunaga et al.
(2017) propose a neural graph-based model for ex-
tractive MDS. An approximate discourse graph is
constructed based on discourse markers and entity
links. The salience of sentences is estimated using
features from graph convolutional networks (Kipf
and Welling, 2016). Yin et al. (2019) also propose a
graph-based neural sentence ordering model, which
utilizes entity linking graph to capture the global
dependencies between sentences.

2.2 Abstractive MDS

Abstractive MDS approaches have met with lim-
ited success. Traditional approaches mainly in-
clude: sentence fusion-based (Banerjee et al., 2015;
Filippova and Strube, 2008; Barzilay and McKe-
own, 2005; Barzilay, 2003), information extraction-
based (Li, 2015; Pighin et al., 2014; Wang and
Cardie, 2013; Genest and Lapalme, 2011; Li and
Zhuge, 2019) and paraphrasing-based (Bing et al.,
2015; Berg-Kirkpatrick et al., 2011; Cohn and Lap-
ata, 2009). More recently, some researches parse
the source text into AMR representation and then
generate summary based on it (Liao et al., 2018).

Although neural abstractive models have
achieved promising results on SDS (See et al.,
2017; Paulus et al., 2018; Gehrmann et al., 2018;
Celikyilmaz et al., 2018; Li et al., 2018a,b; Narayan
et al., 2018; Yang et al., 2019a; Sharma et al., 2019;
Perez-Beltrachini et al., 2019), it’s not straightfor-
ward to extend them to MDS. Due to the lack of
sufficient training data, earlier approaches try to
simply transfer SDS model to MDS task (Lebanoff
et al., 2018; Zhang et al., 2018; Baumel et al., 2018)
or utilize unsupervised models relying on recon-
struction objectives (Ma et al., 2016; Chu and Liu,
2019). Later, Liu et al. (2018) propose to con-
struct a large scale MDS dataset (namely WikiSum)
based on Wikipedia, and develop a Seq2Seq model
by considering the multiple input documents as a
concatenated flat sequence. Fan et al. (2019) fur-
ther propose to construct a local knowledge graph
from documents and then linearize the graph into a
sequence to better sale Seq2Seq models to multi-
document inputs. Fabbri et al. (2019) also intro-
duce a middle-scale (about 50K) MDS news dataset
(namely MultiNews), and propose an end-to-end
model by incorporating traditional MMR-based

https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2020-GraphSum
https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2020-GraphSum
https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2020-GraphSum
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Figure 1: Illustration of our model, which follows the encoder-deocder architecture. The encoder is a stack of
transformer layers and graph encoding layers, while the decoder is a stack of graph decoding layers. We incorporate
explicit graph representations into both the graph encoding layers and graph decoding layers.

extractive model with a standard Seq2Seq model.
The above Seq2Seq models haven’t study the im-
portance of cross-document relations and graph
representations in MDS.

Most recently, Liu and Lapata (2019a) propose
a hierarchical transformer model to utilize the hi-
erarchical structure of documents. They propose
to learn cross-document relations based on self-
attention mechanism. They also propose to incor-
porate explicit graph representations into the model
by simply replacing the attention weights with a
graph matrix, however, it doesn’t achieve obvious
improvement according to their experiments. Our
work is partly inspired by this work, but our ap-
proach is quite different from theirs. In contrast to
their approach, we incorporate explicit graph rep-
resentations into the encoding process via a graph-
informed attention mechanism. Under the guidance
of explicit relations in graphs, our model can learn
better and richer cross-document relations, thus
achieves significantly better performance.We also
leverage the graph structure to guide the summary
decoding process, which is beneficial for long sum-
mary generation. Additionally, we combine the
advantages of pretrained LMs into our model.

2.3 Summarization with Pretrained LMs

Pretrained LMs (Peters et al., 2018; Radford et al.;
Devlin et al., 2019; Dong et al., 2019; Sun et al.,
2019) have recently emerged as a key technology
for achieving impressive improvements in a wide
variety of natural language tasks, including both
language understanding and language generation
(Edunov et al., 2019; Rothe et al., 2019). Liu and

Lapata (2019b) attempt to incorporate pre-trained
BERT encoder into SDS model and achieves sig-
nificant improvements. Dong et al. (2019) further
propose a unified LM for both language understand-
ing and language generation tasks, which achieves
state-of-the-art results on several generation tasks
including SDS. In this work, we propose an effec-
tive method to combine pretrained LMs with our
graph model and make them be able to process
much longer inputs effectively.

3 Model Description

In order to process long source documents more ef-
fectively, we follow Liu and Lapata (2019a) in split-
ting source documents into multiple paragraphs by
line-breaks. Then the graph representation of docu-
ments is constructed over paragraphs. For example,
a similarity graph can be built based on cosine
similarities between tf-idf representations of para-
graphs. Let G denotes a graph representation ma-
trix of the input documents, where G[i][j] indicates
the relation weights between paragraph Pi and Pj .
Formally, the task is to generate the summary S of
the document collection given L input paragraphs
P1, . . . , PL and their graph representation G.

Our model is illustrated in Figure 1, which fol-
lows the encoder-decoder architecture (Bahdanau
et al., 2015). The encoder is composed of sev-
eral token-level transformer encoding layers and
paragraph-level graph encoding layers which can
be stacked freely. The transformer encoding layer
follows the Transformer architecture introduced
in Vaswani et al. (2017), encoding contextual in-
formation for tokens within each paragraph. The
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graph encoding layer extends the Transformer ar-
chitecture with a graph attention mechanism to
incorporate explicit graph representations into the
encoding process. Similarly, the decoder is com-
posed of a stack of graph decoding layers. They
extend the Transformer with a hierarchical graph
attention mechanism to utilize explicit graph struc-
ture to guide the summary decoding process. In
the following, we will focus on the graph encoding
layer and graph decoding layer of our model.

3.1 Graph Encoding Layer

As shown in Figure 1, based on the output of the
token-level transformer encoding layers, the graph
encoding layer is used to encode all documents
globally. Most existing neural work only utilizes
attention mechanism to learn latent graph represen-
tations of documents where the graph edges are
attention weights (Liu and Lapata, 2019a; Nicu-
lae et al., 2018; Fernandes et al., 2018). However,
much work in traditional MDS has shown that ex-
plicit graph representations are very beneficial to
MDS. Different types of graphs capture different
kinds of semantic relations (e.g. lexical relations
or discourse relations), which can help the model
focus on different facets of the summarization task.
In this work, we propose to incorporate explicit
graph representations into the neural encoding pro-
cess via a graph-informed attention mechanism. It
takes advantage of the explicit relations in graphs
to learn better inter-paragraph relations. Each para-
graph can collect information from other related
paragraphs to capture global information from the
whole input.

Graph-informed Self-attention The graph-
informed self-attention extends the self-attention
mechanism to consider the pairwise relations in
explicit graph representations. Let xl−1

i denotes
the output of the (l − 1)-th graph encoding layer
for paragraph Pi, where x0i is just the input
paragraph vector. For each paragraph Pi, the
context representation ui can be computed as a
weighted sum of linearly transformed paragraph
vectors:

αij =softmax(eij + <ij)

eij =
(xl−1

i WQ)(x
l−1
j WK)T

√
dhead

ui =

L∑
j=1

αij(x
l−1
j WV )

(1)

where WK , WQ and WV ∈ Rd∗d are parameter
weights. etj denotes the latent relation weight be-
tween paragraph Pi and Pj . The main difference of
our graph-informed self-attention is the additional
pairwise relation bias <ij , which is computed as a
Gaussian bias of the weights of graph representa-
tion matrix G:

<ij = −
(1−G[i][j])2

2σ2
(2)

where σ denotes the standard deviation that repre-
sents the influence intensity of the graph structure.
We set it empirically by tuning on the development
dataset. The gaussian bias Rij ∈ (−inf, 0] mea-
sures the tightness between the paragraphs Pi and
Pj . Due to the exponential operation in softmax
function, the gaussian bias approximates to mul-
tiply the latent attention distribution by a weight
∈ (0, 1].

In our graph-attention mechanism, the term eij
in Equation 1 keeps the ability to model latent de-
pendencies between any two paragraphs, and the
term <ij incorporates explicit graph representa-
tions as prior constraints into the encoding process.
This way, our model can learn better and richer
inter-paragraph relations to obtain more informa-
tive paragraph representations.

Then, a two-layer feed-forward network with
ReLU activation function and a high-way layer
normalization are applied to obtain the vector of
each paragraph xli:

pli =Wo2ReLU(Wo1(ui + xl−1
i ))

xli =LayerNorm(pli + xl−1
i )

(3)

where Wo1 ∈ Rdff∗d and Wo2 ∈ Rd∗dff are learn-
able parameters, dff is the hidden size of the feed-
forward layer.

3.2 Graph Decoding Layer
Graphs can also contribute to the summary gener-
ation process. The relations between textual units
can help to generate more coherent or concise sum-
maries. For example, Christensen et al. (2013) pro-
pose to leverage an approximate discourse graph to
help generate coherent extractive summaries. The
discourse relations between sentences are used to
help order summary sentences. In this work, we
propose to incorporate explicit graph structure into
the end-to-end summary decoding process. Graph
edges are used to guide the summary generation
process via a hierarchical graph attention, which
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is composed by a global graph attention and a lo-
cal normalized attention. As other components in
the graph decoding layer are similar to the Trans-
former architecture, we focus on the extension of
hierarchical graph attention.

Global Graph Attention The global graph at-
tention is developed to capture the paragraph-level
context information in the encoder part. Different
from the context attention in Transformer, we uti-
lize the explicit graph structure to regularize the
attention distributions so that graph representations
of documents can be used to guide the summary
generation process.

Let yl−1
t denotes the output of the (l − 1)-th

graph decoding layer for the t-th token in the sum-
mary. We assume that each token will align with
several related paragraphs and one of them is at the
central position. Since the prediction of the central
position depends on the corresponding query to-
ken, we apply a feed-forward network to transform
yl−1
t into a positional hidden state, which is then

mapped into a scalar st by a linear projection:

st = L ∗ sigmoid(UT
p tanh(Wpy

l−1
t )) (4)

where Wp ∈ Rd∗d and Up ∈ Rd denote weight
matrix. st indicates the central position of para-
graphs that are mapped by the t-th summary token.
With the central position, other paragraphs are de-
termined by the graph structure. Then an attention
distribution over all paragraphs under the regular-
ization of the graph structure can be obtained:

βtj =softmax(etj −
(1−G[st][j])

2

2σ2
) (5)

where etj denotes the attention weight between
token vector yl−1

t and paragraph vector xj , which
is computed similarly to Equation 1. The global
context vector can be obtained as a weighted sum
of paragraph vectors: gt =

∑L
j=1 βtjxj

In our decoder, graphs are also modeled as a
Gaussian bias. Different from the encoder, a cen-
tral mapping position is firstly decided and then
graph relations corresponding to that position are
used to regularize the attention distributions βtj .
This way, the relations in graphs are used to help
align the information between source input and
summary output globally, thus guiding the sum-
mary decoding process.

Local Normalized Attention Then, a local nor-
malized attention is developed to capture the token-
level context information within each paragraph.

The local attention is applied to each paragraph
independently and normalized by the global graph
attention. This way, our model can process longer
inputs effectively.

Let γt,ji denotes the local attention distributions
of the t-th summary token over the i-th token in
the j-th input paragraph, the normalized attention
is computed by:

γ̂t,ji = γt,jiβtj (6)

and the local context vector can be computed as a
weighted sum of token vectors in all paragraphs:
lt =

∑L
j=1

∑n
k=1 γ̂t,jixji

Finally, the output of the hierarchical graph atten-
tion component is computed by concatenating and
linearly transforming the global and local context
vector:

dt = UT
d [gt, lt] (7)

where Ud ∈ R2d∗d is a weight matrix. Through
combining the local and global context, the decoder
can utilize the source information more effectively.

3.3 Combined with Pre-trained LMs

Our model can be easily combined with pre-trained
LMs. Pre-trained LMs are mostly based on sequen-
tial architectures which are more effective on short
text. For example, both BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) are pre-trained with
maximum 512 tokens. Liu and Lapata (2019b) pro-
pose to utilize BERT on single document summa-
rization tasks. They truncate the input documents
to 512 tokens on most tasks. However, thanks to
the graph modeling, our model can process much
longer inputs. A natural idea is to combine our
graph model with pretrained LMs so as to combine
the advantages of them. Specifically, the token-
level transformer encoding layer of our model can
be replaced by a pre-trained LM like BERT.

In order to take full advantage of both our graph
model and pre-trained LMs, the input documents
are formatted in the following way:

[CLS] first paragraph [SEP] [CLS] second para-
graph [SEP] . . . [CLS] last paragraph [SEP]

Then they are encoded by a pre-trained LM, and
the output vector of the “[CLS]” token is used as
the vector of the corresponding paragraph. Finally,
all paragraph vectors are fed into our graph encoder
to learn global representations. Our graph decoder
is further used to generate the summaries.
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4 Experiments

4.1 Experimental Setup
Graph Representations We experiment with
three well-established graph representations: simi-
larity graph, topic graph and discourse graph. The
similarity graph is built based on tf-idf cosine simi-
larities between paragraphs to capture lexical rela-
tions. The topic graph is built based on LDA topic
model (Blei et al., 2003) to capture topic relations
between paragraphs. The edge weights are cosine
similarities between the topic distributions of the
paragraphs. The discourse graph is built to cap-
ture discourse relations based on discourse markers
(e.g. however, moreover), co-reference and entity
links as in Christensen et al. (2013). Other types of
graphs can also be used in our model. In our experi-
ments, if not explicitly stated, we use the similarity
graph by default as it has been most widely used
in previous work.

WikiSum Dataset We follow Liu et al. (2018)
and Liu and Lapata (2019a) in treating the genera-
tion of lead Wikipedia sections as a MDS task. The
source documents are reference webpages of the
Wikipedia article and top 10 search results returned
by Google, while the summary is the Wikipedia
article’s first section. As the source documents are
very long and messy, they are split into multiple
paragraphs by line-breaks. Further, the paragraphs
are ranked by the title and top ranked paragraphs
are selected as input for MDS systems. We di-
rectly utilize the ranking results from Liu and La-
pata (2019a) and top-40 paragraphs are used as
source input. The average length of each paragraph
and the target summary are 70.1 tokens and 139.4
tokens, respectively. For the seq2seq baselines,
paragraphs are concatenated as a sequence in the
ranking order, and lead tokens are used as input.
The dataset is split into 1,579,360 instances for
training, 38,144 for validation and 38,205 for test-
ing, similar to Liu and Lapata (2019a). We build
similarity graph representations over paragraphs on
this dataset.

MultiNews Dataset Proposed by Fabbri et al.
(2019), MultiNews dataset consists of news articles
and human-written summaries. The dataset comes
from a diverse set of news sources (over 1500 sites).
Different from the WikiSum dataset, MultiNews is
more similar to the traditional MDS dataset such as
DUC, but is much larger in scale. As in Fabbri et al.
(2019), the dataset is split into 44,972 instances for

training, 5,622 for validation and 5,622 for testing.
The average length of source documents and output
summaries are 2103.5 tokens and 263.7 tokens, re-
spectively. For the seq2seq baselines, we truncate
N input documents to L tokens by taking the first
L/N tokens from each source document. Then we
concatenate the truncated source documents into a
sequence by the original order. Similarly, for our
graph model, the input documents are truncated to
M paragraphs by taking the first M/N paragraphs
from each source document. We build all three
types of graph representations on this dataset to
explore the influence of graph types on MDS.

Training Configuration We train all models
with maximum likelihood estimation, and use label
smoothing (Szegedy et al., 2016) with smoothing
factor 0.1. The optimizer is Adam (Kingma and Ba,
2015) with learning rate 2, β1=0.9 and β2=0.998.
We also apply learning rate warmup over the first
8,000 steps and decay as in (Vaswani et al., 2017).
Gradient clipping with maximum gradient norm
2.0 is also utilized during training. All models are
trained on 4 GPUs (Tesla V100) for 500,000 steps
with gradient accumulation every four steps. We
apply dropout with probability 0.1 before all lin-
ear layers in our models. The number of hidden
units in our models is set as 256, the feed-forward
hidden size is 1,024, and the number of heads is 8.
The number of transformer encoding layers, graph
encoding layers and graph decoding layers are set
as 6, 2 and 8, respectively. The parameter σ is set
as 2.0 after tuning on the validation dataset. During
decoding, we use beam search with beam size 5 and
length penalty with factor 0.6. Trigram blocking is
used to reduce repetitions.

For the models with pretrained LMs, we ap-
ply different optimizers for the pretrained part and
other parts as in (Liu and Lapata, 2019b). Two
Adam optimizers with β1=0.9 and β2=0.999 are
used for the pretrained part and other parts, re-
spectively. The learning rate and warmup steps
for the pretrained part are set as 0.002 and 20000,
while 0.2 and 10000 for other parts. Other model
configurations are in line with the corresponding
pretrained LMs. We choose the base version of
BERT, RoBERTa and XLNet in our experiments.

4.2 Evaluation Results

We evaluate our models on both the WikiSum and
MultiNews datasets to validate the efficiency of
them on different types of corpora. The summa-
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Model R-1 R-2 R-L
Lead 38.22 16.85 26.89
LexRank 36.12 11.67 22.52
FT 40.56 25.35 34.73
BERT+FT 41.49 25.73 35.59
XLNet+FT 40.85 25.29 35.20
RoBERTa+FT 42.05 27.00 36.56
T-DMCA 40.77 25.60 34.90
HT 41.53 26.52 35.76
GraphSum 42.63 27.70 36.97
GraphSum+RoBERTa 42.99 27.83 37.36

Table 1: Evaluation results on the WikiSum test set
using ROUGE F1. R-1, R-2 and R-L are abbreviations
for ROUGE-1, ROUGE-2 and ROUGE-L, respectively.

rization quality is evaluated using ROUGE F1 (Lin
and Och, 2004). We report unigram and bigram
overlap (ROUGE-1 and ROUGE-2) between sys-
tem summaries and gold references as a means of
assessing informativeness, and the longest common
subsequence (ROUGE-L2) as a means of accessing
fluency.

Results on WikiSum Table 6 summarizes the
evaluation results on the WikiSum dataset. Several
strong extractive baselines and abstractive base-
lines are also evaluated and compared with our
models. The first block in the table shows the
results of extractive methods Lead and LexRank
(Erkan and Radev, 2004). The second block
shows the results of abstractive methods: (1) FT
(Flat Transformer), a transformer-based encoder-
decoder model on a flat token sequence; (2) T-
DMCA, the best performing model of Liu et al.
(2018); (3) HT (Hierarchical Transformer), a model
with hierarchical transformer encoder and flat
transformer decoder, proposed by Liu and Lapata
(2019a). We report their results following Liu and
Lapata (2019a). The last block shows the results
of our models, which are feed with 30 paragraphs
(about 2400 tokens) as input. The results show
that all abstractive models outperform the extrac-
tive ones. Compared with FT, T-DMCA and HT,
our model GraphSum achieves significant improve-
ments on all three metrics, which demonstrates the
effectiveness of our model.

Furthermore, we develop several strong base-

2For fair comparison with previous work (Liu and Lapata,
2019a; Liu et al., 2018), we report the summary-level ROUGE-
L results on both the two datasets. The sentence-level ROUGE-
L results are reported in the Appendix.

Model R-1 R-2 R-L
Lead 41.24 12.91 18.84
LexRank 41.01 12.69 18.00
PG-BRNN 43.77 15.38 20.84
HiMAP 44.17 16.05 21.38
FT 44.32 15.11 20.50
RoBERTa+FT 44.26 16.22 22.37
HT 42.36 15.27 22.08
GraphSum 45.02 16.69 22.50
G.S.(Similarity)+RoBERTa 45.93 17.33 23.33
G.S.(Topic)+RoBERTa 46.07 17.42 23.21
G.S.(Discourse)+RoBERTa 45.87 17.56 23.39

Table 2: Evaluation results on the MultiNews test set.
We report the summary-level ROUGE-L value. The
results of different graph types are also compared.

lines which combine the Flat Transformer with
pre-trained LMs. We replace the encoder of FT
by the base versions of pre-trained LMs, includ-
ing BERT+FT, XLNet+FT and RoBERTa+FT. For
them, the source input is truncated to 512 tokens 3.
The results show that the pre-trained LMs signifi-
cantly improve the summarization performance. As
RoBERTa boosts the summarization performance
most significantly, we also combine it with our
GraphSum model, namely GraphSum+RoBERTa 4.
The results show that GraphSum+RoBERTa fur-
ther improves the summarization performance on
all metrics, demonstrating that our graph model can
be effectively combined with pre-trained LMs. The
significant improvements over RoBERTa+FT also
demonstrate the effectiveness of our graph model-
ing even with pre-trained LMs.

Results on MultiNews Table 7 summarizes the
evaluation results on the MultiNews dataset. Sim-
ilarly, the first block shows two popular extrac-
tive baselines, and the second block shows several
strong abstractive baselines. We report the results
of Lead, LexRank, PG-BRNN, HiMAP and FT fol-
lowing Fabbri et al. (2019). The last block shows
the results of our models. The results show that
our model GraphSum consistently outperforms all
baselines, which further demonstrate the effective-
ness of our model on different types of corpora. We
also compare the performance of RoBERTa+FT
and GraphSum+RoBERTa, which show that our
model significantly improves all metrics.

3Longer inputs don’t achieve obvious improvements.
4As XLNet and BERT achieve worse results than

RoBERTa, we only report the results of GraphSum+RoBERTa
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Len Model R-1 R-2 R-L

500
HT 41.08 25.83 35.25
GraphSum 41.55 26.24 35.59
∇ +0.47 +0.41 +0.34

800
HT 41.41 26.46 35.79
GraphSum 41.70 26.87 36.10
∇ +0.29 +0.41 +0.31

1600
HT 41.53 26.52 35.76
GraphSum 42.48 27.52 36.66
∇ +0.95 +1.00 +0.90

2400
HT 41.68 26.53 35.73
GraphSum 42.63 27.70 36.97
∇ +0.95 +1.17 +1.24

3000
HT 41.71 26.58 35.81
GraphSum 42.36 27.47 36.65
∇ +0.65 +0.89 +0.84

Table 3: Comparison of different input length on the
WikiSum test set using ROUGE F1. ∇ indicates the
improvements of GraphSum over HT.

The above evaluation results on both WikiSum
and MultiNews dataset both validate the effective-
ness of our model. The proposed method to mod-
eling graph in end-to-end neural model greatly im-
proves the performance of MDS.

4.3 Model Analysis

We further analyze the effects of graph types and
input length on our model, and validate the effec-
tiveness of different components of our model by
ablation studies.

Effects of Graph Types To study the effects of
graph types, the results of GraphSum+RoBERTa
with similarity graph, topic graph and discourse
graph are compared on the MultiNews test set. The
last block in Table 7 summarizes the comparison re-
sults, which show that the topic graph achieves bet-
ter performance than similarity graph on ROUGE-1
and ROUGE-2, and the discourse graph achieves
the best performance on ROUGE-2 and ROUGE-
L. The results demonstrate that graphs with richer
relations are more helpful to MDS.

Effects of Input Length Different lengths of in-
put may affect the summarization performance seri-
ously for Seq2Seq models, so most of them restrict
the length of input and only feed the model with
hundreds of lead tokens. As stated by Liu and
Lapata (2019a), the FT model achieves the best
performance when the input length is set to 800

Model Rouge-1 Rouge-2 Rouge-L
GraphSum 42.63 27.70 36.97
w/o graph dec 42.06 27.13 36.33
w/o graph enc 40.61 25.90 35.26

Table 4: Ablation study on the WikiSum test set.

tokens, while longer input hurts performance. To
explore the effectiveness of our GraphSum model
on different length of input, we compare it with
HT on 500, 800, 1600, 2400 and 3000 tokens of
input respectively. Table 3 summarizes the com-
parison results, which show that our model outper-
forms HT on all length of input. More importantly,
the advantages of our model on all three metrics
tend to become larger as the input becomes longer.
The results demonstrate that modeling graph in the
end-to-end model enables our model process much
longer inputs with better performance.

Ablation Study Table 4 summarizes the results
of ablation studies aiming to validate the effective-
ness of individual components. Our experiments
confirmed that incorporating well-known graphs
into the encoding process by our graph encoder (see
w/o graph enc) and utilizing graphs to guide the
summary decoding process by our graph decoder
(w/o graph dec) are both beneficial for MDS.

4.4 Human Evaluation

In addition to the automatic evaluation, we also
access system performance by human evaluation.
We randomly select 50 test instances from the Wik-
iSum test set and 50 from the MultiNews test set,
and invite 3 annotators to access the outputs of dif-
ferent models independently. Annotators access
the overall quality of summaries by ranking them
taking into account the following criteria: (1) Infor-
mativeness: does the summary convey important
facts of the input? (2) Fluency: is the summary
fluent and grammatical? (3) Succinctness: does the
summary avoid repeating information? Annotators
are asked to ranking all systems from 1(best) to 5
(worst). Ranking could be the same for different
systems if they have similar quality. For example,
the ranking of five systems could be 1, 2, 2, 4, 5
or 1, 2, 3, 3, 3. All systems get score 2, 1, 0, -1, -2
for ranking 1, 2, 3, 4, 5 respectively. The rating of
each system is computed by averaging the scores
on all test instances.

Table 5 summarizes the comparison results of
five systems. Both the percentage of ranking results
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Model 1 2 3 4 5 Rating
FT 0.18 0.21 0.23 0.16 0.22 -0.03∗

R.B.+FT 0.32 0.22 0.17 0.19 0.10 0.49∗

HT 0.21 0.32 0.12 0.15 0.20 0.19∗

GraphSum 0.42 0.30 0.17 0.10 0.01 1.02
G.S.+R.B. 0.54 0.24 0.10 0.08 0.04 1.16

Table 5: Ranking results of system summaries by hu-
man evaluation. 1 is the best and 5 is the worst. The
larger rating denotes better summary quality. R.B. and
G.S. are the abbreviations of RoBERTa and GraphSum,
respectively. ∗ indicates the overall ratings of the cor-
responding model are significantly (by Welch’s t-test
with p < 0.01) outperformed by our models GraphSum
and GraphSum+RoBERTa.

and overall ratings are reported. The results demon-
strate that GraphSum and GraphSum+RoBERTa
are able to generate higher quality summaries than
other models. Specifically, the summaries gen-
erated by GraphSum and GraphSum+RoBERTa
usually contains more salient information, and are
more fluent and concise than other models. The
human evaluation results further validates the ef-
fectiveness of our proposed models.

5 Conclusion

In this paper we explore the importance of graph
representations in MDS and propose to leverage
graphs to improve the performance of neural ab-
stractive MDS. Our proposed model is able to in-
corporate explicit graph representations into the
document encoding process to capture richer rela-
tions within long inputs, and utilize explicit graph
structure to guide the summary decoding process
to generate more informative, fluent and concise
summaries. We also propose an effective method
to combine our model with pre-trained LMs, which
further improves the performance of MDS signifi-
cantly. Experimental results show that our model
outperforms several strong baselines by a wide mar-
gin. In the future we would like to explore other
more informative graph representations such as
knowledge graphs, and apply them to further im-
prove the summary quality.
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A Appendix

We report the sentence-level ROUGE-L evaluation
results of our models on both the two datasets, so
that future work can compare with them conve-
niently.

Model R-1 R-2 R-L
RoBERTa+FT 42.05 27.00 40.05
GraphSum 42.63 27.70 40.13
GraphSum+RoBERTa 42.99 27.83 40.97

Table 6: Evaluation results on the WikiSum test set
with sentence-level ROUGE-L value.

Model R-1 R-2 R-L
RoBERTa+FT 44.26 16.22 40.64
GraphSum 45.02 16.69 41.11
G.S.(Similarity)+RoBERTa 45.93 17.33 42.02
G.S.(Topic)+RoBERTa 46.07 17.42 42.22
G.S.(Discourse)+RoBERTa 45.87 17.56 42.00

Table 7: Evaluation results on the MultiNews test set
with sentence-level ROUGE-L value.


