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Abstract

In this paper, we study the challenging prob-
lem of automatic generation of citation texts
in scholarly papers. Given the context of a cit-
ing paper A and a cited paper B, the task aim-
s to generate a short text to describe B in the
given context of A. One big challenge for ad-
dressing this task is the lack of training data.
Usually, explicit citation texts are easy to ex-
tract, but it is not easy to extract implicit cita-
tion texts from scholarly papers. We thus first
train an implicit citation text extraction mod-
el based on BERT and leverage the model to
construct a large training dataset for the cita-
tion text generation task. Then we propose
and train a multi-source pointer-generator net-
work with cross attention mechanism for cita-
tion text generation. Empirical evaluation re-
sults on a manually labeled test dataset veri-
fy the efficacy of our model. This pilot study
confirms the feasibility of automatically gen-
erating citation texts in scholarly papers and
the technique has the great potential to help re-
searchers prepare their scientific papers.

1 Introduction

A scientific paper usually needs to cite a lot of
reference papers and introduce each reference pa-
per with some text. In this study, the text describ-
ing a reference paper is called citation text. A
researcher usually needs to find relevant papers
he wants to cite and write some text to introduce
them when writing a scientific paper. However,
the process of writing citation texts is tedious and
time-consuming. In order to reduce the burden of
researchers, we propose and try to address the task
of automatic citation text generation.

Automatic generation of citation texts in schol-
arly papers is a challenging and meaningful task,
however, there are very few studies investigating
this problem. Given a cited paper B and the con-
text in a citing paper A (i.e., the sentences before

and after a specific position in paper A), the task
aims to generate a short text to describe B with
respect to the given context in A. The task is like
the task of scholarly paper summarization (Luh-
n, 1958; Edmundson, 1969; Qazvinian and Radev,
2008; Mei and Zhai, 2008). Both of the two tasks
aim to produce a text to describe the cited paper B.
The major difference between the two tasks is that
the citation texts reflect not only the salient content
of B, but also the context of A. Different citing pa-
pers usually have different descriptions of the same
cited paper. Sometimes one paper may cite another
paper several times in different positions but give
different descriptions because the specific contexts
are different. Another difference between the two
tasks is the length of the text. A citation text is
usually much shorter than a paper summary. Gen-
erally, citation text generation can be considered as
a task of generating a very short summary of paper
B given the context of paper A. The difficulty lies
in that given different A or different contexts of A,
the task aims to produce different citation texts for
the same B.

Most commonly, the citation text is a single sen-
tence, but sometimes it may consist of several sen-
tences (Jebari et al., 2018; Qazvinian and Radev,
2010; Sondhi and Zhai, 2014). Like (Small, 2011),
we define citation text as a block of text composed
of one or more consecutive sentences surrounding
the reference sign. Each citation sentence can be
classified as explicit or implicit (Qazvinian and
Radev, 2010; Athar and Teufel, 2012; Yasunaga
et al., 2019). Explicit citation is a citation sentence
that contains explicit reference to the cited paper.
An implicit (or non-explicit) citation sentence ap-
pears around the explicit citation sentence and it
does not attach any explicit reference to the cited
paper but supplies additional information about the
cited paper. The citation text generation task in this
study aims to generate both explicit and implicit
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citation sentences.
We build a citation text generation dataset based

on the ACL Anthology Network corpus (AAN)
(Radev et al., 2013). We first perform human anno-
tation and get 1,000 citation texts (including explic-
it and implicit citation sentences). We randomly
select 400 citation texts as test set, and use the other
600 citation texts to first train a citation text extrac-
tion model and then use the extraction model to
automatically extract many more citation texts to
build a large-scale training dataset.

With the training dataset we construct, we can
train our citation generation model. In this paper,
we use pointer-generator network (See et al., 2017)
as the baseline model. We believe that the key to
dealing with citation text generation problem is
modelling the relationship between the context of
citing paper A and the content of cited paper B. So
we encode the context of paper A and the abstract
of paper B separately, and add cross attention mech-
anism by making context and abstract attend to
each other. We call our model multi-source pointer-
generator network with cross attention mechanism.
The evaluation results show that our model outper-
forms the baseline models.

Our contributions are summarized as follows:

• We propose a new task of automatic citation
text generation in scholarly papers.

• We annotate 1,000 citation texts and train
a citation extraction model to automatically
construct a large training dataset for the cita-
tion text generation task. The data are avail-
able at https://github.com/XingXinyu96/
citation_generation.

• We propose the multi-source pointer-
generator network with cross attention
mechanism to address this challenging task.
Evaluation results demonstrate the efficacy of
our proposed model.

2 Related Work

Firstly, we introduce some studies on citation ex-
traction. Kaplan et al. (2009) proposed a method
based on coreference-chains for citation extraction.
Sondhi and Zhai (2014) first independently trained
a separate HMM for each citation in the article
and then performed a constrained joint inference
to label non-explicit citing sentences. Qazvinian
and Radev (2010) proposed a framework based on

probabilistic inference to extract implicit citation-
s. Jebari et al. (2018) proposed an unsupervised
approach which is based on topic modeling and
word embedding for implicit citation extraction.
Jebari et al. (2018) introduced method based on
neural network but it did not give out convincing
evaluation results.

A few studies have investigated the task of
summarizing single scholarly paper, i.e., single
document summarization in the scientific domain,
which is relevant to the citation text generation
task. Early works include (Luhn, 1958; Baxen-
dale, 1958; Edmundson, 1969), and they tried to
use various features specific to scientific articles for
summary extraction. Later on, citation information
has shown its usefulness for scientific paper sum-
marization (Qazvinian and Radev, 2008; Mei and
Zhai, 2008; Qazvinian and Radev, 2010; Cohan and
Goharian, 2018; Yasunaga et al., 2019). Several
benchmark tests have been set up for scientific sum-
marization, including TAC 2014 Biomedical Sum-
marization track and the CL-SciSumm Shared Task
(Jaidka et al., 2016). A few other studies have inves-
tigated the task of summarizing multiple scholarly
papers, i.e., multi-document summarization in the
scientific domain (Mohammad et al., 2009; Yeloglu
et al., 2011; Chen and Zhuge, 2014). Related work
generation is a special case of multi-document sci-
entific summarization (Hoang and Kan, 2010; Hu
and Wan, 2014; Chen and Zhuge, 2019). However,
the above related work about scholarly paper sum-
marization is different from the task of citation text
generation, which aims to generate a usually very
short text to describe the cited paper in the given
context of the citing paper.

3 Problem and Corpus

Formally, given a citing paper A, a cited paper B
and the context C in A, the task aims to generate the
citation text T to describe B. The context C refers
to the sentences surrounding the target citation text
in A and it is provided to distinguish different men-
tions of B in different positions of A. The following
example shows a paragraph of (Lu et al., 2008) and
this article cites paper (Wong and Mooney, 2006).
In this example, A refers to (Lu et al., 2008) and
B refers to (Wong and Mooney, 2006). The sen-
tence underlined (i.e., the second sentence) is an
explicit citation, and the sentence in italics (i.e., the
third sentence) is an implicit citationand both of
them compose the citation text. The remaining two

https://github.com/XingXinyu96/citation_generation
https://github.com/XingXinyu96/citation_generation
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sentences (i.e., the first and last sentences) com-
pose the context C of A. The phrase in bold which
indicates the explicit citation to paper B is called
reference sign. And the explicit citation text can
be defined as the sentence with a reference sign to
the cited paper. The implicit citation text can be
defined as the sentences that provide information
about the cited paper but do not have any reference
sign.

...SILT (Kate et al., 2005) learns determinis-
tic rules to transform either sentences or their
syntactic parse trees to meaning structures.
WASP (Wong and Mooney, 2006) is a system motivated
by statistical machine translation techniques. It acquires
a set of synchronous lexical entries by running the
IBM alignment model and learns a log-linear model to
weight parses. KRISP (Kate and Mooney, 2006) is a
discriminative approach ...

In this study, we build a citation generation
dataset based on the ACL Anthology Network cor-
pus (AAN) (Radev et al., 2013). The ACL anthol-
ogy is a collection of papers from the Computa-
tional Linguistics journal, and proceedings from
ACL conferences and workshops. In particular, we
download and use the 2014 version of the AAN cor-
pus which includes almost 23594 papers. After re-
moving papers containing many garbled characters
and papers without abstracts, there remains 16675
papers. The metadata of each paper and the paper
citation network have been extracted and stored.
We find all the mentions of each reference paper in
a citing paper by using manually designed regular
expressions to match the corresponding reference
signs. Lastly, we extract 86052 explicit citations
for further use.

3.1 Annotation Process

For each reference sign, we perform human annota-
tion to get all citation sentences. We label a vector
in which each dimension corresponds to a sentence.
A sentence is marked with C if it is an explicit ci-
tation, and with 1 if it is an implicit citation. All
other sentences are marked with 0. The label vector
of the example we mentioned before is [0,C,1,0].

Our annotation process has two steps. First, we
annotate the explicit citation sentences. Despite we
have extracted explicit citations with rules, we can-
not assure that the extraction is completely correct.
In order to accurately evaluate the performance
of our methods, the explicit citations in the test
dataset should be human annotated. We randomly
choose some automatically extracted explicit ci-

tations and highlight the reference signs we find.
The annotators only need to judge if they think the
extraction of reference sign is correct. We stop this
step when we get 1,000 explicit citations which are
ensured correct by human. The second step is to
annotate implicit citation texts. For each explicit
citation sentence, we take three sentences before it
and three sentences after it as candidate sentences1.
Note that all the candidate sentences must be in
the same section as the explicit citation sentence.
We provide candidate sentences, explicit citation
sentence, abstract of citing paper and cited paper
for every annotator. Explicit citation sentence has
already been labelled with C, and the annotators
just need to label other sentences with 1 or 0. Note
that we require the citation sentences to be contin-
uous, which means there cannot be non-citation
sentences between two citation sentences. To make
the data more reliable, we make sure that every
annotation instance must be annotated by three dif-
ferent people. When they disagree with each other,
we take the label chosen by majority.

After the annotation process, we get 1,000 an-
notated citation texts (including both explicit and
implicit citation sentences) for further use. We ran-
domly choose 400 citation texts as the final test
dataset and the remaining citation texts are used for
training.

4 Implicit Citation Text Extraction
Model

After the annotation process, we have 400 citation
texts as test dataset and 600 citation texts for train-
ing. However, we need large-scale training data
to train a feasible citation text generation model.
So we decide to use the 600 human annotated cita-
tion texts to train an implicit citation text extraction
model to expand our training dataset.

We treat implicit citation text extraction as a se-
quence labeling problem and use BERT (Devlin
et al., 2018) to deal with this problem. We add a
classification layer on the final hidden representa-
tion of BERT and fine-tune the whole model on our
dataset. We concatenate all the candidate sentences,
the explicit citation sentence and the abstract of the
cited paper as the input of BERT. We add a special
tag ’[s]’ at the beginning of all sentences, a spe-
cial tag ’[explicit]’ at the beginning of the explicit
citation sentence and a special tag ’[abs]’ at the be-

1For simplicity, we do not consider the sentences with a
long distance to the explicit citation.
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Precision Recall F-value Acc
α=0.9 73.68 55.55 62.95 92.53
α=0.1 64.23 62.02 62.94 91.67

Table 1: Average test results for 10 fold cross-
validation

Precision Recall F-value Acc
α=0.9 72.16 53.21 61.06 91.43
α=0.1 64.79 60.60 62.50 90.80

Table 2: Average test results on external test data

ginning of the cited paper’s abstract. The abstract
of cited paper does not need to be labelled but it
can provide a lot of information to help label the
candidate sentences. BERT gives out the probabili-
ty of every sentence to be implicit citation. We set a
threshold α to control the identification of implicit
citation sentence. When the probability given out
by BERT is greater than α, we take the correspond-
ing sentence as an implicit citation sentence. It is
obvious that the smaller α is, the more sentences
will be recognized as implicit citation sentence. To
ensure the citation text being continuous, we start
to identify implicit citation sentences from the ex-
plicit citation sentence to both sides and stop when
meeting the first non-citation sentence. We do 10
fold cross-validation on our training dataset and
use the 400 test data as external test data. The
600 training data are split into 10 subsets. When
training, we use 9 subsets for training and use the
remaining one subset as test set. The average re-
sults for cross-validation are shown in Table 1. The
average results on external test data are shown in
Table 2.

Our model is compared with these baseline mod-
els:

All one: It labels all candidate sentences with 1.
Random: It labels all candidate sentences ran-

domly.
Cosine sim: It first uses bag of words model to

represent all texts as vectors. Then it calculates
the cosine similarity between candidate sentence
and cited paper’s abstract, and the cosine similarity
between candidate sentence and the explicit cita-
tion sentence. When the two similarities are both
greater than the threshold, the sentence is labelled
with 1.

W2v sim: This model is also based on similarity.
The similarity in this model is calculated based
on word2vec model. With two sequence of words,
it first gets the corresponding two sequences of

Precision Recall F-value Acc
All one 12.67 100.00 22.49 12.67
Random 12.31 49.40 19.71 49.01
Cosine sim 16.87 54.62 25.78 60.15
W2v sim 19.43 54.62 28.66 65.55
SVM 34.39 26.10 29.68 84.33

Table 3: Test results on external test data for the base-
line models

Precision Recall F-value Acc
α=0.9 73.66 60.64 66.52 92.26
α=0.1 66.02 68.67 67.32 91.55

Table 4: Test results on external test data when using
full training data

vectors {ui} and {vj} with word2vec model. Then
it uses the two sequences of vectors to calculate
a similarity matrix M . The element of the matrix
Mi,j = cos(ui, vj). Finally it keeps the max value
of every row vector and takes the average value of
the max value list as the final similarity.

SVM: It trains an SVM to classify if a sentence
is implicit citation sentence. The features include
sentence position feature, special pattern feature,
similarity feature, etc.

Results of all these baseline models are shown
in Table 3.

As shown in these tables, our extraction model
outperforms all the baseline models. The F-value
of our extraction models with α=0.1 and α=0.9
are very close. This indicates that they have close
performance. The precision of extraction model
with α=0.9 is higher, while the recall of extraction
model with α=0.1 is higher. So we can get two dif-
ferent extraction models with two different α. And
with the two different extraction models, we can
construct two different datasets for further training
citation generation model.

To get the two different datasets, we use all 600
data to train two final extraction models. We call
the extraction model with α=0.1 EXTα=0.1 and
call the extraction model with α=0.9 EXTα=0.9.
The results on external test data when using full
training data are shown in Table 4.

5 Final Evaluation Datasets

With the two implicit citation extraction models
we trained in the previous section, we construct
three datasets for experiments. In each dataset, a
data example is a triple: [citing paper’s context,
cited paper’s abstract, gold citation text]. The first
dataset is an explicit citation text generation dataset
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(Explicit dataset). The gold citation text in the
training data and test data is single explicit citation
sentence. Note that the explicit citation sentences
in the training data are automatically extracted with
rules and the explicit citation sentences of test data
are human annotated. The second dataset is a full
citation text generation dataset. The gold full ci-
tation texts of test data are human annotated. The
gold full citation text of training data is constructed
as follows: the gold explicit citation text is extract-
ed with rules and the gold implicit citation text is
extracted with EXTα=0.1. This extraction model
gets higher recall, so we call this dataset high-recall
full citation text generation dataset (HR dataset).
The third dataset is also a full citation text gen-
eration dataset, and it is constructed in the same
way with the second dataset except that the gold
implicit citation text of training data is extracted
with EXTα=0.9 and we call it high-precision full
citation text generation dataset (HP dataset). The
cited paper’s abstract in all the three datasets refers
to the abstract of the cited paper B. We use it to
represent the content of paper B because the whole
article is too long to encode. The citing paper’s con-
text in all the three datasets refer to the sentences
around the gold citation text in citing paper A. we
take three sentences before the gold citation text
and three sentences after it as the context. Note
that all the context sentences must be in the same
section as the gold citation text.

Finally, we have three datasets for experiments:

• Explicit dataset: This dataset is built for ex-
plicit citation text generation. The test set
contains 400 examples with human-annotated
explicit citation texts and the training set con-
tains 600 examples with human-annotated ex-
plicit citation texts and 85,052 examples with
explicit citation texts extracted based on rules.
The average lengths of explicit citation texts
in the training and test sets are 29.64 words
and 27.14 words, respectively.

• HR dataset: This dataset is built for full ci-
tation text generation. The test set contains
400 examples with human-annotated full ci-
tation texts and the training set contains 600
examples with human-annotated full citation
texts and 85,052 examples with automatically
extracted full citation texts (particularly us-
ing EXTα=0.1 to extract implicit citation sen-
tences). The average lengths of full citation

texts in the training and test sets are 43.50
words and 42.75 words, respectively.

• HP dataset: This dataset is similar to HR
dataset, and EXTα=0.9 is used to automati-
cally extract implicit citation sentences in the
training dataset. The average lengths of full
citation texts in the training and test sets are
39.77 words and 42.75 words, respectively.

6 Citation Generation Model

Our citation text generation model is a multi-
source pointer-generator network with cross atten-
tion mechanism. Because the citation generation
task has two input sequences, we use two encoders
to encode them separately and allow the model to
copy words from both input sequences. Such a
multi-source pointer-generator network does not
have the ability to model the relationship between
two input sequences, so we add a cross attention
mechanism on them. The cross attention mecha-
nism calculates the attention distribution of every
word to the other sequence of words. These atten-
tion distributions are used to help the decoder. We
believe that the citing paper’s context can tell the
model what information in cited paper’s abstract
is important and vice versa. The structure of the
whole model is shown is Figure 1.

6.1 Pointer-Generator Network

A typical seq2seq model with attention mechanism
has three components: an encoder , a decoder and
an attention network. The input text is seen as a
sequence of words {w1, w2, ...wn}. The encoder
which is a single-layer bidirectional LSTM network
receives input words one by one and produces a
sequence of encoder hidden states {hi}. At each
decoding step t, the decoder which is a single-layer
unidirectional LSTM receives the previous word
and produces decoder state st. The attention distri-
bution at is calculated as in (Bahdanau et al., 2014):

eti = vT tanh(Whhi +Wsst + battn) (1)

at = softmax(et) (2)

where v, Wh, Ws and battn are learnable parame-
ters. At each decoding step t, the attention vector
at is used to calculate the context vector ct:

ct =
∑
i

atihi (3)
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Figure 1: The structure of our generation model

The context vector ct and the decoder state st are
used to produce the vocabulary distribution Pv:

Pv = softmax(V2(V1[st, ct] + b) + b′) (4)

where V1, V2, b and b′ are learnable parameters. Pv
is a probability distribution over all words in the
vocabulary. During training, we use Pv to calculate
the cross entropy loss.

At each decoding step, this network can generate
word like normal seq2seq model or copy word from
the source sequence. The generation probability
pgen for timestep t is:

pgen = σ(W T
c ct +W T

s st +W T
x xt + bptr) (5)

where ct is the context vector, st is the decoder
state, xt is the decoder input, Wc, Ws, Wx and
bptr are learnable parameters and σ is the sigmoid
function. pgen is used as a soft switch to choose
between generating a word from the vocabulary
or copying a word from input sequence. For each
text, we define an extended vocabulary which is the
union of the vocabulary and all words appearing in
the source text. We obtain the following probability
distribution over the extended vocabulary:

P (w) = pgenPv(w) + (1− pgen)Σi:wi=wa
t
i (6)

Note that if w is not in the vocabulary, Pv(w) is
zero. Then we use the probability distribution over
the extended vocabulary to calculate the loss.

6.2 Multi-Source Pointer-Generator Network
with Cross Attention

Then we introduce our generation model. First-
ly we change the pointer-generator network to a
multi-source pointer-generator network. The multi-
source pointer-generator network has two encoders
and one decoder. The two encoders encode the

citing paper’s context and cited paper’s abstract
separately. The input context of citing paper is
seen as a sequence of words {cw1, cw2, ..., cwn}
and the input cited paper’s abstract is seen as a
sequence of words {aw1, aw2, ..., awm}. We use
the same notation to represent both a word and
its embedding vector. The context is encoded by
corresponding encoder to a sequence of encoder
hidden states {chi} and the cited paper’s abstract
is encoded to a sequence of encoder hidden states
{ahj}. At each decoding step t, we calculate at-
tention vectors {acti} , {asti} and corresponding
context vectors c1t , c

2
t separately as described in

equations (1), (2) and (3). To make the model copy
words from both two encoders, we change equation
(5) to:

[pgen, pcopy1, pcopy2] = softmax(W T
c1c

1
t +W T

c2c
2
t

+W T
s st +W T

x xt + bptr)

(7)

where pgen is the probability of generating word-
s, pcopy1 is the probability of copying words from
citing paper’s context and pcopy2 is the probability
of copying words from cited paper’s abstract. And
equation (6) needs to be changed to:

P (w) = pgenPv(w) + pcopy1Σi:cwi=wac
t
i

+ pcopy2Σi:awi=was
t
i

(8)

Then we add the cross attention mechanism to
the multi-source pointer-generator network. By
making citing paper’s context and cited paper’s
abstract attend to each other, we capture the rela-
tionships between them. First, we calculate a match
matrix M between the sequence of context’s states
{chi} and the sequence of cited paper’s abstrac-
t’s states {ahj}. The element of the match matrix
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Mi,j is:
Mi,j = chi · ahj (9)

Then we apply softmax function on the row vectors
of the matrix and get an attention matrixArow. The
row vector Arowi of the attention matrix is:

Arowi = sotmax([Mi,1,Mi,2, ...,Mi,m]) (10)

The vector Arowi represents the attention of word
cwi to the sequence of words {aw1, aw2, ..., awm}.
We also apply softmax function on the column vec-
tors of the matrix and get another attention matrix
Acolumn. The column vector of the attention matrix
Acolumni represents the attention of word awi to the
sequence of words {cw1, cw2, ..., cwn}. With the
two attention matrices, we calculate two special
sequences of vectors. The first sequence of vectors
{r1, r2, ..., rn} is calculated as:

ri = Σm
j=1A

row
i,j ∗ awj (11)

The second sequence {q1, q2, ..., qm} is calculated
as:

qj = Σn
i=1A

column
i,j ∗ cwi (12)

The vector ri represent what the word cwi thinks
about the sequence of words {aw1, aw2, ..., awm},
while the vector qj represents what the word
awj thinks about the sequence of words
{cw1, cw2, ..., cwn}. We believe that the two se-
quences of vectors can model the relationship be-
tween the input citing paper’s context and cited pa-
per’s abstract, so we call them relationship vectors.
With these two sequences of relationship vectors,
we calculate two new context vectors c3t and c4t
separately at each decoding step t, by replacing the
encoder hidden state hi with the relationship vector
ri or qj in equations (1) (2) and (3). Finally, we
calculate the vocabulary distribution with all four
context vectors. We just need to change equation
(4) to:

Pv = softmax(V2(V1[st, c
1
t , c

2
t , c

3
t , c

4
t ] + b) + b′)

(13)
The final probability distribution over the extended
vocabulary is still calculated as equation (8).

7 Experiments

7.1 Experimental Setup
The baseline models include:

RandomSen: It randomly selects a sentence
from the abstract of paper B.

Models ROUGE-1 ROUGE-2 ROUGE-L
RandomSen 15.18 1.37 11.35
MaxSimSen 15.65 1.64 11.45

EXT-ORACLE 22.60 4.21 16.83
COPY-CIT 20.54 3.25 14.79

PTGEN 24.60 6.16 19.19
PTGEN-Cross 26.28 7.50 20.49

Table 5: Comparison results on Explicit dataset

ROUGE-1 ROUGE-2 ROUGE-L
RandomSen 15.65 1.36 10.98
MaxSimSen 17.70 1.80 12.20

Ext-ORACLE 22.59 3.88 15.97
COPY-CIT 19.32 2.71 13.02

PTGEN 22.83 5.17 18.37
PTGEN-Cross 24.54 5.44 19.21

Table 6: Comparison results on HP dataset

ROUGE-1 ROUGE-2 ROUGE-L
RandomSen 15.65 1.36 10.98
MaxSimSen 17.70 1.80 12.20

Ext-ORACLE 22.59 3.88 15.97
COPY-CIT 20.08 2.67 13.01

PTGEN 23.26 5.12 18.83
PTGEN-Cross 24.22 6.04 19.38

Table 7: Comparison results on HR dataset

MaxSimSen: It selects a sentence from the ab-
stract of paper B, which has the largest similarity
with the context of A.

EXT-ORACLE: It can be viewed as an upper
bound for extractive models. It creates an oracle
citation text by selecting the best possible sentence
from the abstract of paper B that gives the highest
ROUGE with respect to the gold text.

COPY-CIT: It randomly copies one citation text
from the papers in the training dataset which also
cite the paper B.

PTGEN: It is a pointer-generator network which
allows both copying words via pointing and gen-
erating words from a fixed vocabulary. When us-
ing this model, we concatenate the citing paper’s
context and the cited paper’s abstract as the input
sequence.

Our proposed model is called PTGEN-Cross.
Both our model and the PTGEN has 256-
dimensional hidden states and 128-dimensional
word embeddings. The vocabulary size is set to
50k. At test time the citation texts are produced
using beam search with beam size 4.

7.2 Results
7.2.1 Automatic Evaluation
We evaluate our models with ROUGE (Lin, 2004),
reporting the F1 scores for ROUGE-1, ROUGE-2
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Context ...They include entity approaches for local coherence which track the repetition and syntactic realiza-
tion of entities in adjacent sentences [otherrefer] and content approaches for global coherence which
view texts as a sequence of topics, each characterized by a particular distribution of lexical items
[otherrefer]. [cit] Early theories [otherrefer] posited that there are three factors which collectively
contribute to coherence: intentional structure (purpose of discourse), attentional structure (what
items are discussed) and the organization of discourse segments...

Abstract We combine lexical, syntactic, and discourse features to produce a highly predictive model of human
readers judgments of text readability ... Our experiments indicate that discourse relations are the one
class of features that exhibits robustness across these two tasks.

Gold Other work has shown that co-occurrence of words [otherrefer] and discourse relations [refer] also
predict coherence.

PTGEN Recently, approaches [refer] have been suggested to predict the quality of discourse relations.
PTGEN-Cross Other work has shown that co-occurrence of sentences [otherrefer ]; [refer] and discourse relations

[otherrefer] discourse can be used to predict the coherence of sentences in texts.

Table 8: Example output citation texts

Gold PTGEN PTGEN-Cross
Readability 4.89 3.77 3.79

Content 4.42 2.76 2.77
Coherence 4.41 2.70 2.85

Overall 4.55 2.84 2.91

Table 9: Human evaluation results

and ROUGE-L. The test results on three datasets
are shown in Tables 5, 6 and 7, respectively.

On all three datasets, extractive models perform
poorly. Our baseline generation model PTGEN
outperforms EXT-ORACLE which can be seen as
a ’perfect’ extractive system. This is completely
different from how these models preform on other
summarization tasks like news document summa-
rization. We believe it shows the particularity of
this task. It not only requires the model to capture
the important content of the cited paper, but also
requires the model to capture the attitude of the
citing paper to the cited paper. The model not only
needs to generate fluent and informative text, but
also needs to ensure the contextual coherence.

Our proposed model PTGEN-Cross obvious-
ly outperforms the baseline model PTGEN. This
proves the effectiveness of the cross attention mech-
anism. We think the cross attention mechanism
helps the model capture the relationship between
the citing paper’s context and the cited paper’s ab-
stract. The results on explicit citation text gen-
eration dataset are all higher than the results on
the other two datasets, which means the task of
explicit citation text generation is easier than the
task of full citation text generation. We think it is
because the context of explicit citation sometimes
contains some implicit citation sentences and these
sentences can be very helpful to the generation of
explicit citation text. Another possible reason is
that the quality of the training dataset for explic-

it citation generation is higher than the other two
training datasets. Because the test data of the two
full citation text generation datasets is the same, we
can compare the results of our model training on
the two datasets. The model trained on the high-
recall dataset performs slightly better. This tells us
the coverage ability of the implicit citation extrac-
tion model is more important when constructing
training dataset for citation generation.

7.2.2 Human Evaluation

We randomly sample 50 instances from the high-
recall test set and perform human evaluation on
them. Three graduate students are employed to rate
the citation text produced by each method in four
aspects: readability (whether the citation text is flu-
ent), content (whether the citation text is relevant to
the cited paper’s abstract), coherence (whether the
citation text is coherent with the citing paper’s con-
text) and overall quality. The rating score ranges
from 1 to 5, and 1 means very bad and 5 means
very good. Note that every text is scored by three
judges and we take take the average of three scores.
The results are shown in Table 9.

As is shown in the table, our model outperform-
s the baseline model, especially with respect to
the coherence and overall aspects. This further
demonstrates the efficacy of our proposed model.
We show an example of generation in Table 8.
Note that all reference signs to the cited paper are
masked as ’[refer]’ and all reference signs to other
papers are masked as ’[otherrefer]’. The ’[cit]’ in
bold in context indicates the position the citation
text should be. We can see that the citation text
generated by our model is more contextual coher-
ent because it can capture the relationship between
context and the cited paper’s abstract better.
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8 Conclusion and Future Work

In this paper we investigate the challenging task
of automatic generation of citation texts in schol-
arly papers. We annotate a dataset and train an
implicit citation extraction model to automatical-
ly enlarge the training data. we then propose the
multi-source pointer-generation network with cross
attention mechanism to deal with this task. Empir-
ical evaluation results on three datasets verify the
efficacy of our proposed method. In future work,
we will consider introducing more information like
the citation texts to the cited paper in other papers
to help the generation.
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