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Abstract

Fact checking is a challenging task because
verifying the truthfulness of a claim requires
reasoning about multiple retrievable evidence.
In this work, we present a method suitable
for reasoning about the semantic-level struc-
ture of evidence. Unlike most previous works,
which typically represent evidence sentences
with either string concatenation or fusing the
features of isolated evidence sentences, our ap-
proach operates on rich semantic structures of
evidence obtained by semantic role labeling.
We propose two mechanisms to exploit the
structure of evidence while leveraging the ad-
vances of pre-trained models like BERT, GPT
or XLNet. Specifically, using XLNet as the
backbone, we first utilize the graph structure to
re-define the relative distances of words, with
the intuition that semantically related words
should have short distances. Then, we adopt
graph convolutional network and graph atten-
tion network to propagate and aggregate infor-
mation from neighboring nodes on the graph.
We evaluate our system on FEVER, a bench-
mark dataset for fact checking, and find that
rich structural information is helpful and both
our graph-based mechanisms improve the ac-
curacy. Our model is the state-of-the-art sys-
tem in terms of both official evaluation met-
rics, namely claim verification accuracy and
FEVER score.

1 Introduction

Internet provides an efficient way for individuals
and organizations to quickly spread information
to massive audiences. However, malicious people
spread false news, which may have significant in-
fluence on public opinions, stock prices, even presi-
dential elections (Faris et al., 2017). Vosoughi et al.
(2018) show that false news reaches more people

∗ Work done while this author was an intern at Microsoft
Research.

Claim: The Rodney King riots took place in the most populous county in the USA.

Evidence #1: 
The 1992 Los Angeles riots, also known as the Rodney King riots were a series of riots, lootings, 
arsons, and civil disturbances that occurred in Los Angeles County, California in April and May 
1992.

Evidence #2: 
Los Angeles County, officially the County of Los Angeles, is the most populous county in the USA.
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Figure 1: A motivating example for fact checking and
the FEVER task. Verifying the claim requires under-
standing the semantic structure of multiple evidence
sentences and the reasoning process over the structure.

than the truth. The situation is more urgent as ad-
vanced pre-trained language models (Radford et al.,
2019) can produce remarkably coherent and fluent
texts, which lowers the barrier for the abuse of cre-
ating deceptive content. In this paper, we study fact
checking with the goal of automatically assessing
the truthfulness of a textual claim by looking for
textual evidence.

Previous works are dominated by natural lan-
guage inference models (Dagan et al., 2013; An-
geli and Manning, 2014) because the task requires
reasoning of the claim and retrieved evidence sen-
tences. They typically either concatenate evidence
sentences into a single string, which is used in top
systems in the FEVER challenge (Thorne et al.,
2018b), or use feature fusion to aggregate the fea-
tures of isolated evidence sentences (Zhou et al.,
2019). However, both methods fail to capture rich
semantic-level structures among multiple evidence,
which also prevents the use of deeper reasoning
model for fact checking. In Figure 1, we give a
motivating example. Making the correct prediction
requires a model to reason based on the understand-
ing that “Rodney King riots” is occurred in “Los
Angeles County” from the first evidence, and that
“Los Angeles County” is “the most populous county
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in the USA” from the second evidence. It is there-
fore desirable to mine the semantic structure of
evidence and leverage it to verify the truthfulness
of the claim.

Under the aforementioned consideration, we
present a graph-based reasoning approach for fact
checking. With a given claim, we represent the re-
trieved evidence sentences as a graph, and then use
the graph structure to guide the reasoning process.
Specifically, we apply semantic role labeling (SRL)
to parse each evidence sentence, and establish links
between arguments to construct the graph. When
developing the reasoning approach, we intend to
simultaneously leverage rich semantic structures
of evidence embodied in the graph and powerful
contextual semantics learnt in pre-trained models
like BERT (Devlin et al., 2018), GPT (Radford
et al., 2019) and XLNet (Yang et al., 2019). To
achieve this, we first re-define the distance between
words based on the graph structure when producing
contextual representations of words. Furthermore,
we adopt graph convolutional network and graph
attention network to propagate and aggregate infor-
mation over the graph structure. In this way, the
reasoning process employs semantic representa-
tions at both word/sub-word level and graph level.

We conduct experiments on FEVER (Thorne
et al., 2018a), which is one of the most influen-
tial benchmark datasets for fact checking. FEVER
consists of 185,445 verified claims, and evidence
sentences for each claim are natural language sen-
tences from Wikipedia. We follow the official eval-
uation protocol of FEVER, and demonstrate that
our approach achieves state-of-the-art performance
in terms of both claim classification accuracy and
FEVER score. Ablation study shows that the in-
tegration of graph-driven representation learning
mechanisms improves the performance. We briefly
summarize our contributions as follows.

• We propose a graph-based reasoning approach
for fact checking. Our system apply Seman-
tic Role Labeling (SRL) to construct graphs
and present two graph-driven representation
learning mechanisms.

• Results verify that both graph-based mech-
anisms improve the accuracy, and our final
system achieves state-of-the-art performance
on the FEVER dataset.

2 Task Definition and Pipeline

With a textual claim given as the input, the prob-
lem of fact checking is to find supporting evidence
sentences to verify the truthfulness of the claim.

We conduct our research on FEVER (Thorne
et al., 2018a), short for Fact Extraction and VER-
ification, a benchmark dataset for fact checking.
Systems are required to retrieve evidence sentences
from Wikipedia, and predict the claim as “SUP-
PORTED”, “REFUTED” or “NOT ENOUGH
INFO (NEI)”, standing for that the claim is sup-
ported by the evidence, refuted by the evidence,
and is not verifiable, respectively. There are two
official evaluation metrics in FEVER. The first is
the accuracy for three-way classification. The sec-
ond is FEVER score, which further measures the
percentage of correct retrieved evidence for “SUP-
PORTED” and “REFUTED” categories. Both the
statistic of FEVER dataset and the equation for
calculating FEVER score are given in Appendix B.

Our Pipeline

1

claim

Document Selection 

documents

Sentence Selection

sentences

Claim Verification

evidence

SUPPORTED | REFUTED | NOTENOUGHINFO

Figure 2: Our pipeline for fact checking on FEVER.
The main contribution of this work is a graph-based
reasoning model for claim verification.

Here, we present an overview of our pipeline for
FEVER, which follows the majority of previous
studies. Our pipeline consists of three main compo-
nents: a document retrieval model, a sentence-level
evidence selection model, and a claim verification
model. Figure 2 gives an overview of the pipeline.
With a given claim, the document retrieval model
retrieves the most related documents from a given
collection of Wikipedia documents. With retrieved
documents, the evidence selection model selects
top-k related sentences as the evidence. Finally,
the claim verification model takes the claim and
evidence sentences as the input and outputs the
veracity of the claim.

The main contribution of this work is the graph-
based reasoning approach for claim verification,
which is explained detailedly in Section 3. Our
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Evidence #1: 

The 1992 Los Angeles riots, 
also known as the Rodney 
King riots were a series of 
riots, lootings, arsons, and 
civil disturbances that 
occurred in Los Angeles 
County, California in April 
and May 1992.

Evidence #2: 

Los Angeles County, 
officially the County of Los 
Angeles, is the most 
populous county in the USA.

VERB

is

ARG1

Los Angeles County, officially the County of Los Angeles

ARG2

the most populous county in the USA

SRL results with verb “is”

VERB

known

ARG1

ARG2

ADVERBIAL

also

SRL results with verb “known”

as the Rodney 
King riots

The 1992 Los 
Angeles riots

VERB

occurred

ARG1

riots, lootings, arsons, and 
civil disturbances

LOCATION

In Los Angeles 
County, California

TEMPORAL

SRL results with verb “occurred”

in April and 
May 1992

Graph 
Construction

Figure 3: The constructed graph for the motivating example with two evidence sentences. Each box describes
a “tuple” which is extracted by SRL triggered by a verb. Blue solid lines indicate edges that connect arguments
within a tuple and red dotted lines indicate edges that connect argument across different tuples.

strategies for document selection and evidence se-
lection are described in Section 4.

3 Graph-Based Reasoning Approach

In this section, we introduce our graph-based rea-
soning approach for claim verification, which is
the main contribution of this paper. Taking a claim
and retrieved evidence sentences1 as the input, our
approach predicts the truthfulness of the claim. For
FEVER, it is a three-way classification problem,
which predicts the claim as “SUPPORTED”, “RE-
FUTED” or “NOT ENOUGH INFO (NEI)”.

The basic idea of our approach is to employ the
intrinsic structure of evidence to assess the truthful-
ness of the claim. As shown in the motivating exam-
ple in Figure 1, making the correct prediction needs
good understanding of the semantic-level structure
of evidence and the reasoning process based on
that structure. In this section, we first describe
our graph construction module (§3.1). Then, we
present how to apply graph structure for fact check-
ing, including a contextual representation learning
mechanism with graph-based distance calculation
(§3.2), and graph convolutional network and graph
attention network to propagate and aggregate infor-
mation over the graph (§3.3 and §3.4).

3.1 Graph Construction

Taking evidence sentences as the input, we would
like to build a graph to reveal the intrinsic structure
of these evidence. There might be many different

1Details about how to retrieve evidence for a claim are
described in Section 4.

ways to construct the graph, such as open informa-
tion extraction (Banko et al., 2007), named entity
recognition plus relation classification, sequence-
to-sequence generation which is trained to produce
structured tuples (Goodrich et al., 2019), etc. In this
work, we adopt a practical and flexible way based
on semantic role labeling (Carreras and Màrquez,
2004). Specifically, with the given evidence sen-
tences, our graph construction operates in the fol-
lowing steps.

• For each sentence, we parse it to tuples2 with
an off-the-shelf SRL toolkit developed by Al-
lenNLP3, which is a re-implementation of a
BERT-based model (Shi and Lin, 2019).

• For each tuple, we regard its elements with
certain types as the nodes of the graph. We
heuristically set those types as verb, argument,
location and temporal, which can also be eas-
ily extended to include more types. We create
edges for every two nodes within a tuple.

• We create edges for nodes across different
tuples to capture the structure information
among multiple evidence sentences. Our idea
is to create edges for nodes that are literally
similar with each other. Assuming entity A
and entity B come from different tuples, we
add one edge if one of the following condi-
tions is satisfied: (1) A equals B; (2) A con-
tains B; (3) the number of overlapped words

2A sentence could be parsed as multiple tuples.
3https://demo.allennlp.org/

semantic-role-labeling

https://demo.allennlp.org/semantic-role-labeling
https://demo.allennlp.org/semantic-role-labeling
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[SEP]
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Figure 4: An overview of our graph-based reasoning approach for claim verification. Taking a claim and evidence
sentences as the input, we first calculate contextual word representations with graph-based distance (§3.2). After
that, we use graph convolutional network to propagate information over the graph (§3.3), and use graph attention
network to aggregate information (§3.4) before making the final prediction.

between A and B is larger than the half of the
minimum number of words in A and B.

Figure 3 shows the constructed graph of the evi-
dence in the motivating example. In order to obtain
the structure information of the claim, we use the
same pipeline to represent a claim as a graph.

Our graph construction module offers an ap-
proach on modeling structure of multiple evidence,
which could be further developed in the future.

3.2 Contextual Word Representations with
Graph Distance

We describe the use of graph for learning graph-
enhanced contextual representations of words4.

Our basic idea is to shorten the distance be-
tween two semantically related words on the graph,
which helps to enhance their relationship when
we calculate contextual word representations with
a Transformer-based (Vaswani et al., 2017) pre-
trained model like BERT and XLNet. Supposing
we have five evidence sentences {s1, s2, ... s5}
and the word w1i from s1 and the word w5j from
s5 are connected on the graph, simply concatenat-
ing evidence sentences as a single string fails to
capture their semantic-level structure, and would
give a large distance to w1i and w5j , which is the
number of words between them across other three
sentences (i.e., s2, s3, and s4). An intuitive way
to achieve our goal is to define an N ×N matrix
of distances of words along the graph, where N is
the total number of words in the evidence. How-
ever, this is unacceptable in practice because the

4In Transformer-based representation learning pipeline,
the basic computational unit can also be word-piece. For
simplicity, we use the term “word” in this paper.

representation learning procedure will take huge
memory space, which is also observed by Shaw
et al. (2018).

In this work, we adopt pre-trained model XL-
Net (Yang et al., 2019) as the backbone of our
approach because it naturally involves the concept
of relative position5. Pre-trained models capture
rich contextual representations of words, which is
helpful for our task which requires sentence-level
reasoning. Considering the aforementioned issues,
we implement an approximate solution to trade
off between the efficiency of implementation and
the informativeness of the graph. Specifically, we
reorder evidence sentences with a topology sort al-
gorithm with the intuition that closely linked nodes
should exist in neighboring sentences. This would
prefer that neighboring sentences contain either
parent nodes or sibling nodes, so as to better cap-
ture the semantic relatedness between different evi-
dence sentences. We present our implementation
in Appendix A. The algorithm begins from nodes
without incident relations. For each node with-
out incident relations, we recursively visit its child
nodes in a depth-first searching way.

After obtaining graph-based relative position of
words, we feed the sorted sequence into XLNet
to obtain the contextual representations. Mean-
while, we obtain the representation h([CLS]) for
a special token [CLS], which stands for the joint
representation of the claim and the evidence in
Transformer-based architecture.

5Our approach can also be easily adapted to BERT by
adding relative position like Shaw et al. (2018).
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3.3 Graph Convolutional Network

We have injected the graph information in Trans-
former and obtained h([CLS]), which captures the
semantic interaction between the claim and the evi-
dence at word level 6. As shown in our motivating
example in Figure 1 and the constructed graph in
Figure 3, the reasoning process needs to operate
on span/argument-level, where the basic computa-
tional unit typically consists of multiple words like
“Rodney King riots” and “the most popular county
in the USA”.

To further exploit graph information beyond
word level, we first calculate the representation
of a node, which is a word span in the graph, by
averaging the contextual representations of words
contained in the node. After that, we employ multi-
layer graph convolutional network (GCNs) (Kipf
and Welling, 2016) to update the node represen-
tation by aggregating representations from their
neighbors on the graph. Formally, we denote G as
the graph constructed by the previous graph con-
struction method and make H ∈ RNv×d a matrix
containing representation of all nodes, where Nv

and d denote the number of nodes and the dimen-
sion of node representations, respectively. Each
row Hi ∈ Rd is the representation of node i. We
introduce an adjacency matrix A of graph G and
its degree matrix D, where we add self-loops to
matrix A and Dii =

∑
j Aij . One-layer GCNs

will aggregate information through one-hop edges,
which is calculated as follows:

H
(1)
i = ρ(ÃHiW0), (1)

whereH(1)
i ∈ Rd is the new d-dimension represen-

tation of node i, Ã = D−
1
2AD−

1
2 is the normal-

ized symmetric adjacency matrix, W0 is a weight
matrix, and ρ is an activation function. To exploit
information from the multi-hop neighboring nodes,
we stack multiple GCNs layers:

H
(j+1)
i = ρ(ÃH

(j)
i Wj), (2)

where j denotes the layer number and H0
i is the

initial representation of node i initialized from the
contextual representation. We simplify H(k) as H
for later use, where H indicates the representation
of all nodes updated by k-layer GCNs.

6By “word” in “word-level”, we mean the basic computa-
tional unit in XLNet, and thus h([CLS]) capture the sophis-
ticated interaction between words via multi-layer multi-head
attention operations.

The graph learning mechanism will be per-
formed separately for claim-based and evidence-
based graph. Therefore, we denote Hc and He

as the representations of all nodes in claim-based
graph and evidence-based graphs, respectively. Af-
terwards, we utilize the graph attention network to
align the graph-level node representation learned
for two graphs before making the final prediction.

3.4 Graph Attention Network
We explore the related information between two
graphs and make semantic alignment for final pre-
diction. Let He ∈ RNv

e×d and Hc ∈ RNv
c×d

denote matrices containing representations of all
nodes in evidence-based and claim-based graph re-
spectively, where Nv

e and Nv
c denote number of

nodes in the corresponding graph.
We first employ a graph attention mechanism

(Veličković et al., 2017) to generate a claim-specific
evidence representation for each node in claim-
based graph. Specifically, we first take each hic ∈
Hc as query, and take all node representations hje ∈
He as keys. We then perform graph attention on
the nodes, an attention mechanism a : Rd×Rd →
R to compute attention coefficient as follows:

eij = a(Wch
i
c,Weh

j
e) (3)

which means the importance of evidence node j to
the claim node i. Wc ∈ RF×d and We ∈ RF×d

is the weight matrix and F is the dimension of
attention feature. We use the dot-product function
as a here. We then normalize eij using the softmax
function:

αij = softmaxj(eij) =
exp(eij)∑

k∈Nv
e
exp(eik)

(4)

After that, we calculate a claim-centric evidence
representation X = [x1, . . . , xNv

c
] using the

weighted sum over He:

xi =
∑
j∈Nv

e

αijh
j
e (5)

We then perform node-to-node alignment and cal-
culate aligned vectors A = [a1, . . . , aNv

c
] by

the claim node representation Hc and the claim-
centric evidence representation X ,

ai = falign(h
i
c, x

i), (6)

where falign() denotes the alignment function. In-
spired by Shen et al. (2018), we design our align-
ment function as:

falign(x, y) =Wa[x, y, x− y, x� y], (7)
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where Wa ∈ Rd×4∗d is a weight matrix and � is
element-wise Hadamard product. The final output
g is obtained by the mean pooling over A. We
then feed the concatenated vector of g and the final
hidden vector h([CLS]) from XLNet through a
MLP layer for the final prediction.

4 Document Retrieval and Evidence
Selection

In this section, we briefly describe our document re-
trieval and evidence selection components to make
the paper self contained.

4.1 Document Retrieval
The document retrieval model takes a claim and
a collection of Wikipedia documents as the input,
and returns m most relevant documents.

We mainly follow Nie et al. (2019), the top-
performing system on the FEVER shared task
(Thorne et al., 2018b). The document retrieval
model first uses keyword matching to filter candi-
date documents from the massive Wikipedia docu-
ments. Then, NSMN (Nie et al., 2019) is applied
to handle the documents with disambiguation titles,
which are 10% of the whole documents. Docu-
ments without disambiguation title are assigned
with higher scores in the resulting list. The input
to the NSMN model includes the claim and can-
didate documents with disambiguation title. At a
high level, NSMN model has encoding, alignment,
matching and output layers. Readers who are in-
terested are recommended to refer to the original
paper for more details.

Finally, we select top-10 documents from the
resulting list.

4.2 Sentence-Level Evidence Selection
Taking a claim and all the sentences from retrieved
documents as the input, evidence selection model
returns the top-k most relevant sentences.

We regard evidence selection as a semantic
matching problem, and leverage rich contextual
representations embodied in pre-trained models
like XLNet (Yang et al., 2019) and RoBERTa (Liu
et al., 2019a) to measure the relevance of a claim
to every evidence candidate. Let’s take XLNet as
an example. The input of the sentence selector is

cei = [Claim, SEP,Evidencei, SEP,CLS]

where Claim and Evidencei indicate tokenized
word-pieces of original claim and ith evidence can-
didate, d denotes the dimension of hidden vector,

and SEP and CLS are symbols indicating ending
of a sentence and ending of a whole input, respec-
tively. The final representation hcei ∈ Rd is ob-
tained via extracting the hidden vector of the CLS
token.

After that, we employ an MLP layer and a soft-
max layer to compute score s+cei for each evidence
candidate. Then, we rank all the evidence sentences
by score s+cei . The model is trained on the training
data with a standard cross-entropy loss. Following
the official setting in FEVER, we select top-5 evi-
dence sentences. The performance of our evidence
selection model is shown in Appendix C.

5 Experiments

We evaluate on FEVER (Thorne et al., 2018a),
a benchmark dataset for fact extraction and ver-
ification. Each instance in FEVER dataset con-
sists of a claim, groups of ground-truth evi-
dence from Wikipedia and a label (i.e., “SUP-
PORTED”, “REFUTED” or “NOT ENOUGH
INFO (NEI)”), indicating its veracity. FEVER
includes a dump of Wikipedia, which contains
5,416,537 pre-processed documents. The two of-
ficial evaluation metrics of FEVER are label ac-
curacy and FEVER score, as described in Section
2. Label accuracy is the primary evaluation metric
we apply for our experiments because it directly
measures the performance of the claim verification
model. We also report FEVER score for compar-
ison, which measures whether both the predicted
label and the retrieved evidence are correct. No
evidence is required if the predicted label is NEI.

5.1 Baselines

We compare our system to the following baselines,
including three top-performing systems on FEVER
shared task, a recent work GEAR (Zhou et al.,
2019), and a concurrent work by Liu et al. (2019b).

• Nie et al. (2019) employ a semantic matching
neural network for both evidence selection
and claim verification.

• Yoneda et al. (2018) infer the veracity of each
claim-evidence pair and make final prediction
by aggregating multiple predicted labels.

• Hanselowski et al. (2018) encode each claim-
evidence pair separately, and use a pooling
function to aggregate features for prediction.
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Method
Label FEVER
Acc (%) Score (%)

Hanselowski et al. (2018) 65.46 61.58
Yoneda et al. (2018) 67.62 62.52
Nie et al. (2019) 68.21 64.21
GEAR (Zhou et al., 2019) 71.60 67.10
KGAT (Liu et al., 2019b) 72.81 69.40
DREAM (our approach) 76.85 70.60

Table 1: Performance on the blind test set on FEVER.
Our approach is abbreviated as DREAM.

• GEAR (Zhou et al., 2019) uses BERT to ob-
tain claim-specific representation for each evi-
dence sentence, and applies graph network by
regarding each evidence sentence as a node in
the graph.

• KGAT (Liu et al., 2019b) is concurrent with
our work, which regards sentences as the
nodes of a graph and uses Kernel Graph At-
tention Network to aggregate information.

5.2 Model Comparison

Table 1 reports the performance of our model and
baselines on the blind test set with the score showed
on the public leaderboard7. As shown in Table 1,
in terms of label accuracy, our model significantly
outperforms previous systems with 76.85% on the
test set. It is worth noting that, our approach, which
exploits explicit graph-level semantic structure of
evidence obtained by SRL, outperforms GEAR
and KGAT, both of which regard sentences as the
nodes and use model to learn the implicit structure
of evidence 8. By the time our paper is submitted,
our system achieves state-of-the-art performance
in terms of both evaluation metrics on the leader-
board.

5.3 Ablation Study

Table 2 presents the label accuracy on the develop-
ment set after eliminating different components (in-
cluding the graph-based relative distance (§3.2) and
graph convolutional network and graph attention
network (§3.3 and §3.4) separately in our model.

7The public leaderboard for perpetual evaluation of
FEVER is https://competitions.codalab.org/
competitions/18814#results. DREAM is our user
name on the leaderboard.

8We don’t overclaim that the superiority of our system
to GEAR and KGAT only comes from the explicit graph
structure, because we have differences in other components
like sentence selection and the pre-trained model.

Model Label Accuracy
DREAM 79.16
-w/o Relative Distance 78.35
-w/o GCN&GAN 77.12
-w/o both above modules 75.40

Table 2: Ablation study on develop set.

The last row in Table 2 corresponds to the base-
line where all the evidence sentences are simply
concatenated as a single string, where no explicit
graph structure is used at all for fact verification.

As shown in Table 2, compared to the XLNet
baseline, incorporating both graph-based modules
brings 3.76% improvement on label accuracy. Re-
moving the graph-based distance drops 0.81% in
terms of label accuracy. The graph-based distance
mechanism can shorten the distance of two closely-
linked nodes and help the model to learn their
dependency. Removing the graph-based reason-
ing module drops 2.04% because graph reason-
ing module captures the structural information and
performs deep reasoning about that. Figure 5 gives
a case study of our approach.

5.4 Error Analysis

We randomly select 200 incorrectly predicted in-
stances and summarize the primary types of errors.

The first type of errors is caused by failing to
match the semantic meaning between phrases that
describe the same event. For example, the claim
states “Winter’s Tale is a book”, while the evi-
dence states “Winter ’s Tale is a 1983 novel by
Mark Helprin”. The model fails to realize that
“novel” belongs to “book” and states that the claim
is refuted. Solving this type of errors needs to in-
volve external knowledge (e.g. ConceptNet (Speer
et al., 2017)) that can indicate logical relationships
between different events.

The misleading information in the retrieved evi-
dence causes the second type of errors. For exam-
ple, the claim states “The Gifted is a movie”, and
the ground-truth evidence states “The Gifted is an
upcoming American television series”. However,
the retrieved evidence also contains “The Gifted is
a 2014 Filipino dark comedy-drama movie”, which
misleads the model to make the wrong judgment.

6 Related Work

In general, fact checking involves assessing the
truthfulness of a claim. In literature, a claim can be

https://competitions.codalab.org/competitions/18814#results
https://competitions.codalab.org/competitions/18814#results
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1

Claim

Text: Congressional Space Medal of Honor is the 
highest award given only to astronauts by NASA.
Tuples: ('Congressional Space Medal of Honor', 'is', 
'the highest award given only to astronauts by 
NASA’)
('the highest award’, 'given','only', 'to astronauts', 
'by NASA')

Evidence #1

Text: The highest award given by NASA , 
Congressional Space Medal of Honor is awarded by 
the President of the United States in Congress 's 
name on recommendations from the Administrator 
of the National Aeronautics and Space 
Administration .
Tuples: ('The highest award','given','by NASA’)
('Congressional Space Medal of Honor','awarded','by
the President of the United States')

Evidence #2

Text: To be awarded the Congressional Space Medal 
of Honor , an astronaut must perform feats of 
extraordinary accomplishment while participating in 
space flight under the authority of NASA .
Tuples: ('awarded', 'the Congressional Space Medal 
of Honor’)
('To be awarded the Congressional Space Medal of 
Honor',’an astronaut','perform','feats of 
extraordinary accomplishment’)
('an astronaut', 'participating','in space flight','under
the authority of NASA' )

Figure 5: A case study of our approach. Facts shared
across the claim and the evidence are highlighted with
different colors.

a text or a subject-predicate-object triple (Nakas-
hole and Mitchell, 2014). In this work, we only
consider textual claims. Existing datasets differ
from data source and the type of supporting ev-
idence for verifying the claim. An early work
by Vlachos and Riedel (2014) constructs 221 la-
beled claims in the political domain from POLITI-
FACT.COM and CHANNEL4.COM, giving meta-
data of the speaker as the evidence. POLIFACT is
further investigated by following works, including
Ferreira and Vlachos (2016) who build Emergent
with 300 labeled rumors and about 2.6K news ar-
ticles, Wang (2017) who builds LIAR with 12.8K
annotated short statements and six fine-grained la-
bels, and Rashkin et al. (2017) who collect claims
without meta-data while providing 74K news ar-
ticles. We study FEVER (Thorne et al., 2018a),
which requires aggregating information from multi-
ple pieces of evidence from Wikipedia for making
the conclusion. FEVER contains 185,445 anno-
tated instances, which to the best of our knowledge
is the largest benchmark dataset in this area.

The majority of participating teams in the
FEVER challenge (Thorne et al., 2018b) use the
same pipeline consisting of three components,
namely document selection, evidence sentence se-
lection, and claim verification. In document selec-

tion phase, participants typically extract named en-
tities from a claim as the query and use Wikipedia
search API. In the evidence selection phase, partici-
pants measure the similarity between the claim and
an evidence sentence candidate by training a classi-
fication model like Enhanced LSTM (Chen et al.,
2016) in a supervised setting or using string simi-
larity function like TFIDF without trainable param-
eters. Padia et al. (2018) utilizes semantic frames
for evidence selection. In this work, our focus is
the claim classification phase. Top-ranked three
systems aggregate pieces of evidence through con-
catenating evidence sentences into a single string
(Nie et al., 2019), classifying each evidence-claim
pair separately, merging the results (Yoneda et al.,
2018), and encoding each evidence-claim pair fol-
lowed by pooling operation (Hanselowski et al.,
2018). Zhou et al. (2019) are the first to use BERT
to calculate claim-specific evidence sentence rep-
resentations, and then develop a graph network to
aggregate the information on top of BERT, regard-
ing each evidence as a node in the graph. Our work
differs from Zhou et al. (2019) in that (1) the con-
struction of our graph requires understanding the
syntax of each sentence, which could be viewed as
a more fine-grained graph, and (2) both the contex-
tual representation learning module and the reason-
ing module have model innovations of taking the
graph information into consideration. Instead of
training each component separately, Yin and Roth
(2018) show that joint learning could improve both
claim verification and evidence selection.

7 Conclusion

In this work, we present a graph-based approach
for fact checking. When assessing the veracity of a
claim giving multiple evidence sentences, our ap-
proach is built upon an automatically constructed
graph, which is derived based on semantic role la-
beling. To better exploit the graph information, we
propose two graph-based modules, one for calculat-
ing contextual word embeddings using graph-based
distance in XLNet, and the other for learning repre-
sentations of graph components and reasoning over
the graph. Experiments show that both graph-based
modules bring improvements and our final system
is the state-of-the-art on the public leaderboard by
the time our paper is submitted.

Evidence selection is an important component
of fact checking as finding irrelevant evidence may
lead to different predictions. A potential solution
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is to jointly learn evidence selection and claim ver-
ification model, which we leave as a future work.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Andreas Vlachos and Sebastian Riedel. 2014. Fact
checking: Task definition and dataset construction.
In Proceedings of the ACL 2014 Workshop on Lan-
guage Technologies and Computational Social Sci-
ence, pages 18–22.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science,
359(6380):1146–1151.

William Yang Wang. 2017. ” liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Wenpeng Yin and Dan Roth. 2018. Twowingos: A two-
wing optimization strategy for evidential claim veri-
fication. arXiv preprint arXiv:1808.03465.

Takuma Yoneda, Jeff Mitchell, Johannes Welbl, Pon-
tus Stenetorp, and Sebastian Riedel. 2018. Ucl ma-
chine reading group: Four factor framework for fact
finding (hexaf). In Proceedings of the First Work-
shop on Fact Extraction and VERification (FEVER),
pages 97–102.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. 2019.
GEAR: Graph-based evidence aggregating and rea-
soning for fact verification. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 892–901, Florence, Italy.
Association for Computational Linguistics.

A Typology Sort Algorithm

Algorithm 1 Graph-based Distance Calculation Al-
gorithm.
Require: A sequence of nodes S = {si, s2, · · · , sn}; A set

of relations R = {r1, r2, · · · , rm}
1: function DFS(node, visited, sorted sequence)
2: for each child sc in node’s children do
3: if sc has no incident edges and visited[sc]==0

then
4: visited[sc]=1
5: DFS(sc, visited)
6: end if
7: end for
8: sorted sequence.append(0, node)
9: end function

10: sorted sequence = []
11: visited = [0 for i in range(n)]
12: S,R = changed to acyclic graph(S,R)
13: for each node si in S do
14: if si has no incident edges and visited[i] == 0 then
15: visited[i] = 1
16: for each child sc in si’s children do
17: DFS(sc, visited, sorted sequence)
18: end for
19: sorted sequence.append(0,si)
20: end if
21: end for
22: return sorted sequence

B FEVER

The statistic of FEVER is shown in Table 3.

Split SUPPORTED REFUTED NEI
Training 80,035 29,775 35,659

Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 3: Split size of SUPPORTED, REFUTED and
NOT ENOUGH INFO (NEI) classes in FEVER.

FEVER score is calculated with equation 8,
where y is the ground truth label, ŷ is the predicted
label, E = [E1, · · · , Ek] is a set of ground-truth
evidence, and Ê = [Ê1, · · · , Ê5] is a set of pre-
dicted evidence.

Instance Correct(y, ŷ,E, Ê)
def
=

y = ŷ ∧ (y = NEI ∨ Evidence Correct(E, Ê))
(8)

C Evidence Selection Results

In this part, we present the performance of the
sentence-level evidence selection module that we
develop with different backbone. We take the con-
catenation of claim and each evidence as input, and
take the last hidden vector to calculate the score for
evidence ranking. In our experiments, we try both

https://www.aclweb.org/anthology/P19-1085
https://www.aclweb.org/anthology/P19-1085
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RoBERTa and XLNet. From Table 4, we can see
that RoBERTa performs slightly better than XLNet
here. When we submit our system on the leader-
board, we use RoBERTa as the evidence selection
model.

Model Dev. Set Test Set
Acc. Rec. F1 Acc. Rec. F1

XLNet 26.60 87.33 40.79 25.55 85.34 39.33
RoBERTa 26.67 87.64 40.90 25.63 85.57 39.45

Table 4: Results of evidence selection models.

D Training Details

In this part, we describe the training details of our
experiments. We employ cross-entropy loss as the
loss function. We apply AdamW as the optimizer
for model training. For evidence selection model,
we set learning rate as 1e-5, batch size as 8 and
maximum sequence length as 128.

In claim verification model, the XLNet network
and graph-based reasoning network are trained sep-
arately. We first train XLNet and then freeze the
parameters of XLNet and train the graph-based rea-
soning network. We set learning rate as 2e-6, batch
size as 6 and set maximum sequence length as 256.
We set the dimension of node representation as 100.


