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Abstract

Chinese short text matching usually employs
word sequences rather than character se-
quences to get better performance. How-
ever, Chinese word segmentation can be er-
roneous, ambiguous or inconsistent, which
consequently hurts the final matching perfor-
mance. To address this problem, we propose
neural graph matching networks, a novel sen-
tence matching framework capable of dealing
with multi-granular input information. Instead
of a character sequence or a single word se-
quence, paired word lattices formed from mul-
tiple word segmentation hypotheses are used
as input and the model learns a graph represen-
tation according to an attentive graph match-
ing mechanism. Experiments on two Chinese
datasets show that our models outperform the
state-of-the-art short text matching models.

1 Introduction

Short text matching (STM) is a fundamental task
of natural language processing (NLP). It is usually
recognized as a paraphrase identification task or
a sentence semantic matching task. Given a pair
of sentences, a matching model is to predict their
semantic similarity. It is widely used in question
answer systems and dialogue systems (Gao et al.,
2019; Yu et al., 2014).

The recent years have seen advances in deep
learning methods for text matching (Mueller and
Thyagarajan, 2016; Gong et al., 2017; Chen et al.,
2017; Lan and Xu, 2018). However, almost all
of these models are initially proposed for English
text matching. Applying them for Chinese text
matching, we have two choices. One is to take
Chinese characters as the input of models. An-
other is first to segment each sentence into words,
and then to take these words as input tokens. Al-
though character-based models can overcome the
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Figure 1: An example of the word segmentation and
the corresponding word lattice

problem of data sparsity to some degree (Li et al.,
2019), the main drawback of these models is that
explicit word information is not fully exploited,
which can be potentially useful for semantic match-
ing. However, word-based models often suffer
some potential issues caused by word segmen-
tation. As shown in Figure 1, the character se-
quence “南京市长江大桥(South Capital City
Long River Big Bridge)” has two different mean-
ings with different word segmentation. The first
one refers to a bridge (Segment-1, Segment-2),
and the other refers to a person (Segment-3). The
ambiguity may be eliminated with more context.
Additionally, the segmentation granularity of dif-
ferent tools is different. For example, “长江大
桥(Yangtze River Bridge)” in Segment-1 is divided
into two words “长江(Yangtze River)” and “大
桥(Bridge)” in Segment-2. It has been shown that
multi-granularity information is important for text
matching (Lai et al., 2019).

Here we propose a neural graph matching
method (GMN) for Chinese short text matching.
Instead of segmenting each sentence into a word
sequence, we keep all possible segmentation paths
to form a word lattice graph, as shown in Figure 1.
GMN takes a pair of word lattice graphs as input
and updates the representations of nodes according
to the graph matching attention mechanism. Also,
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GMN can be combined with pre-trained language
models, e.g. BERT (Devlin et al., 2019). It can be
regarded as a method to integrate word information
in these pre-trained language models during the
fine-tuning phase. The experiments on two Chi-
nese Datasets show that our model outperforms not
only previous state-of-the-art models but also the
pre-trained model BERT as well as some variants
of BERT.

2 Problem Statement

First, we define the Chinese short text match-
ing task in a formal way. Given two Chinese
sentences Sa = {ca1, ca2, · · · , cata} and Sb =
{cb1, cb2, · · · , cbtb}, the goal of a text matching model
f(Sa, Sb) is to predict whether the semantic mean-
ing of Sa and Sb is equal. Here, cai and cbj represent
the i-th and j-th Chinese character in the sentences
respectively, and ta and tb denote the number of
characters in the sentences.

In this paper, we propose a graph-based match-
ing model. Instead of segmenting each sentence
into a word sequence, we keep all possible seg-
mentation paths to form a word lattice graph G =
(V, E). V is the set of nodes and includes all charac-
ter subsequences that match words in a lexicon D.
E is the set of edges. If a node vi ∈ V is adjacent
to another node vj ∈ V in the original sentence,
then there is an edge eij between them. Nfw(vi)
denotes the set of all reachable nodes of node vi
in its forward direction, while Nbw(vi) denotes the
set of all reachable nodes of node vi in its backward
direction.

With two graphs Ga = (Va, Ea) and Gb =
(Vb, Eb), our graph matching model is to predict
their similarity, which indicates whether the origi-
nal sentences Sa and Sb have the same meaning or
not.

3 Proposed Framework

As shown in Figure 2, our model consists of three
components: a contextual node embedding module
(BERT), a graph matching module, and a relation
classifier.

3.1 Contextual Node Embedding

For each node vi in graphs, its initial node
embedding is the attentive pooling of con-
textual character representations. Concretely,
we first concat the original character-level
sentences to form a new sequence S =

Figure 2: Overview of our proposed framework

{[CLS], ca1, · · · , cata , [SEP], cb1, · · · , cbtb , [SEP]},
and then feed them to the BERT model to obtain
the contextual representations for each charater
cCLS, ca1, · · · , cata , cSEP, cb1, · · · , cbtb , cSEP. Assum-
ing that the node vi consists of ni consecutive
character tokens {csi , csi+1, · · · , csi+ni−1}1, a
feature-wised score vector ûsi+k is calculated with
a feed forward network (FNN) with two layers for
each character csi+k, i.e. ûsi+k = FFN(csi+k),
and then normalized with feature-wised multi-
dimensional softmax. The corresponding character
embedding csi+k is weighted with the normalised
scores usi+k to obtain the initial node embedding
vi =

∑n−1
k=0 usi+k � csi+k, where � represents

element-wise product of two vectors.

3.2 Neural Graph Matching Module
Our proposed neural graph matching module is
based on graph neural networks (GNNs) (Scarselli
et al., 2009). GNNs are widely applied in various
NLP tasks, such as text classification (Yao et al.,
2019), machine translation (Marcheggiani et al.,
2018), Chinese word segmentation (Yang et al.,
2019), Chinese named entity recognition (Zhang

1Here si denotes the index of the first character of vi in
the sentence Sa or Sb. For brevity, the superscript of csi+k is
omitted.
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and Yang, 2018), dialogue policy optimization
(Chen et al., 2018c, 2019, 2018b), and dialogue
state tracking (Chen et al., 2020; Zhu et al., 2020),
etc. To the best of our knowledge, we are the first
to introduce GNN in Chinese shot text matching.

The neural graph matching module takes the
contextual node embedding vi as the initial rep-
resentation h0

i for the node vi, then updates its
representation from one step (or layer) to the next
with two sub-steps: message propagation and rep-
resentation updating.

Without loss of generality, we will use nodes in
Ga to describe the update process of node repre-
sentations, and the update process for nodes in Gb

is similar.
Message Propagation At l-th step, each node vi
in Ga will not only aggregate messages mfw

i and
mbw

i from its reachable nodes in two directions:

mfw
i =

∑
vj∈Nfw(vi)

αij

(
Wfwhl−1

j

)
,

mbw
i =

∑
vk∈Nbw(vi)

αik

(
Wbwhl−1

k

)
,

(1)

but also aggregate messages mb1
i and mb2

i from all
nodes in graph Gb,

mb1
i =

∑
vm∈Vb

αim

(
Wfwhl−1

m

)
,

mb2
i =

∑
vq∈Vb

αiq

(
Wbwhl−1

q

)
.

(2)

Here αij , αik, αim and αiq are attention coef-
ficients (Vaswani et al., 2017). The parameters
Wfw and Wbw as well as the parameters for at-
tention coefficients are shared in Eq. (1) and
Eq. (2). We define mself

i , [mfw
i ,mbw

i ] and
mcross

i , [mb1
i ,m

b2
i ]. With this sharing mecha-

nism, the model has a nice property that, when
the two graphs are perfectly matched, we have
mself

i ≈ mcross
i . The reason why they are not

exactly equal is that the node vi can only aggregate
messages from its reachable nodes in graph Ga,
while it can aggregate messages from all nodes in
Gb.
Representation Updating After aggregating mes-
sages, each node vi will update its representation
from hl−1

i to hl
i. Here we first compare two mes-

sages mself
i and mcross

i with multi-perspective co-
sine distance (Wang et al., 2017),

dk = cosine
(
wcos

k �mself
i ,wcos

k �mcross
i

)
,

(3)

Dataset Size Pos:Neg Domain
BQ 120,000 1:1 bank
LCQMC 260,068 1.3:1 open-domain

Table 1: Features of two datasets BQ and LCQMC

where k ∈ {1, 2, · · · , P} (P is number of perspec-
tives). wcos

k is a parameter vector, which assigns
different weights to different dimensions of mes-
sages. With P distances d1, d2, · · · , dP , we update
the representation of vi,

hl
i = FFN

([
mself

i ,di

])
, (4)

where [·, ·] denotes the concatation of two vectors,
di , [d1, d2, · · · , dP ]. FFN is a feed forward net-
work with two layers.

After updating node representation L steps, we
will obtain the graph-aware representation hL

i for
each node vi. hL

i includes not only the informa-
tion from its reachable nodes but also information
of pairwise comparison with all nodes in another
graph. The graph level representations ga and gb

for two graphs Ga and Gb are computed by atten-
tive pooling of representations of all nodes in each
graph.

3.3 Relation Classifier
With two graph level representations ga and gb,
we can predict the similarity of two graphs or sen-
tences,

p = FFN
([

ga,gb,ga � gb, |ga − gb|
])
, (5)

where p ∈ [0, 1]. During the training phase, the
training object is to minimize the binary cross-
entropy loss.

4 Experiments

4.1 Experimental Setup
Dataset We conduct experiments on two Chinese
datasets for semantic textual similarity: LCQMC
(Liu et al., 2018) and BQ (Chen et al., 2018a).
LCQMC is a large-scale open-domain corpus for
question matching, while BQ is a domain-specific
corpus for bank question matching. The sample
in both datasets contains a pair of sentences and a
binary label indicating whether the two sentences
have the same meaning or share the same intention.
All features of the two datasets are summarized in
Table 1. For each dataset, the accuracy (ACC) and
F1 score are used as the evaluation metrics.
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Models BQ LCQMC
ACC. F1 ACC. F1

Text-CNN 68.5 69.2 72.8 75.7
BiLSTM 73.5 72.7 76.1 78.9
Lattice-CNN 78.2 78.3 82.1 82.4
BiMPM 81.9 81.7 83.3 84.9
ESIM-char 79.2 79.3 82.0 84.0
ESIM-word 81.9 81.9 82.6 84.5
GMN (Ours) 84.2 84.1 84.6 86.0
BERT 84.5 84.0 85.7 86.8
BERT-wwm 84.9 - 86.8 -
BERT-wwm-ext 84.8 - 86.6 -
ERNIE 84.6 - 87.0 -
GMN-BERT (Ours) 85.6 85.5 87.3 88.0

Table 2: Performance of various models on LCQMC
and BQ test datasets

Hyper-parameters The number of graph updat-
ing steps/layers L is 2 on both datasets. The dimen-
sion of node representation is 128. The dropout rate
for all hidden layers is 0.2. The number of match-
ing perspectives P is 20. Each model is trained
by RMSProp with an initial learning rate of 0.0001
and a batch size of 32. We use the vocabulary
provided by Song et al. (2018) to build the lattice.

4.2 Main Results

We compare our models with two types of base-
lines: basic neural models without pre-training
and BERT-based models pre-trained on large-
scale corpora. The basic neural approaches also
can be divided into two groups: representation-
based models and interaction-based models. The
representation-based models calculate the sentence
representations independently and use the distance
as the similarity score. Such models include Text-
CNN (Kim, 2014), BiLSTM (Graves and Schmid-
huber, 2005) and Lattice-CNN (Lai et al., 2019).
Note that Lattice-CNN also takes word lattices
as input. The interaction-based models consider
the interaction between two sentences when cal-
culating sentence representations, which include
BiMPM (Wang et al., 2017) and ESIM (Chen et al.,
2017). ESIM has achieved state-of-the-art results
on various matching tasks (Bowman et al., 2015;
Chen and Wang, 2019; Williams et al., 2018). For
pre-trained models, we consider BERT and its sev-
eral variants such as BERT-wmm (Cui et al., 2019),
BERT-wmm-ext (Cui et al., 2019) and ERNIE (Sun
et al., 2019; Cui et al., 2019). One common feature
of these variants of BERT is that they all use word
information during the pre-trained phase. We use

84.20 

84.32 

84.59 84.60 

84.00

84.10

84.20

84.30

84.40

84.50

84.60

84.70

PKU JIEBA JIEBA+PKU LATTICE

Figure 3: Performance (ACC) of GMN with different
inputs on LCQMC dataset

GMN-BERT to denote our proposed model. We
also employ a character-level transformer encoder
instead of BERT as the contextual node embedding
module described in Section 3.1, which is denoted
as GMN. The comparison results are reported in
Table 2.

From the first part of the results, we can find that
our GMN performs better than five baselines on
both datasets. Also, the interaction-based models in
general outperform the representation based mod-
els. Although Lattice-CNN 2 also utilizes word
lattices, it has no node-level comparison due to
the limits of its structure, which causes signifi-
cant performance degradation. As for interaction-
based models, although they both use the multi-
perspective matching mechanism, GMN outper-
forms BiMPM and ESIM (char and word) 3, which
indicates that the utilization of word lattice with
our neural graph matching networks is powerful.

From the second part of Table 2, we can find that
the three variants of BERT (BERT-wwm, BERT-
wwn-ext, ERNIE) 4 all outperform the original
BERT, which indicates using word-level informa-
tion during pre-training is important for Chinese
matching tasks. Our model GMN-BERT performs
better than all these BERT-based models. It shows
that utilizing word information during the fine-
tuning phase with GMN is an effective way to
boost the performance of BERT for Chinese se-
mantic matching.

2The results of Lattice-CNN is produced by the open
source code https://github.com/Erutan-pku/LCN-for-Chinese-
QA.

3The results of ESIM is produced by the open source code
https://github.com/lanwuwei/SPM toolkit.

4The results of BERT-wwm, BERT-wwm-ext and ERNIE
are taken from the paper (Cui et al., 2019).
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Figure 4: Examples of different prediction of Jieba and Lattice

4.3 Analysis

In this section, we investigate the effect of word seg-
mentation on our model GMN. A word sequence
can be regarded as a thin graph. Therefore, it can
be used to replace the word lattice as the input of
GMN. As shown in Figure 3, we compare four
models: Lattice is our GMN with word lat-
tice as the input. PKU and JIEBA are similar to
Lattice except that their input is word sequence
produced by two word segmentation tools: Jieba 5

and pkuseg (Luo et al., 2019), while the input of
JIEBA+PKU is a small lattice graph generated
by merging two word segmentation results. We
can find that lattice-based models (Lattice and
JIEBA+PKU) performs much better then word-
based models (PKU and JIEBA). We can also find
that the performance of PKU+JIEBA is very close
to the performance of Lattice. The union of dif-
ferent word segmentation results can be regarded
as a tiny lattice, which is usually the sub-graph of
the overall lattice. Compared with the tiny graph,
the overall lattice has more noisy nodes (i.e. invalid
words in the corresponding sentence). Therefore
We think it is reasonable that the performance of
tiny lattice (PKU+JIEBA) is comparable to the
performance of the overall lattice (Lattice). On

5https://github.com/fxsjy/jieba

the other hand, this indicates that our model has
the ability to deal with the introduced noisy infor-
mation in the lattice graph. In Figure 4, we give
two examples to show that word segmentation er-
rors result in incorrect prediction of JIEBA, while
Lattice can give the right answers.

5 Conclusion

In this paper, we propose a neural graph matching
model for Chinese short text matching. It takes
a pair of word lattices as input instead of word
or character sequences. The utilization of word
lattice can provide more multi-granularity informa-
tion and avoid the error propagation issue of word
segmentation. Additionally, our model and the
pre-training model are complementary. It can be
regarded as a flexible method to introduce word in-
formation into BERT during the fine-tuning phase.
The experimental results show that our model out-
performs the state-of-the-art text matching models
as well as some BERT-based models.
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