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Abstract

The goal-oriented dialogue system needs to
be optimized for tracking the dialogue flow
and carrying out an effective conversation un-
der various situations to meet the user goal.
The traditional approach to building such a
dialogue system is to take a pipelined mod-
ular architecture, where its modules are op-
timized individually. However, such an op-
timization scheme does not necessarily yield
an overall performance improvement of the
whole system. On the other hand, end-to-end
dialogue systems with monolithic neural archi-
tecture are often trained only with input-output
utterances, without taking into account the en-
tire annotations available in the corpus. This
scheme makes it difficult for goal-oriented di-
alogues where the system needs to be inte-
grated with external systems or to provide in-
terpretable information about why the system
generated a particular response. In this paper,
we present an end-to-end neural architecture
for dialogue systems that addresses both chal-
lenges above. Our dialogue system achieved
the success rate of 68.32%, the language un-
derstanding score of 4.149, and the response
appropriateness score of 4.287 in human eval-
uations, which ranked the system at the top po-
sition in the end-to-end multi-domain dialogue
system task in the 8th dialogue systems tech-
nology challenge (DSTC8).

1 Introduction

The goal-oriented dialogue system helps users
achieve their goals such as requesting information
or executing commands via natural language con-
versations. It is thus crucial for the dialogue system
to keep track of the dialogue flow and carry out an
effective conversation, even when the user goal
is complicated or the dialogue flow is suddenly
changed.

∗ : Equal contribution

The traditional approach to building a goal-
oriented dialogue system mostly adopts a pipelined
modular architecture, with the natural language un-
derstanding (NLU) module (Kim et al., 2017; Lee
et al., 2019b) that first recognizes and comprehends
user’s intent and extracts values for slots, then the
dialogue state tracking (DST) module (Williams
et al., 2013) that tracks the values of slots, then
the dialogue policy (POL) module that decides
the system action, and then finally the natural lan-
guage generation (NLG) module (Wen et al., 2015)
that generates the utterance that corresponds to
the system action. In some cases, multiple mod-
ules are combined together, e.g. the Word-level
DST (Ramadan et al., 2018; Wu et al., 2019; Lee
et al., 2019a) which maps the dialogue history to
the dialogue state (the composite function of NLU
and DST), and the Word-level POL (Budzianowski
et al., 2018; Pei et al., 2019; Chen et al., 2019;
Mehri et al., 2019; Zhao et al., 2019) which maps
the previous utterance and dialogue state to the sys-
tem response (the composite function of POL and
NLG).

These modules are usually optimized separately,
which does not necessarily lead to an overall opti-
mized performance for successful task completion.
On the other hand, end-to-end neural models for
dialogue systems (Madotto et al., 2018; Lei et al.,
2018) enjoy a straightforward training approach to
generating system responses, but it is difficult for
goal-oriented dialogues where the system needs to
interact with external systems or to generate an ex-
planation that supports why the system generated a
particular response.

In this paper, we present an end-to-end neural ar-
chitecture for dialogue systems that addresses both
challenges above. Our work is based on fine-tuning
GPT-2 (Radford et al., 2019) to faithfully perform
the following essential dialogue management steps
in a sequential manner using a single model: (1)
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Domain : “restaurant”

[usr] Are there any restaurants that serve proper British food in town?
[sys] Oh yes quite a few. Which part of town will you be dining in?
[usr] West, if possible.
[sys] We have three: Graffiti, Saint John‘s Chop House, and Traveller.
[usr] Will you give me the phone number, address, and postcode for Graffiti?
[sys] The phone number is 01223277977. The address is Hotel Felix Whitehouse Lane Hunthindon Road and post code is cb30lx. Want to book?
[usr] 6 people, please.
[sys] Booking is successful. Reference number is 00000081. 

“ref” : “00000081”
“name” : “graffiti”
“phone” : “01223277977”
”postcode” : “cb30lx”
“address” : “Hotel Felix Whitehouse Lane Hunthindon Road”
“food” : “british”
“area” : “west”

“ref” : “00000084”
“name” : grafton hotel restaurant
“phone” : “01223241387”
“postcode” : “cb580a”
“address” : “Grafton Hotel 619 Newmarket Road Fen Ditton”
“food” : “british”
“area” : “east”

Dialogue id : “SNG0689”

Goal

Database (restaurant)

Dialogue turns

Blue : Informable slot Yello-Green : Requestable slot name Orange : Requestable slot value

Informable “food” : “british”
“area” : “west”

Requestable 
“phone”

“address”
“postcode”

Book “people” : 6
…

…

Figure 1: A single-domain example in MultiWOZ dataset.

DST via predicting the dialogue state, (2) POL via
predicting the system action, (3) retrieving appro-
priate records from the external database for the
dialogue state and the system action, and (4) NLG
via predicting the system response. As a result,
our neural model not only generates the system
response just like end-to-end neural dialogue sys-
tems, but also generates dialogue states and system
actions as intermediate outputs, improving the inter-
pretability of the behavior of the dialogue system.
In order to achieve this, we leverage the annotations
of dialogue states and system actions provided in
the corpus (e.g. MultiWOZ dataset (Budzianowski
et al., 2018)) for training our system in a very natu-
ral way.

Our model is evaluated using ConvLab (Lee
et al., 2019b), a multi-domain end-to-end dialog
system platform to support various aspects in the
development and evaluation of dialogue systems,
in terms of the automatic evaluation using the user
simulator and the human evaluation using crowd
workers. Particularly, in the human evaluation car-
ried out as a part of the 8th dialogue systems tech-
nology challenge (DSTC8) (Kim et al., 2019), our
system attained the success rate of 68.32%, the
language understanding score of 4.149, and the
response appropriateness score of 4.287, ranking
at the 1st place in DSTC8. We also show that

our model is competitive to other state-of-the-art
models specialized for two sub-tasks in the dia-
logue management, i.e. Dialogue State Tracking
and Dialogue-Context-to-Text Generation tasks, al-
though our model was not particularly tuned for
those sub-tasks.

The main characteristics of our model can be
summarized as follows: (1) it is trained to follow
the traditional dialogue management pipeline, mak-
ing the monolithic neural model more interpretable
and easily integratable with external systems, while
(2) it is trained in an end-to-end fashion with sim-
ple gradient descent, and (3) leverages GPT-2, a
powerful pre-trained language model. The code is
available through the GitHub code repository.1

2 End-to-end Multi-Domain
Task-Completion Task

Before we describe our approach, we briefly
overview the end-to-end multi-domain task-
completion task used in DSTC8, for which we
developed our dialogue system.

2.1 The MultiWOZ Dataset
The MultiWOZ dataset is a large-scale fully an-
notated corpus of natural human-human conversa-

1https://github.com/KAIST-AILab/
NeuralPipeline_DSTC8

https://github.com/KAIST-AILab/NeuralPipeline_DSTC8
https://github.com/KAIST-AILab/NeuralPipeline_DSTC8
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Restaurant-
inform

name : 
[restaurant-name]

System Action

DB
Query

Candidates after Query
“name” : “frankie and bennys”

“pricerange” : “expensive”
“area” : “south”
“food” : “Italian”

…

Database

<usr> I ’d like to find an expensive place to 
dine that specifically serves Italian food .
<sys> Okay . Would you like to go to the 
centre or south part of town ?
<usr> I would like the south part of town 
please .

Dialogue history :

restaurant pricerange : expensive

food : italian

area : south

Dialogue state

System action ResponseDialogue state

Word decoder layer

Transformer decoder blocks

Dialogue history Dialogue state System action Response

GPT-2

If Empty Query Results,

① ②

③

④

Response : frankie and bennys meets your 
criteria. Would you like to book it ?

Query results
Replacement

Response : [restaurant_name] meets your 
criteria. Would you like to book it ?

⑤

⑥
Response : There’s no restaurant 
meets your criteria

Candidates after Query
No Results

Restaurant
-nooffer

None-None

System Action

Empty Query Results case

Normal case

Figure 2: The overview of our end-to-end neural dialogue model. For the transformer, we use fine-tuned GPT-2.
The dashed line represents the information to and from the DB query, which is invoked when the system action
needs to fetch an actual value from the database.

tions, where the user as a tourist converses with the
system as a clerk across multiple domains. Each
dialogue is rich in annotations such as ‘goal’, ‘meta-
data’, and ‘dialog act’ as well as user and system
utterances. These annotations facilitate using ma-
chine learning to develop individual modules of a
dialogue system (NLU, DST, POL, NLG, Word-
level DST, Word-level POL), as well as an end-to-
end dialogue system.

Figure 1 shows an example of a single-domain
dialogue in the MultiWOZ dataset. Each dialogue
consists of ‘Goal’, ‘Database’ and ‘Dialogue turns’.
The goal is defined by the domain and the slots.
The slots are divided into informable, requestable
and book slots. Informable slots represent user
constraints and Requestable slots hold additional
information that the user wants to obtain. Book
slots are used to reserve a place recommended by
the system.

2.2 ConvLab
For evaluating dialogue systems, DSTC8 used Con-
vLab (Lee et al., 2019b), an open-source platform
that supports researchers to train and evaluate their
own dialogue systems. ConvLab contains imple-
mentations of the state-of-the-art models of NLU,
DST, POL, NLG (Kim et al., 2017; Lee et al.,
2019b; Ramadan et al., 2018; Wu et al., 2019;
Wen et al., 2015, 2017; Budzianowski et al., 2018)
and an end-to-end neural model for dialogue sys-
tems (Lei et al., 2018; Madotto et al., 2018), which
are readily reusable for building dialogue systems
using various approaches.

ConvLab also provides an agenda-based user
simulator to easily interact with the target dialogue
system, consisting of a multi-intent language un-
derstanding(MILU) (Lee et al., 2019b) for NLU,
a rule-based policy, and a template-based NLG.
For each dialogue, a goal is randomly generated
that conforms with the goal schema of the Multi-
WOZ dataset. The user simulator then generates an
agenda based on the goal. While interacting with
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⇒ Dialogue State

⇒ System Action

<usr> I am looking for a place to stay that has cheap price range it should be in a type of hotel

<sys> Okay , do you have a specific area you want to stay in ?

“metadata”: {“hotel”: { “semi”: {“name”: “not mentioned”,

“area”: “not mentioned”,

“parking”: “not mentioned”,

“pricerange”: “cheap”,

“stars”: “not mentioned”,

“internet”: “not mentioned”,

“type”: “hotel”}}

“dialog_act”: {“Hotel-Request”: [[“Area”, “?”]]}

<usr> no, I just need to make sure it ’s cheap, oh , and I need parking

<ds> <hotel> <name> <nm> <area> <nm> <park
ing> <nm> <price

range> ⋯

Word-level Input Representation

<sa> <hotel-
request> <area> ?

Delimiter of dialogue state Domain

Delimiter of system action

: Slot name-value pairs

System action intent

Figure 3: In the MultiWOZ dataset, the ‘metadata’ is treated as the dialogue state and the ‘dialogue act’ is treated
as the system action.

the target dialogue system, it recognizes the system
dialogue act, decides the user dialogue act from the
agenda stack, and generates the user response at
each turn. When the system offers to book and the
user accepts it, the system should notify an 8-digit
reference number. The reference number is used
to verify whether the booked place is fit on what
the user informs. ConvLab also provides an auto-
matic evaluator which assesses whether the target
dialogue system (1) traces what the user informs
(2) informs what the user requests, and (3) makes
an appropriate booking using an external database
based on the traced information. Although the user
simulator and evaluator are highly sophisticated, it
is not as perfect as human. Hence, the dialogue sys-
tems submitted to the DSTC8 were evaluated not
only with the user simulator but also with human
crowd-workers.

3 End-to-End Neural Pipeline for
Goal-Oriented Dialogue System

We now describe our end-to-end neural pipeline for
the goal-oriented dialogue system based on GPT-2.

Our system consists of (1) the GPT-2 model fine-
tuned on the delexicalized version of MultiWOZ
dataset (Section 3.2) and (2) the database query
module. We take the pre-trained GPT-2 model and
fine-tune it to follow the steps of the dialogue man-
agement pipeline. Figure 2 illustrates an overall
architecture with a concrete example. The overview
of the process followed by our model is as follows:

1. Predict the recent domain and the correspond-
ing dialogue state conditioned on the dialogue
history.

2. Predict the system action with delexicalized
tokens conditioned on the dialogue history
and dialogue state.

3. If the system action (e.g. ‘inform’, ‘book’)
needs external information from the database,
the query module2 retrieves the candidates
and returns one of them.

4. Update the current system action when detect-
ing Empty Query Results (Section 3.5).

5. Generate the system response with delexical-
ized tokens conditioned on dialogue history,

2ConvLab provides a DB query module returning candi-
dates given domain and dialogue state.
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= Token Embedding

<usr> am … <sys> Okay … <usr> no … <ds> <hotel> <park
ing> yes ... <sa> <Hotel-

Inform> <price> cheap … <sys> i found … <eos>

<usr> am … <sys> Okay … <usr> no … <ds> <hotel> <park
ing> yes … <sa> <Hotel-

Inform> <price> cheap … <sys> Okay , … <eos>

<usr> <usr> <usr> <sys> <sys> <sys> <usr> <usr> <usr> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys>

+ Speaker Embedding

+ Positional Embedding

Dialogue History Dialogue State System Action System Response

Figure 4: Input representation for fine-tuning GPT-2.

dialogue state, and system action.
6. Update the delexicalized tokens in the system

response with the query result.
In Figure 2, the numbers wrapped with circle

indicate the order of process. The red box shows
how our system handles the case when the DB
query does not return any record at all.

3.1 Input Representation

In the MultiWOZ dataset, ‘metadata’ and ’dia-
log act’ correspond to the current dialogue state
and the current system action, respectively (Fig-
ure 3). In order to use GPT-2, we need to convert
the dialogue state and the system action to word
tokens.

Figure 3 shows an illustrative example of a
single-turn of a dialogue and its representation of
the dialogue state and system action. We intro-
duce delimiter tokens <usr>, <sys>, <ds> and
<sa> to signal the beginning of sequence represen-
tations of user utterance, system response, dialogue
state, and system action. The domain and the slot
names are also represented by additional special to-
kens, and <nm> and <dc> are special tokens that
indicate ‘not mentioned’ and ‘don’t care’.

The complete input representation for our model
is illustrated in Figure 4, similar to Radford et al.
(2019) and Wolf et al. (2019). The input embedding
comprises of the token embedding, the speaker
embedding, and the positional embedding.

3.2 Delexicalization

Each dialogue in MultiWOZ dataset is generated
based on the DB query results, and as such, the re-
questable slot values such as reference numbers
and addresses (e.g. those colored in orange in
Figure 1) are valid only for that particular dia-
logue instance. On the other hand, our model
should be able to inform appropriate information
depending on the dialogue context. To address

this, we delexicalized all the values for requestable
slots (reference number, name, postcode, phone
number, address) as [DOMAIN SLOTNAME] (e.g.
[hotel postcode] for hotel’s postcode) that
appear in the corpus. Thus, our model learns to
generate delexicalized system response, and delex-
icalized tokens are later string-replaced by the real
information from the DB query using a small piece
of post-processing code.

3.3 Training Objective
In order to fine-tune GPT-2, we optimize the
weighted sum of the objectives of language mod-
eling (LM) and next-utterance classification (NC),
following (Radford et al., 2018). For LM, we use
the standard left-to-right LM objective (Bengio
et al., 2003) as follows:

LLM (w1, . . . , wn) =
∑
i

logP (wi|w1, . . . , wi−1)

The LM objective calculates the likelihood of the
next word-token from given the previous word-
tokens.

For NC, the model needs to distinguish the
gold response (gold dialogue state+gold system ac-
tion+gold system response) from a distractor (gold
dialogue state+gold system action+fake system re-
sponse), given the dialogue history. The distractor
system responses were randomly sampled from the
MultiWOZ dataset. The linear classifier takes the
last hidden state of the GPT-2’s decoder block as
input and computes the class probability by passing
through the softmax layer. The cross-entropy loss
between the class probability and the correct label
was used for the NC objective, LNC . Thus, for the
given word sequence W = (w1, . . . , wn), the total
objective becomes a linear combination of LLM

and LNC with hyper-parameters αLM and αNC :

Ltotal(W ) = αLMLLM (W ) + αNCLNC(W )
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Model Success Rate ↑ Return ↑ Turns ↓ Precision ↑ Recall ↑ F1 ↑ Book Rate ↑
Baseline 62.00% 28.22 8.18 0.70 0.83 0.74 84.38%

Ours + greedy 78.60% 48.92 7.40 0.87 0.89 0.87 86.34%
Ours + top-p (p=0.8) 75.40% 44.67 7.81 0.88 0.88 0.86 84.10%
Ours + top-k (k=30) 74.80% 44.47 7.29 0.83 0.86 0.83 83.49%

Table 1: Results of decoding strategies in the automatic evaluation, using the ConvLab evaluator. A baseline
system provided by ConvLab consists of MILU (Lee et al., 2019b) as NLU module, rule-based DST and POL, and
template-based NLG.

Rank Team ID Success Rate ↑ Language Response
Turns ↓

Understanding ↑ Appropriateness ↑
1 OURS(504430) 68.32% 4.149 4.287 19.507
2 504429 65.81% 3.538 3.632 15.481
3 504563 65.09% 3.538 3.840 13.884
4 504651 64.10% 3.547 3.829 16.906
5 504641 62.91% 3.742 3.815 14.968

N/A Baseline 56.45% 3.097 3.556 17.543

Table 2: Overall results of the human evaluation carried out by DSTC8 organizers. Only the top five teams and the
baseline results are compared.

3.4 Decoding Strategy

When we generate the system response from the
dialogue history, the final output is the probability
distribution of word-tokens at each position. Using
the distribution, there are many decoding methods
for generating word-tokens, which have a signif-
icant impact on the quality of the output (Holtz-
man et al., 2020; Weston et al., 2018). The greedy
decoding and the beam search are the most com-
mon approaches. However, since the greedy de-
coding only considers the token with the highest
probability at each position, it does not necessary
yield a system response with overall high prob-
ability. In addition, Holtzman et al. (2020) evi-
dences that the beam search decoding is not appro-
priate for high-entropy natural language generation
such as dialogues. Other sampling-based decod-
ing methods, top-k sampling and top-p sampling
have been shown to addressed the above problems
quite effectively for dialogue tasks (Wolf et al.,
2019; Budzianowski and Vulić, 2019). We evalu-
ated the performance of our models with the de-
coding schemes mentioned above, and selected the
best one via human evaluation.

3.5 Handling Empty Query Result

As we mentioned before, GPT-2 invokes the query
module to interact with the database. However,
GPT-2 doesn’t know how many candidates satisfy
the constraints a-priori. Therefore, there exist cases

where no candidate happens to satisfy the con-
straints, which we refer to as Empty-Query-Result.
In this case, the dialogue system should generate
the system response corresponding to the intent
Empty-Query-Result. Our system monitors the sys-
tem action generated from GPT-2 and replace it
by <EQR> if the database query returns an empty
result, and feed this modified input to GPT-2 to
generate the system response. This simple solution
worked quite well in practice.

4 Related Work

TransferTransfo (Wolf et al., 2018) was the first
attempt to incorporate a large-scale pre-trained lan-
guage model into a chit-chat dialogue system. Us-
ing GPT as a backbone, their fine-tuning approach
ranked first in the automatic evaluation and second
in the human evaluation in the ConvAI2 compe-
tition (Dinan et al., 2018). Our model is mainly
inspired by this work, extending to goal-oriented
dialogues using GPT-2.

Parallel and independent to our work towards
DSTC8 submission, Budzianowski and Vulić
(2019) also demonstrated a neural model for goal-
oriented dialogue systems by fine-tuning GPT-2 on
the MultiWOZ dataset. However, they only han-
dle dialogue-context-to-text task, which outputs
the system response given the dialogue history, the
ground-truth dialogue state, and the database. In
our case, no oracle information related to database
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Figure 5: Visualizing attention weights. (left) The model attends to the dialogue state <area> <nm> for gen-
erating system action <restaurant-request> <area>. (right) The model attends to the system action
<restaurant-nooffer> for generating response ‘I’m sorry. There are no modern European restaurants’.

and dialogue state is provided, and only the dia-
logue history was provided. Taking the dialogue
history as an input, our model operates as a com-
plete dialogue system that generates system re-
sponses by sequentially following the core steps in
the dialogue management pipeline.

5 Experimental Settings

5.1 Training Details

We developed our model using the open-source
implementation of Wolf et al. (2018)3 and
the GPT2-small (124M parameters) that con-
sists of 12 transformer decoder blocks and
pre-trained weights (Wolf et al., 2019)4. We
tokenized each sentence into sub-word using
GPT2Tokenizer4 (Sennrich et al., 2016).

We fine-tuned the GPT-2 with batch size 2 for 4
epochs over the MultiWOZ training dataset. The
maximum history size of each dialogue was set to
15. We used the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.999 and the learning
late of 6.25e-5. The coefficients of the LM and the
NC losses were set to 2.0 and 1.0, respectively.

5.2 Evaluation Metrics

There were two evaluation criteria in the End-to-
End Multi-Domain Dialog System Task of the

3https://github.com/huggingface/
transfer-learning-conv-ai

4https://github.com/huggingface/
transformers

Multi-Domain Task-Completion Track in DSTC8:

• Automatic evaluation with user simulator:
Success Rate, Book Rate, Return, Turns, Pre-
cision, Recall, F1

• Human evaluation with crowd-workers: Suc-
cess Rate, Language Understanding Score, Re-
sponse Appropriateness Score, Turns

In measuring the success rate, the dialogue is
considered as a success only if the requestable
slots are correctly filled and book success if needed.
Book success is achieved only if the reserved in-
formation fits into all informable slots, and is mea-
sured by the book rate as a sub-evaluation.

Return is a reward signal obtained from the user
simulator when the dialogue is complete. The re-
turn of each dialogue is computed as follows:

Return = − Turns +
{
2 ∗max turn If task success,
(−1) ∗max turn otherwise.

The max turn indicates the maximum limit of turns
in a conversation (e.g. 40). Precision, Recall, and
F1 measure the accuracy of requestable slot filling.

For the human evaluation, Language Understand-
ing Score and Response Appropriateness Score
were the metrics of how natural the response of
the model is, with the 5 point scale. The human
evaluation results reported here were carried out by
the DSTC8 organizers.

https://github.com/huggingface/transfer-learning-conv-ai
https://github.com/huggingface/transfer-learning-conv-ai
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


590

6 Results

6.1 Automatic Evaluation

Table 1 shows automatic evaluation results on var-
ious decoding strategies using the user simulator
provided in ConvLab. Our proposed model with
greedy decoding strategy achieved the success rate
of 78.60%, the avg return of 48.92, the avg turns
of 7.40, the book rate of 86.34%, the precision of
0.87, the recall of 0.89, and the F1 score of 0.87
in the automatic evaluation using 500 simulated
dialogues. Our model outperformed the baseline
system, but failed to perform best among submitted
systems, mostly due to the incorrect intent recogni-
tion in the user simulator. We believe that this can
be circumvented by further training our model us-
ing reinforcement learning, trained to avoid system
responses that trigger intent recognition failure in
the simulator. However, our main focus was to gen-
erate diverse system responses that looked natural
to human evaluators.

6.2 Human Evaluation

Table 2 shows the final ranking of the competition
using human evaluation.5 Our proposed model
with top-p sampling (p=0.8) strategy ranked in the
first place with the success rate of 68.32%, the av-
erage turns of 19.507, the language understanding
score of 4.149 and the response appropriateness
score 4.287. Compared to the 2nd-ranked model,
our model showed a 2.51% improvement in success
rate. The performance gap was more significant in
human language metrics, 0.365 points and 0.458
points higher than the 2nd-ranked model in the
Language Understanding score and the Response
Appropriateness score.

6.3 Attention Weights

Figure 5 visualizes the attention weights of the
transformer blocks in our model, demonstrating
that our model appropriately attends to the word
token generated from the previous module in
the dialogue management pipeline, just like a
pipelined dialogue system would do when gener-
ating the intermediate outputs. For example, if
the user asks ‘I’m looking for modern European
food’, our model generates dialogue state <area>
<nm>, which means the area is not mentioned.
Then we can see the attention weight on <area>
<nm> in the dialogue state is relatively higher

5https://convlab.github.io/

Model Joint Acc. Slot Acc.

GLAD
35.57 95.44

(Zhong et al., 2018)
GCE

36.27 98.42
(Nouri and Hosseini-Asl, 2018)

SUMBT
46.64 96.44

(Lee et al., 2019a)
TRADE 48.62 96.92

(Wu et al., 2019)
OURS + greedy 44.03 96.07

Table 3: Performance comparison with other state-of-
the-art models in Dialogue State Tracking benchmark
of MultiWOZ dataset.

Model Inform Success BLEU

BASELINE
71.29 60.96 18.80

(Budzianowski et al., 2018)
TOKENMOE

75.30 59.70 16.81
(Pei et al., 2019)

HDSA
82.9 68.90 23.60

(Chen et al., 2019)
STRUCTURED FUSION

82.70 72.10 16.34
(Mehri et al., 2019)

LARL 82.78 79.20 12.80
(Zhao et al., 2019)
OURS + greedy 77.00 69.20 6.01

Table 4: Performance comparison with other state-of-
the-art models in Dialogue-Context-to-Text Generation
benchmark of MultiWOZ dataset.

than other tokens when it generates system ac-
tion <restaurant-request> <area>. As
another example, if we change the system action
as <restaurant-nooffer>, the model gener-
ates the system response ‘I’m sorry. There are no
modern European restaurant’ and it attends on the
token <restaurant-nooffer>.

6.4 MultiWOZ Benchmarks Performance

As an ablation study, we test the modular perfor-
mance of our model on two MultiWOZ benchmark
tasks (Budzianowski et al., 2018): Dialogue State
Tracking and Dialogue-Context-to-Text Genera-
tion.

6.4.1 Dialogue State Tracking
Table 3 compares the dialogue state tracking accu-
racy of our model to those of other recent trackers
in the literature. In this task, we measure the joint
accuracy and slot accuracy of dialogue state track-
ing part of our model. Although our training objec-
tive involves other dialogue management tasks than
dialogue state tracking, our model’s tracking perfor-

https://convlab.github.io/
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mance was very competitive to the state-of-the-art
models.

6.4.2 Dialogue-Context-to-Text Generation

Dialogue-Context-to-Text generation looks at the
combined performance of the dialogue policy and
the system response generation modules, measur-
ing the quality of system response when the previ-
ous user utterance, the ground-truth dialogue state,
and the ground-truth database query results are
given. Our trained model can be straightforwardly
adapted to perform this task by replacing the inter-
mediate inputs with ground-truth values.

Table 4 shows the Context-to-Text Generation
benchmark performance compared to other recent
models proposed in the literature. Again, our model
was competitive to the state-of-the-art models ex-
cept for the BLEU score. This is due to the fact
that the system uses the large vocabulary of GPT-2,
making system responses often containing diverse
words that are not in the dataset.

7 Conclusion

In this paper, we presented an end-to-end mono-
lithic neural model for goal-oriented dialogues that
learns to follow the core steps in the dialogue man-
agement pipeline. Since our model outputs all the
intermediate results in the dialogue management
pipeline, it is easy to integrate with external sys-
tems and to interpret why the system generates a
particular response. The experimental results from
human evaluation show evidence that our approach
can provide very natural human-level interaction
for goal-oriented dialogues, advancing the state-
of-the-art in conversational AI agents. This also
demonstrates the power of large-scale pre-trained
language models to be adopted for building end-to-
end goal-oriented dialogue systems.
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