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Abstract

Neural sequence to sequence text generation
has been proved to be a viable approach to
paraphrase generation. Despite promising re-
sults, paraphrases generated by these models
mostly suffer from lack of quality and diver-
sity. To address these problems, we propose
a novel retrieval-based method for paraphrase
generation. Our model first retrieves a para-
phrase pair similar to the input sentence from
a pre-defined index. With its novel editor mod-
ule, the model then paraphrases the input se-
quence by editing it using the extracted rela-
tions between the retrieved pair of sentences.
In order to have fine-grained control over the
editing process, our model uses the newly in-
troduced concept of Micro Edit Vectors. It
both extracts and exploits these vectors using
the attention mechanism in the Transformer ar-
chitecture. Experimental results show the su-
periority of our paraphrase generation method
in terms of both automatic metrics, and human
evaluation of relevance, grammaticality, and
diversity of generated paraphrases.

1 Introduction

Paraphrases are texts conveying the same mean-
ing while using different words (Bhagat and Hovy,
2013). Paraphrase generation is an important task
in Natural Language Processing (NLP) that has
many applications in other down-stream tasks, such
as text summarization, question answering, seman-
tic parsing, and information retrieval (Cao et al.,
2017; Fader et al., 2014; Berant and Liang, 2014).

Early works on paraphrasing mostly investi-
gated rule-based or statistical machine translation
approaches to this task (Bannard and Callison-
Burch, 2005). With the recent advances of neural
sequence-to-sequence (Seq2Seq) framework in dif-
ferent NLP tasks, especially in machine translation,
an increasing amount of literature have also applied
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How can I increase my presence of mind ?

What is best way to increase presence of mind ?

How can I overcome absence of mind ?

what is the best way to overcome absence of mind ?

Figure 1: An overview of the proposed model. This
model retrieves the most similar paraphrase pair to the
input x from the training corpus (Retriever), computes
a set of edit vectors [M , z] based on the retrieved pair
(Edit Provider), and applies these edits to the input se-
quence x to generate its paraphrase (Edit Performer).

Seq2Seq models to the task of paraphrase gener-
ation (Prakash et al., 2016; Gupta et al., 2018; Li
et al., 2018).

Although the proposed Seq2Seq methods for
paraphrase generation have shown promising re-
sults, they are not yet as dominant as their coun-
terparts used in neural machine translation. The
main reason is that the available training data for
paraphrasing is scarce and domain-specific (Wang
et al., 2019). In fact, the necessity to generate se-
quences from scratch, which is a major drawback
of traditional Seq2Seq models (Guu et al., 2018),
magnifies itself when dealing with scarce training
data. Thus, one can expect that the model would
not be trained well and consequently, would not be
able to generate diverse outputs.

Although retrieval-based text generation has
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been evaluated recently in Guu et al. (2018);
Hashimoto et al. (2018); Wu et al. (2019) as a
remedy for this problem, to the best of our knowl-
edge, there is no previous study exploring the usage
of this approach in paraphrase generation. More-
over, none of the existing works in the realm of
retrieval text generation, such as Guu et al. (2018);
Wu et al. (2019); Hashimoto et al. (2018), focuses
on learning how to extract edits from the retrieved
sentences. Indeed, Guu et al. (2018); Wu et al.
(2019) computes a single edit vector heuristically
through concatenating the weighted sum of the in-
serted word embeddings and the weighted sum of
deleted word embeddings. Moreover, Hashimoto
et al. (2018) only focuses on improving the retriev-
ing stage and uses a standard Seq2Seq model to
edit the retrieved sentence.

In this paper, we present an effective retrieval-
based approach to paraphrase generation by propos-
ing a novel editor module. Our method can be
summarized as follows: Given an input sentence
x, the model first retrieves a similar sentence p and
its associated paraphrase q from the training data.
Then, by getting x and (p, q), the editor both learns
how to extract the fine-grained relations between p
and q as a set of edits, and also when and how to
use these extracted edits to paraphrase x. By incor-
porating the retrieved pairs into the editing process,
we invigorate our model with a non-parametric
memory, which enables it to produce non-generic
and more diverse outputs. Both the retriever and
editor components of our method are modeled by
deep neural networks. We employ the Transformer
architecture (Vaswani et al., 2017) as the backbone
of our model, and use its attention mechanism as an
effective tool to apply edits in a selective manner.

Our main contributions are:

• We propose the Fine-grained Sample-based
Editing Transformer (FSET) model. It con-
tains a novel editor that can be used in a
retrieval-based framework for paraphrase gen-
eration. This editor learns how to discover
the relationship between a pair of paraphrase
sentences as a set of edits, and transforms the
input sentence according to these edits. It is
worth noting that the set of edits is learned in
an end-to-end manner as opposed to Guu et al.
(2018); Wu et al. (2019) that compute the edit
vector heuristically.

• For the first time, we utilize the Transformer

as an efficient fully-attentional architecture for
the task of retrieval-based text generation.

• Experimentally, we compare our method with
the recent paraphrase generation methods, and
also with the retrieval-based text generation
methods that have been introduced recently.
Both of the quantitative and qualitative results
show the superiority of our model.

2 Related Work

2.1 Neural paraphrase generation
Prakash et al. (2016) was the first work that adapted
a neural approach to paraphrase generation with
a residual stacked LSTM network. Gupta et al.
(2018) combined a variational auto-encoder with a
Seq2Seq LSTM model to generate multiple para-
phrases for a given sentence. Li et al. (2018) pro-
posed a model in which a generator is first trained
on the paraphrasing dataset, and then is fine-tuned
by using reinforcement learning techniques. Cao
et al. (2017) utilized separate decoders for copying
and rewriting as the two main writing modes in
paraphrasing. Mallinson et al. (2017) addressed
paraphrasing with bilingual pivoting on multiple
languages in order to better capture different as-
pects of the source sentence. Iyyer et al. (2018)
proposed a method to generate syntactically con-
trolled paraphrases and use them as adversarial
examples. Chen et al. (2019) addressed the same
problem, but the syntax is controlled by a sentence
exemplar. Kajiwara (2019) proposed a model that
first identifies a set of words to be paraphrased, and
then generates the output by using a pre-trained
paraphrase generation model. Wang et al. (2019)
proposed a Transformer-based model that utilizes
structured semantic knowledge to improve the qual-
ity of paraphrases. Kumar et al. (2019) modified
the beam search algorithm with a sub-modular ob-
jective function to make the generated set of para-
phrases syntactically diverse. Li et al. (2019) de-
composed paraphrasing into sentential and phrasal
levels and employed separate Transformer-based
models for each of these levels. Fu et al. (2019)
decomposes paraphrasing into two steps: content
planning and surface realization, and improves the
interpretability of the first step by incorporating a
latent bag of words model.

2.2 Retrieval-based text generation
Retrieval-based text generation has received much
attention in the last few years. Song et al. (2016);
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Wu et al. (2019) augmented Seq2Seq generation-
based models with retrieval frameworks to make
the dialog responses more meaningful and non-
generic. Gu et al. (2017) utilized a search engine
to retrieve a set of source-translation pairs from the
training corpus, both at train and test time, and use
them as a guide to translate an input query. Guu
et al. (2018) proposed the neural editor model for
unconditional text generation, which produces a
new sentence by editing a retrieved prototype using
an edit vector. Hashimoto et al. (2018) proposed a
task-specific retriever using the variational frame-
work to generate complex structured outputs, such
as Python code. This work, however, does not have
any novelty in the editor’s architecture and uses a
standard Seq2Seq model with attention and copy
mechanism (Hashimoto et al., 2018).

3 Proposed Approach

Let D = {xn, yn}Nn=1 denotes a dataset where xn
is a sequence of words, and yn is its target para-
phrase. In the paraphrasing task, our goal is to
find the set of parameters of the model that max-
imizes

∏N
n=1 pmodel(yn|xn). Figure 1 illustrates

the overview of our proposed model which is com-
posed of a Retriever and an Editor. Given an input
sequence x, the retriever first finds a paraphrase
pair (p, q) from the training corpus based on sim-
ilarity of x and p. Then, the editor utilizes the
retrieved pair (p, q) to paraphrase x. We discuss
the details in the following subsections.

3.1 Retriever

The goal of the retriever module is to select the
paraphrase pairs (from the training corpus) that are
similar to the input sequence x. To do that, the
retriever finds a neighborhood set N (x) consisting
of the K most similar source sentences {pk}Kk=1 to
x and their associated paraphrases {qk}Kk=1 (K is
a hyper-parameter of the model). To measure simi-
larity of sentences, we first embed them employing
the pre-trained transformer-based sentence encoder
proposed by Cer et al. (2018). The similarity is then
calculated using cosine similarity measure in the
resulted embedding space. We call this retriever as
General Retriever throughout the paper. Note that
using a pre-trained retriever can help us to alleviate
the scarcity problem of the training data available
for paraphrasing1.

1Pre-trained model is available at
https://tfhub.dev/google/universal-sentence-encoder-large/3

In order to search for the similar sentences to an
input sequence efficiently, we use the FAISS soft-
ware package (Johnson et al., 2019) to create a fast
search index from the sentences in the training cor-
pus. We would also pre-compute the neighborhood
set of each source sentence in the training set, so at
the training time, our model just needs to sample
one of the pairs in the neighborhood set uniformly
and feed it as an input to the editor module. The
probability of retrieving a pair can thus be stated as

p((p, q)|x) = 1

K
1[(p, q) ∈ N (x)]. (1)

Note that the same procedure also holds for the
test time, and the retriever computes N (x) so the
model can sample any one of the pairs in N (x) to
generate the output based on that pair.

3.2 Editor
To edit a sentence according to a retrieved pair, we
propose an editor module consisting of two compo-
nents: 1) Edit Provider and 2) Edit Performer. The
Edit Provider computes a set of edit vectors based
on the retrieved pair of sentences (p, q). After that,
the Edit Performer rephrases the input sequence x
by utilizing this prepared set of edits.

3.2.1 Edit Provider
This part of the editor extracts the edits from the re-
trieved pair as a set of vectors which we call Micro
Edit Vectors (MEVs). MEVs are responsible for
encoding the information about fine-grained edits
that transform p into q. Each one of the MEVs rep-
resents the most plausible soft alignment between
a token in p and the semantically relevant parts in
q:

M = {mi := small edit applied on pi|1 ≤ i ≤ l}

where l is the length of p.

avoid

how   can   one   overcome   procrastination   ? how   should   i   avoid   procrastination   ?

Neural Network

Step 1: 

Step 2:

(overcome avoid)

Compute
edit 

Find the most 
similar in target

Figure 2: The general scheme of computing a MEV
corresponding to a token of p.

Figure 2 presents, in schematic form, the pro-
cedure of computing one MEV. For each arbitrary

https://tfhub.dev/google/universal-sentence-encoder-large/3
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token of p, such as pi, we intend to compute a
MEV that encodes the edit corresponding to pi us-
ing attention over q. Then, given pi as the source
of the edit, and the attention’s result as the target,
we concatenate their representations and feed it
as the input to a neural network, which calculates
mi as the corresponding edit vector. To make this
process differentiable and parallelizable, we use
a fully-attentional architecture consisting of two
main sub-modules: 1) Edit Encoder and 2) Target
Encoder. Figure 3 shows the overview of the Edit
Provider.

In this model, at first, a context-aware repre-
sentation Rq = [r1q , ..., r

k
q ] of the sequence q is

computed using the Target Encoder which is the
encoder sub-graph of the Transformer architecture
(Vaswani et al., 2017). The Edit Encoder is also
the encoder of the Transformer model, but, with an
extra multi-head attention over Rq. This module
outputs a vector that encodes the most semantically
relevant parts of q to pi. After that, the MEVs, i.e.
mis, are computed by feeding these vectors one by
one into a single dense layer (with the tanh(.) ac-
tivation function). By setting the output dimension
of the dense layer to be smaller than the dimension
of the word embeddings, we introduce a bottleneck,
which hinders the Edit Encoder from copying q di-
rectly.

Dense Dense…

… …

Edit Encoder Target Encoder

…

Figure 3: Architecture of Edit Provider. The Edit En-
coder uses multi-head attention on Rq to select the tar-
get of edit for each token of p. Note that by prepending
[AGR] to p, we can encode all of the MEVS into a
single edit vector zp→q .

Finally, all of the MEVs are aggregated into a sin-
gle vector z by leveraging a technique inspired by
Devlin et al. (2019); we prepend a special token
[AGR] to p in order to encode all the edits into a
single vector zp→q. The intuition behind encod-
ing into a single vector zp→q is to allow the model
learn a global edit that can be applied to the whole
sentence, in addition to the MEVs as local edits.
We run the Edit Performer with the same param-
eters in the reverse direction, i.e. from q to p, to

Self Attention

Multi-Head Att 

on Input

Multi-Head Att 

on MEVs

Feed forwardMEVs

…

Contextual 
Reprsentation

…

Decoder Output at (t-1)

Decoder Output at (t)

 Edit Vector (   )

;

Input Sequence

Encoder

Figure 4: Illustration of the Edit Performer generating
the output token at t-th time step. Note that only one
layer of the decoder is depicted and the layernorms are
not shown for simplicity.

compute Rp and zq→p. The final edit vector z is
then computed as

z = Linear(zp→q ⊕ zq→p),

where Linear denotes a dense layer without acti-
vation and bias.

3.2.2 Edit Performer
The Edit Performer transforms the input sequence
x = [x1, ..., xs] to the final output ŷ using the edit
vectors. We employ a fully-attentional Seq2Seq
architecture composed of an encoder and a decoder
for this part of the model.

The encoder of the Edit Performer has exactly
the same architecture as the original encoder of the
Transformer model and outputs a context-aware
representation Rx = {rix}si=1 of the input se-
quence. For the decoder, we use a slightly modi-
fied version of the original Transformer’s decoder.
Indeed, the Transformer learns to model p(y|x),
while we would like to model a conditional setting
p(y|x, (p, q)). Moreover, as mentioned in the de-
scription of the Edit Provider, the relation between
p and q is encoded in MEVs M and the vector z.
Therefore, in order to edit x, instead of using (p, q)
directly, we only need M and z to specify the edits,
and the sentence p to identify the locations in x to
which the edits should be applied. Thus, we aim to
model p(y|x, p,M, z) with the Edit Performer.

Figure 4 depicts the architecture of the Edit Per-
former. To condition the generation process on
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the edit vector z, we append it to each token of
the decoder’s input. To apply the edits in a fine-
grained manner, we would like the model to attend
to the most similar token of p and select the cor-
responding edit in MEVs M to be applied to the
input sentence. Therefore, in addition to the input
sequence representation Rx, the model also attends
to MEVs M using an extra multi-head attention
sub-layer which computes the representation

h′ = MultiHeadAtt(Q: h,K: Rp,V: M),

where h comes from the previous sub-layer and
Rp is the context-aware representation of the re-
trieved sequence p, which is calculated by the Edit
Provider. Hence, this sub-layer allows the model to
apply edits only when the current context matches
somewhere in p. Finally, we project h′ (after ap-
plying the residual connection and the layernorm)
using a fully-connected sub-layer and feed it to the
above layer. For the last layer, a softmax activation
is employed to predict the next token of the output.

3.3 Training
During the training phase, our aim is to maximize
the log likelihood objective

L =
∑

(x,y)∈D

log p(y|x). (2)

As we decompose the training procedure to two
stages of retrieving and editing, we can rewrite
p(y|x) as

p(y|x) =
∑

(p,q)∈D

p(y|x, (p, q))p((p, q)|x). (3)

Substituting Eq. 1 into Eq. 3 and then inserting
the resulted p(y|x) into Eq. 2 yields the following
formulation for the log likelihood:

L =
∑

(x,y)∈D

log(
1

K

∑
(p,q)∈N (x)

p(y|x, (p, q))).

We train our model by maximizing the following
lower bound of the log likelihood (obtained by
Jensen’s inequality):

L ≥ L′ = 1

K

∑
(x,y)∈D

∑
(p,q)∈N (x)

log p(y|x, (p, q)).

Note that p(y|x, (p, q)) =
pθ(y|x, p,mφ(p, q), zφ(p, q)), where θ de-
notes the parameters of the Edit Performer and φ

shows the parameters of the Edit Provider. Thus,
we solve the following optimization problem:

θ∗, φ∗ = argmax
θ,φ

L′(θ, φ).

Except for the retriever which is a pre-trained
component of our model, other components are
fully coupled and trained together. To prevent the
model from ignoring the information coming from
the retrieval pathway during the training procedure
(i.e. ignoring the edit vectors extracted from the
retrieved pair), we use a simple yet effective trick;
we manually add extra (x, y) pairs to N (x) pro-
portionate to the number of retrieved pairs K so
the presence of y as the exact ground-truth para-
phrase encourages the model to use the retrieved
pairs more. Please refer to A.1 for further details.

4 Experiments

In this section, we empirically evaluate the per-
formance of our proposed method in the task of
paraphrase generation, and compare it with various
other methods, including previous state-of-the-art
paraphrasing models.

4.1 Datasets

We conduct experiments on two of the most fre-
quently used datasets for paraphrase generation:
the Quora question pair dataset and the Twitter
URL paraphrasing corpus. For the Quora dataset,
we only consider the paraphrase pairs. Similar to Li
et al. (2018), we sample 100k, 30k, 3k instances for
train, test, and validation sets, respectively. Twitter
URL paraphrasing dataset consists of two subsets,
one is labeled by human annotators, and the other is
labeled automatically, thus, it is noisier compared
to the Quora dataset. Similar to Li et al. (2018), we
sample 110k instances from automatically labeled
part as our training set and two non-overlapping
subsets of 5k and 1k instances from the part an-
notated by humans for the test and validation sets,
respectively. As in Li et al. (2018, 2019), we trun-
cate sentences in both of the datasets to 20 tokens.

Hyperparameter Edit Performer Edit Provider

Hidden dimension 64 64
# Layers 6 4
# Heads 8 4
MEV dimension mi - 40
Edit vector z dimension - 64

Table 1: Settings of the Model
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4.2 Baselines
We compare our method with both the existing
paraphrasing methods that are not retrieval-based,
and also with the existing or newly created retrieval-
based text generation methods which we adapt for
paraphrasing:

• Non-retrieval paraphrasing methods:

– Residual LSTM (Prakash et al., 2016)
which is the first Seq2Seq model proposed
for paraphrase generation,

– RbM (Li et al., 2018) that fine-tunes a para-
phrase generation model using reinforce-
ment learning,

– Transformer (Vaswani et al., 2017) which
is a Seq2Seq model relying entirely on at-
tention mechanism,

– DNPG (Li et al., 2019) that decomposes
paraphrasing to sentential and phrasal levels
and utilizes separate Transformers for each
level,

– DiPS (Kumar et al., 2019) which aims to
generate diverse paraphrases by adopting a
novel approach in the decoding stage instead
of beam search.

The latter two of the above list have been reported
as the state-of-the-art models in paraphrase gen-
eration (Kumar et al., 2019; Li et al., 2019).

• Retrieval-based models: We compare our
method with one existing retrieval-based text gen-
eration model and two other combinational meth-
ods that we create by ourselves:

– Seq2Seq+Ret which is an extended version
of Seq2Seq Residual LSTM. This model
conditions the generation process at each
time step on an edit vector encoding the dif-
ferences between the retrieved sentences p
and q. To make the comparison fair, we use
the General Retriever (introduced in the Re-
triever subsection of the Proposed Approach
Section) to find (p, q). The edit vector for
this pair is also computed by concatenating
the sum of inserted word embeddings with
the sum of deleted word embeddings as it is
stated by Guu et al. (2018).

– RaE that is proposed by Hashimoto et al.
(2018) as a method with an in-domain re-
triever. The editor of this model is a Seq2Seq
LSTM equipped with attention mechanism

over the input x, and copy mechanism over
the retrieved pair p and q.

– CopyEditor+Ret which is composed of the
editor of Hashimoto et al. (2018), and the
General Retriever. We compare FSET with
this baseline model to further evaluate the
role of our proposed editor.

4.3 Experimental settings
Table 1 shows the settings of our model. We select
the hyperparameters suggested by Li et al. (2018)
for the LSTM-based Seq2Seq baselines, and the
hyperparameters mentioned by Li et al. (2019) for
the Transformer-based baselines. It is worth noting
that our model’s size w.r.t. the number of param-
eters is approximately 1

2 of the baseline LSTM’s
size and 1

5 of the baseline Transformer’s size. The
newly created retrieval-based baselines have the
same hidden size and the same number of layers
as the non-retrieval models. For the Seq2Seq+Ret
model, we keep the ratio of hidden size to the edit
vector dimension same as the reported ratio in Guu
et al. (2018). We train all of the models for 100k it-
erations, and choose the best version based on their
validation loss after training. We set the batch size
to 128 and the vocabulary size to 8k in all of the
experiments. The embeddings are also trained from
scratch. In all of the experiments on the retrieval-
based methods, the hyper-parameter K is set to 1.
However, results for different values of K are also
reported in A.2. During the decoding stage, we
use beam search to generate a set of outputs. In
order to select the final output, an approach similar
to Gupta et al. (2018) is used which chooses the
most lexically similar sentence to the input where
the similarity is calculated based on the Jaccard
measure.

4.4 Results and analysis
We compare different methods using BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005) as the most com-
mon metrics for automatic evaluation of paraphrase
generation methods. Table 2 summarizes the re-
sults of different methods. These results indicate
that our model outperforms the previous state-of-
the-art models in terms of all of the metrics.

It is worth noting that the models which have
utilized copy mechanism, such as DNPG, RbM,
RaE, and CopyEditor+Ret, generally outperform
the other baselines. The Seq2Seq+Ret, i.e. the
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Quora Twitter URL Paraphrasing

Models ROUGE-2 ROUGE-1 BLEU-4 BLEU-2 METEOR ROUGE-2 ROUGE-1 BLEU-4 BLEU-2 METEOR

Residual LSTM (Prakash et al., 2016) 32.71 59.69 24.56 38.52 29.39 27.94 41.77 25.92 32.13 24.88
Seq2Seq+Ret (Ours) 32.71 60.83 25.23 42.71 32.51 21.56 40.18 20.11 31.58 22.38
DiPS (Kumar et al., 2019) 31.77 59.79 25.37 40.35 29.28 23.67 43.64 27.66 37.92 25.69
Transformer (Vaswani et al., 2017) 34.23 61.25 30.38 42.91 34.65 29.55 44.53 32.14 40.34 28.26
DNPG (Li et al., 2019) 2 37.75 63.73 25.03 - - - - - - -
RbM (Li et al., 2018) 2 38.11 64.39 - 43.54 32.84 24.23 41.87 - 44.67 19.97
RaE (Hashimoto et al., 2018) 35.07 62.71 29.22 46.21 29.92 31.53 47.55 34.16 44.33 30.09
CopyEditor+Ret (Ours) 35.59 62.93 29.78 46.55 35.56 27.35 45.54 28.06 40.30 26.93

FSET (Ours) 39.55 66.17 33.46 51.03 38.57 32.04 49.53 34.62 46.35 31.67

Table 2: Results of the different models on two paraphrasing datasets.

retrieval-based Residual LSTM, shows an improve-
ment over Residual LSTM on Quora dataset. How-
ever, this is not the case on the Twitter dataset
and we hypothesize that it is due to uncommon
texts in this corpus (i.e. informal text with hash-
tags and abbreviated words), on which the General
Retriever has not been trained. Therefore, a pre-
trained retriever cannot help in this case. The Copy-
Editor+Ret model which incorporates a more pow-
erful editor than Seq2Seq+Ret shows better results
than both of the Residual LSTM and Seq2Seq+Ret.
However, a phenomenon similar to what was stated
for Seq2Seq+Ret is also observed for this model
on the Twitter dataset. The RaE model with the
same editor as CopyEditor but with a supervised
(task-specific) retriever leads to near state-of-the-
art results. This indicates the role of the supervised
task-specific retriever used in RaE, especially in
the results on Twitter dataset. The superiority of
our method over RaE in all of the metrics could be
a sign of the effectiveness of our proposed editor
module. Although our model uses the General Re-
triever, it still outperforms all other methods even
on the Twitter dataset. It is worth mentioning that
we can replace the General Retriever in our method
with other retrievers like supervised task-specific
ones to improve the results even more. Moreover,
it is worth noting that our model that is only based
on the Transformer architecture and the General
Retriever (that is not required to be trained in each
domain) needs much less training time than RaE.

4.5 Human evaluation

As there is no appropriate automatic metric for
evaluating the diversity and novelty of generated
sentences, we use human evaluation to assess
the performance of our model qualitatively. We

2Results are directly reported from Li et al. (2018, 2019)
on the same dataset and settings.

Grammar Coherency

Models Score κ Score κ

DiPS (Kumar et al., 2019) 3.97 0.253 2.55 0.476
RaE (Hashimoto et al., 2018) 4.70 0.286 3.90 0.483
FSET (Ours) 4.70 0.394 4.22 0.528

Table 3: Human evaluation on Quora dataset.

Tie: 23.0%

0.373

RaE: 20.6%

FSET (Ours): 57.0%

FSET Tie RaE

Tie: 13.3%

0.430

DiPS: 11.3%

FSET (Ours): 75.3%

FSET Tie DiPS

Tie: 28%

0.331

DiPS: 15.3%

RaE: 56.6%

RaE Tie DiPS

FSET  vs.  RaE FSET  vs.  DiPS RaE  vs.  DiPS

Figure 5: Results of the one-on-one human evaluation
(second experiment). Annotators decide ”Tie” when
the outputs of the two models have the same quality in
their opinion.

compare our method with two other methods: 1)
RaE (Hashimoto et al., 2018) as a retrieval-based
method adapted for paraphrasing, and 2) DiPS (Ku-
mar et al., 2019) as a paraphrasing model which
generates semantically diverse outputs by adopting
a novel approach instead of beam search during
the decoding stage. We choose these models as
we would like to compare our method both with a
state-of-the-art retrieval-based method and with a
method that can generate diverse outputs. It must
be noted that many of the recent methods in Table
2 are not able to generate diverse outputs.

We first select 100 sentences randomly from the
test set of Quora dataset. Then, for each model,
three paraphrases are generated for each one of the
sentences, and these three outputs are considered as
a paraphrase group. We aggregate and shuffle these
paraphrase groups and ask six human annotators to
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evaluate them in two scenarios.

In the first scenario, we ask the human annota-
tors to score the outputs individually based on the
following two criteria: 1) Grammar and fluency,
2) Consistency and coherency. Similar to Li et al.
(2018), we use a 5-scale rating for each criterion.
Table 3 presents the results. As can be seen, our
model generally outperforms the other methods.
Although RaE and our model can both produce
grammatically correct outputs, the consistency and
coherency for the outputs of our method is much
better. Moreover, the inter-annotator agreement
measured by Cohen’s kappa κ shows fair or inter-
mediate agreement between raters assessing the
models.

Since directly scoring diversity and novelty of
one paraphrase group is not simple even for hu-
mans, in the second scenario, we ask the annotators
to make one-on-one comparisons on the groups
of generated paraphrases. In other words, for each
pair of the models, they have to decide which model
produces better outputs for each one of the sen-
tences (Ties are also allowed). Figure 5 depicts
the one-on-one diversity evaluation. Our method
and RaE both outperform DiPS, probably due to
their retrieval-based nature. Moreover, this figure
reveals that our method can generate significantly
better outputs compared to RaE. We believe the
reason is that RaE’s editor is not as properly de-
signed as our editor module. We explicitly inject
the paraphrasing patterns found in the neighboring
paraphrases into the Edit Performer which helps it
to generate more diverse paraphrases. Please refer
to the A.3 for some further details on the experi-
ments.

4.6 Case study

Table 4 shows some examples of the paraphrases
generated by our model. A common pattern among
the output paraphrases is that the model has com-
bined different parts of the input sentence and the
retrieved target sentence to create a grammatically
correct paraphrase. Furthermore, the model is able
to change the syntactic form of words correctly,
or replace them with their synonyms, as it is the
case for ”via” and ”by using”, and ”is” and ”are”.
The fact that the model can apply these changes in
different levels of granularity can indicate that the
idea of editing based on MEVs works properly.

(1) x Why do people ask such questions here on Quora which could be easily
found on the internet ?

p Why do people ask questions on Quora that could simply be googled?
q why do people ask questions on quora that are easily answerable via a

quick internet search ?

y′ why do people ask questions on quora that could be easily answered
by using a quick internet search ?

(2) x Who can the Democrats effectively run against Trump in 2020 ?
p Who will lead Trump ’s movement after the election ?
q Who do you think is most likely to lead the Trump movement after 2016

?

y′ who do you think is the most likely democrat to
run against trump in 2020 ?

(3) x What should I do when someone marks my question as needing im-
provement?

p Even though most of my asked questions are in well written form, they
are usually marked as needing improvement. What should I do ?

q Most of my questions are marked as needing improvement . Where can
I seek professional help ?

y′ what should I do if my question is marked as needing improvement ?

(4) x What is the best way to make money as a 15 year old ?
p What are the best ways to make money as a teenager ?
q I ’m a teen , how can I make some money online ?

y′ I ’m a 15 year old , how can I make money ?

Table 4: Example outputs of the model. Red phrases
are extracted from the retrieved target sentence q, and
blue parts are extracted from the source sentence x.
Phrases that appear with slight changes in semantics
or syntax in the output are made bold. The sentences
are annotated manually for better readability.

Model Variant ROUGE-2 ROUGE-1 BLEU-4 BLEU-2

Jaccard Retriever 38.52 65.47 31.72 48.83
No edit vector z 38.31 65.44 30.40 47.77
No Attention on MEVs M 39.36 65.72 29.73 46.66

Table 5: Ablation study

4.7 Model Ablation

In order to further evaluate the role of each module
in our model, we train and assess different variants
of it where in each variant, a key component has
been replaced by an alternative simpler one:

• Jaccard Retriever: The retriever of our model
is replaced by a simple retriever that selects
neighbor sentences using the Jaccard similarity
metric.

• No edit vector z: A variant in which we do not
condition the Transformer in the Edit Performer
on the aggregated edit vector z, and edit the
source sentence merely based on MEVs.

• No Attention on MEVs: In this variant of our
model, the Transformer in the Edit Performer
is not conditioned on MEVs, and the source
sentence is edited based on only z.
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We train all of these variants on the Quora para-
phrasing dataset. Table 5 shows the results of
these models. As it is seen, the model which
uses the Jaccard similarity measure performs worse
than the original model with the General Retriever.
Nonetheless, the results of this version explains that
even the combination of our editor module with this
simple retriever outperforms previous state-of-the-
art methods. This indicates that our proposed editor
can distinguish whether the extracted edits are plau-
sible enough to be applied to the input sentence.
Moreover, the results show that both eliminating z
and M from our editor decrease its performance.
In other words, both conditioning on z as the ag-
gregated edit at each step of generation and the
attention on MEVs M help the proposed editor.

5 Conclusion

In this paper, we proposed a retrieval-based para-
phrase generation model which includes a novel
fully-attentional editor. This editor learns how to
extract edits from a paraphrase pair and also when
and how to apply these edits to a new input sen-
tence. We also introduced the new idea of Micro
Edit Vectors, where each one of these vectors rep-
resents a small edit that should be applied to the
source sentence to get its paraphrase. We incor-
porated Transformer modules in our editor and
augmented them with attention over Micro Edit
Vectors. The proposed model outperforms the pre-
vious state-of-the-art paraphrase generation models
in terms of both automatic metrics and human eval-
uation. Moreover, the outputs show that our model
is able to produce paraphrases by editing sentences
in a fine-grained manner using the idea of MEVs.
In future work, we intend to adapt our editor mod-
ule for other learning tasks with both the structured
input and structured output.
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A Appendix

A.1 Construction of N (x) during training

For each pair of sentences, such as (x, y), we aug-
ment its neighbourhood set N (x) with multiple
(x, y) pairs to get the new neighbourhood set

N ′(x) = [(p1, q1), ..., (pK , qK), (x, y), ..., (x, y)],

where first K pairs are the K-most similar pairs
(excluding (x, y) itself), and (x, y) is repeated
K ′ < K times (K ′ is another hyperparameter of
the model). Since the model sees the (x, y) pair
K′

K+K′ times during training as the retrieved pair,
and these particular pairs include the output y them-
selves, the model is encouraged to use information
coming from the retrieved neighboring pairs more
often.

A.2 Analysis of Varying K

We conduct an experiment to evaluate the effect of
the hyper-parameter K in the proposed method.
For each value of K ∈ {1, 3, 5}, we train our
model once and obtain its results on the Quora
dataset. Then, the value of two quality metrics (i.e.
BLUE-2 and ROUGE-2) and two diversity metrics
(i.e. SelfBLEU-2 And PINC-4) are computed. Fig-
ure 6 summarizes the obtained results. According
to this figure, increasing the value of K slightly de-
creases the quality metrics while highly increases
the diversity measures (Note that lower values of
SELf-BLEU and higher values of PINC indicate
more diversity in the outputs). It shows that incor-
porating wider neighborhood in the editing process
results in more diversity in the paraphrasing made
by the editor.

A.3 Human Evaluation

The form used for the one-by-one experiment con-
tains the following material:

Which set of the outputs do you prefer? Please
opt based on the following criteria:

• Novelty: If any one of the outputs has ex-
pressed the semantic content of source sen-
tence in a novel way like what we do as hu-
mans (e.g. changing the voice from active to
passive or vice versa, using different words,
phrases, or sentences that are not present in
the source sentence but without changing the
meaning considerably).

Figure 6: Results of the proposed method with some
different values of the hyperparameter K according to
four different metrics

• Diversity: if the three outputs are not ex-
pressed in the same way using the same
words.

• Quality: If the outputs are paraphrases of the
input sentence to a good extent.

• Readability: If the outputs are understandable
by humans.

Note: Please select the option ’both(#1 and #2)’ if
you can not decide which one is better.

A.4 Example outputs
Table 6 shows the paraphrases generated for more
sample inputs from the Quora dataset.
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Figure 7: The human evaluation form for the first ex-
periment.

Figure 8: The human evaluation form for the second
experiment.

(1) x What are great examples of absent mindedness ?
p What are the common characteristics of ignorant people ?
q What are the most common characteristics of stupid , ignorant or une-

ducated people ?

y′ what are the most common examples of absent mindedness ?

(2) x What should I know about moving from Pennsylvania to South Car-
olina ?

p What are the pros and cons of living in Richmond , VA ?
q What is your review of Richmond , VA ?

y′ what is your review of moving from pennsylvania to south carolina ?

(3) x How does Quora determine how many views an answer gets ?
p How does Quora calculate how many views does an answer have ?
q How does Quora count the views of my / your answers ?

y′ how does quora determine the views of your answers ?

(4) x Do you think India should revisit Indus Water Treaty with Pakistan ?
p Should India hold a referendum in Kashmir ?
q Would India ever consider a referendum for Kashmir independence ?

y′ would india ever consider a indus water treaty with pakistan ?

(5) x Which is your favourite time of the day ?
p What is your favorite month of the year ?
q What is your favorite month of the year and why ?

y′ what is your favourite time of the day and why ?

(6) x How do I homeschool my kids ?
p How do I teach my child ?
q What are the best ways to teach your child ?

y′ what are the best ways to homeschool my child ?

(7) x How did Andy Warhol paint Marilyn Monroe ?
p Who was Mona Lisa and why was she painted ?
q What is story behind mona lisa painting ?

y′ what is the story behind andy warhol paint marilyn monroe ?

(8) x Can we start a Sainik School in the private sector ?
p Is n’t it time for Indian goverment to change its reservation system for

jobs and education from caste based to economic based system ?
q Is n’t it time India change its reservation policies from implemented

on caste basis to based on financial backgrounds ?

y′ is it possible to start a sainik school in the private sector ?

(9) x Can we start a Sainik School in the private sector ?
p Should the Indian education system be revamped ?
q Does the Indian education system need to change and why ?

y′ does the indian government need to start a sainik school in the private
sector ?

(10) x What is the best thing any one has ever done for you ?
p What is the nicest thing anyone has ever done for you ?
q What ’s the nicest thing anyone has ever done for you ?

y′ what ’s the best thing that has ever done for you ?

(11) x What are some of the things people like or dislike in general ?
p What are some things that you hate ?
q What are some things that irritate you and that you hate ?

y′ what are some things that most people dislike in general ?

Table 6: More examples of our model’s outputs


