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Abstract

Speech translation (ST) aims to learn transfor-
mations from speech in the source language to
the text in the target language. Previous works
show that multitask learning improves the ST
performance, in which the recognition decoder
generates the text of the source language, and
the translation decoder obtains the final trans-
lations based on the output of the recognition
decoder. Because whether the output of the
recognition decoder has the correct semantics
is more critical than its accuracy, we propose
to improve the multitask ST model by utilizing
word embedding as the intermediate.

1 Introduction

Speech translation (ST) increasingly receives atten-
tion from the machine translation (MT) commu-
nity recently. To learn the transformation between
speech in the source language and the text in the
target language, conventional models pipeline au-
tomatic speech recognition (ASR) and text-to-text
MT model (Bérard et al., 2016). However, such
pipeline systems suffer from error propagation.

Previous works show that deep end-to-end mod-
els can outperform conventional pipeline systems
with sufficient training data (Weiss et al., 2017; In-
aguma et al., 2019; Sperber et al., 2019). Neverthe-
less, well-annotated bilingual data is expensive and
hard to collect (Bansal et al., 2018a,b; Duong et al.,
2016). Multitask learning plays an essential role in
leveraging a large amount of monolingual data to
improve representation in ST. Multitask ST models
have two jointly learned decoding parts, namely the
recognition and translation part. The recognition
part firstly decodes the speech of source language
into the text of source language, and then based on
the output of the recognition part, the translation
part generates the text in the target language. Vari-
ant multitask models have been explored (Anas-
tasopoulos and Chiang, 2018), which shows the
improvement in low-resource scenario.

Although applying the text of source language
as the intermediate information in multitask end-to-
end ST empirically yielded improvement, we argue
whether this is the optimal solution. Even though
the recognition part does not correctly transcribe
the input speech into text, the final translation result
would be correct if the output of the recognition
part preserves sufficient semantic information for
translation. Therefore, we explore to leverage word
embedding as the intermediate level instead of text.

In this paper, we apply pre-trained word embed-
ding as the intermediate level in the multitask ST
model. We propose to constrain the hidden states
of the decoder of the recognition part to be close
to the pre-trained word embedding. Prior works on
word embedding regression show improved results
on MT (Jauregi Unanue et al., 2019; Kumar and
Tsvetkov, 2018). Experimental results show that
the proposed approach obtains improvement to the
ST model. Further analysis also shows that con-
strained hidden states are approximately isospectral
to word embedding space, indicating that the de-
coder achieves speech-to-semantic mappings.

2 Multitask End-to-End ST model

Our method is based on the multitask learning
for ST (Anastasopoulos and Chiang, 2018), in-
cluding speech recognition in the source language
and translation in the target language, as shown in
Fig. 1(a). The input audio feature sequence is first
encoded into the encoder hidden state sequence
h = h1, h2, . . . , hT with length T by the pyramid
encoder (Chan et al., 2015). To present speech
recognition in the source language, the attention
mechanism and a decoder is employed to pro-
duce source decoder sequence ŝ = ŝ1, ŝ2, . . . , ŝM ,
where M is the number of decoding steps in the
source language. For each decoding step m, the
probability P (ŷm) of predicting the token ŷm in
the source language vocabulary can be computed
based on the corresponding decoder state ŝm.
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Figure 1: (a) Multitask ST model. Dotted arrows indi-
cate steps in the recognition part. Solid arrows indicate
steps in the translation part. (b) Directly learn word
embedding via cosine distance. (c) Learn word embed-
ding via cosine softmax function. Both (b)(c) are the
recognition part in (a).

To perform speech translation in the target lan-
guage, both the source language decoder state se-
quence ŝ and the encoder state sequence h will
be attended and treated as the target language de-
coder’s input. The hidden state of target language
decoder can then be used to derived the probability
P (yq) of predicting token yq in the target language
vocabulary for every decoding step q.

Given the ground truth sequence in the source
language ŷ = ŷ1, ŷ2, . . . , ŷM and the target lan-
guage y = y1, y2, . . . , yQ with length Q, multitask
ST can be trained with maximizing log likelihood
in both domains. Formally, the objective function
of multitask ST can be written as:

LST =
α

M
Lsrc +

β

Q
Ltgt

=
α

M

∑
m

− logP (ŷm) +
β

Q

∑
q

− logP (yq),

(1)

where α and β are the trade-off factors to balance
between the two tasks.

3 Proposed Methods

We propose two ways to help the multitask end-
to-end ST model capture the semantic relation
between word tokens by leveraging the source
language word embedding as intermediate level.
Ê = {ê1, ê2, ...ê|V |}, where V is the vocabulary

set and êv ∈ RD is the embedding vector with di-
mension D for any word v ∈ V , in the recognition
task. We choose the source language decoder state
(embedding) ŝ to reinforce since it is later used in
the translation task. To be more specific, we argue
that the embedding generated by the source lan-
guage decoder should be more semantically correct
in order to benefit the translation task. Given the
pre-trained source language word embedding Ê,
we proposed to constrain the source decoder state
ŝm at step m to be close to its corresponding word
embedding êŷm with the two approaches detailed
in the following sections.

3.1 Directly Learn Word Embedding
Since semantic-related words would be close in
terms of cosine distance (Mikolov et al., 2018), a
simple idea is to minimize the cosine distance (CD)
between the source language decoder hidden state
ŝm and the corresponding word embedding êŷm for
every decode step m,

LCD =
∑
m

1− cos(fθ(ŝm), êŷm)

=
∑
m

1−
fθ(ŝm) · êŷm
‖fθ(ŝm)‖‖êŷm‖

,
(2)

where fθ(·) is a learnable linear projection to match
the dimensionality of word embedding and decoder
state. With this design, the network architecture of
the target language decoder would not be limited
by the dimension of word embedding. Fig. 1(b) il-
lustrates this approach. By replacing Lsrc in Eq. (1)
with LCD, semantic learning from word embedding
for source language recognition can be achieved.

3.2 Learn Word Embedding via Probability
Ideally, using word embedding as the learning tar-
get via minimizing CD can effectively train the
decoder to model the semantic relation existing in
the embedding space. However, such an approach
suffers from the hubness problem (Faruqui et al.,
2016) of word embedding in practice (as we later
discuss in Sec. 4.5).

To address this problem, we introduce cosine
softmax (CS) function (Liu et al., 2017a,b) to learn
speech-to-semantic embedding mappings. Given
the decoder hidden state ŝm and the word embed-
ding Ê, the probability of the target word ŷm is
defined as

PCS(ŷm) =
exp(cos(fθ(ŝm), êŷm)/τ)∑
êv∈Ê exp(cos(fθ(ŝm), êv)/τ)

,

(3)
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where cos(·) and fθ(·) are from Eq. (2), and τ is the
temperature of softmax function. Note that since
the temperature τ re-scales cosine similarity, the
hubness problem can be mitigated by selecting a
proper value for τ. Fig. 1(c) illustrates the approach.
With the probability derived from cosine softmax in
Eq. (3), the objective function for source language
decoder can be written as

LCS =
∑
m

− logPCS(ŷm). (4)

By replacing Lsrc in Eq. (1) with LCS, the decoder
hidden state sequence ŝ is forced to contain seman-
tic information provided by the word embedding.

4 Experiments

4.1 Experimental Setup

We used Fisher Spanish corpus (Graff et al., 2010)
to perform Spanish speech to English text transla-
tion. And we followed previous works (Inaguma
et al., 2019) for pre-processing steps, and 40/160
hours of train set, standard dev-test are used for
the experiments. Byte-pair-encoding (BPE) (Kudo
and Richardson, 2018) was applied to the target
transcriptions to form 10K subwords as the tar-
get of the translation part. Spanish word embed-
dings were obtained from FastText pre-trained on
Wikipedia (Bojanowski et al., 2016), and 8000
Spanish words were used in the recognition part.

The encoder is a 3-layer 512-dimensional bidi-
rectional LSTM with additional convolution lay-
ers, yielding 8× down-sampling in time. The de-
coders are 1024-dimensional LSTM, and we used
one layer in the recognition part and two layers in
the translation part. The models were optimized
using Adadelta with 10−6 as the weight decay rate.
Scheduled sampling with probability 0.8 was ap-
plied to the decoder in the translation part. Experi-
ments ran 1.5M steps, and models were selected by
the highest BLEU on four transcriptions per speech
in dev set.

4.2 Speech Translation Evaluation

Baseline: We firstly built the single-task end-to-
end model (SE) to set a baseline for multitask learn-
ing, which resulted in 34.5/34.51 BLEU on dev and
test set respectively, which showed comparable re-
sults to Salesky et al. (2019). Multitask end-to-end
model (ME) mentioned in Sec. 2 is another base-
line. By applying multitask learning in addition,

(a) 160 hours (b) 40 hours
dev test dev test

SE 34.50 34.51 17.41 15.44
ME 35.35 35.49 23.30 20.40
CD 33.06 33.65 23.53 20.87
CS 35.84 36.32 23.54 21.72

Table 1: BLEU scores trained on different size of data.

we could see that ME outperforms SE in all condi-
tions.
High-resource: Column (a) in Table 1 showed
the results trained on 160 hours of data. CD and
CS represent the proposed methods mentioned in
Sec. 3.1 and 3.2 respectively. We got mixed results
on further applying pre-trained word embedding
on ME. CD degraded the performance, which is
even worse than SE, but CS performed the best.
Results showed that directly learn word embed-
ding via cosine distance is not a good strategy in
the high-resource setting, but integrating similar-
ity with cosine softmax function can significantly
improve performance. We leave the discussion in
Sec. 4.5.
Low-resource: We also experimented on 40 hours
subset data for training, as shown in column (b) in
Table 1. We could see that ME, CD and CS over-
whelmed SE in low-resource setting. Although CD
resulted in degrading performance in high-resource
setting, it showed improvements in low-resource
scenario. CS consistently outperformed ME and
CD on different data size, showing it is robust on
improving ST task.

4.3 Analysis of Recognition Decoder Output

In this section, we analyzed hidden states s by ex-
isting methods. For each word v in corpus, we
denoted its word embedding êv as pre-trained em-
bedding, and ev as predicted embedding. Note that
because a single word v could be mapped by mul-
tiple audio segments, we took the average of all
its predicted embedding. We obtained the top 500
frequent words in the whole Fisher Spanish corpus,
and tested on the sentences containing only these
words in test set.
Eigenvector Similarity: To verify our proposed
methods can constrain hidden states in the word em-
bedding space, we computed eigenvector similar-
ity between predicted embedding and pre-trained
embedding space. The metric derives from Lapla-
cian eigenvalues and represents how similar be-
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160 hours 40 hours
dev test dev test

ME 16.50 18.58 13.80 15.09
CD 2.60 3.44 3.95 3.63
CS 11.55 13.76 8.62 9.80

Table 2: Eigenvector similarity.

160 hours 40 hours
P@1 P@5 P@1 P@5

ME 1.85 6.29 1.11 9.62
CD 61.48 77.40 56.30 69.25
CS 17.78 35.19 10.37 25.19

Table 3: Precision@k of semantic alignment on test set.

tween two spaces, the lower value on the metric,
the more approximately isospectral between the
two spaces. Previous works showed that the met-
ric is correlated to the performance of translation
task (Søgaard et al., 2018; Chung et al., 2019). As
shown in Table 2, predicted embedding is more sim-
ilar to pre-trained embedding when models trained
on sufficient data (160 v.s 40 hours). CD is the
most similar case among the three cases, and ME
is the most different case. Results indicated that
our proposals constrain hidden states in pre-trained
embedding space.
Semantic Alignment: To further verify if pre-
dicted embedding is semantically aligned to pre-
trained embedding, we applied Procrustes align-
ment (Conneau et al., 2017; Lample et al., 2017)
method to learn the mapping between predicted
embedding and pre-trained embedding. Top 50
frequent words were selected to be the training dic-
tionary, and we evaluated on the remaining 450
words with cross-domain similarity local scaling
(CSLS) method. Precision@k (P@k, k=1,5) were
reported as measurements. As shown in Table 3,
CD performed the best, and ME was the worst one.
This experiment reinforced that our proposals can
constrain hidden states to the similar structure of
word embedding space.

4.4 Speech Recognition Evaluation

We further analyzed the results of speech recog-
nition for ME and CS. To obtain the recognition
results from Eq (3), simply take argmaxv PCS(v).
The word error rate (WER) of the source language
recognition was reported in Table 4. Combining
the results shown in Table 1, we could see that CS

160 hours 40 hours
dev test dev test

ME 43.13 38.57 53.42 54.70
CS 50.15 44.43 57.63 57.21

Table 4: Word error rate (%) trained on different size
of data.

has worse WER, but higher BLEU compared with
ME. We concluded that although leveraging word
embedding at the intermediate level instead of text
results in worse performance in speech recogni-
tion (this indicates that the WER of the recognition
part does not fully determine the translation perfor-
mance), the semantic information could somewhat
help multitask models generate better translation
in terms of BLEU. We do not include the WER of
CD in Table 1 because its WER is poor (>100%),
but interestingly, the BLEU of CD is still reason-
able, which is another evidence that WER of the
intermediate level is not the key of translation per-
formance.

4.5 Cosine Distance (CD) v.s. Softmax (CS)
Based on experimental results, we found that pro-
posals are possible to map speech to semantic space.
With optimizing CS, BLEU consistently outper-
formed ME, which shows that utilizing semantic
information truly helps on ST. Directly minimiz-
ing cosine distance made the predicted embedding
space closest to pre-trained embedding space, but
performed inconsistently on BLEU in different
data sizes. We inferred that the imbalance word
frequency training and hubness problem (Faruqui
et al., 2016) in word embedding space made hidden
states not discriminated enough for the target lan-
guage decoder while optimizing CS can alleviate
this issue.

5 Conclusions
Our proposals showed that utilizing word embed-
ding as intermediate helps with the ST task, and
it is possible to map speech to the semantic space.
We also observed that lower WER in source lan-
guage recognition not imply higher BLEU in target
language translation.

This work is the first attempt to utilize word
embedding in the ST task, and further techniques
can be applied upon this idea. For example, cross-
lingual word embedding mapping methods can be
considered within the ST model to shorten the dis-
tance between MT and ST tasks.
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A Appendix

A.1 Single-task end-to-end model

One of our baseline models is a single-task end-to-
end model, which is abbreviated as SE in the pre-
vious section. SE was trained using the source lan-
guage speech and the target language text. It shares
the same architecture with the multitask model but
without the source language text decoding (without
the recognition part in Fig. 1(a)). And its objective
function can be written as:

LSE = Ltgt =
∑
q

− logP (yq). (5)

Further details can be referred to (Anastasopoulos
and Chiang, 2018).

A.2 Using different Word Embeddings

Our proposed model benefits from publicly avail-
able pre-trained word embedding, which is easy-
to-obtain yet probably coming from the domains
different from testing data. It can bring to ST mod-
els in a simple plug-in manner.

In Sec. 4.2, we used word embedding trained
on Wikipedia. To demonstrate the improvement of
using different word embeddings, we additionally
provide results of ST models using word embed-
dings trained on Fisher Spanish corpus (train and
dev set) in Table 5. Here we use the abbreviation of
word embedding trained on Wikipedia as W-emb
and word embedding trained on Fisher Spanish
corpus as F-emb.

In CD/CS method, using F-emb obtained
0.27/0.61 improvement from using W-emb on dev
set. And, CD got 0.15 improvement but CS got
0.51 degrading performance on test set.

The improvements show that using word embed-
dings trained in the related domain helps on the per-
formance. In CD method, although using F-emb
improves the performance, it still under-performed
ME method. It indicates that the selection of adopt-
ing methods is critical. In CS method, it got a great
improvement on dev set but not on test set. It shows
that using F-emb does help with the performance,
but using word embedding trained on rich data (W-
emb) could provide additional information that can
generally extend to the test set.

Word Embedding
Source

160 hours

dev test

ME - 35.35 35.49

CD Wikipedia 33.06 33.65
Fisher Spanish 33.33 33.80

CS Wikipedia 35.84 36.32
Fisher Spanish 36.45 35.81

Table 5: BLEU scores on using different pre-trained
word embeddings.

In general, whether using F-emb or W-emb as
the training target, the experimental results show
consistency to the discussion in Sec. 4.2.


