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Abstract

Although neural machine translation (NMT)
has achieved significant progress in recent
years, most previous NMT models only de-
pend on the source text to generate translation.
Inspired by the success of template-based and
syntax-based approaches in other fields, we
propose to use extracted templates from tree
structures as soft target templates to guide the
translation procedure. In order to learn the
syntactic structure of the target sentences, we
adopt the constituency-based parse tree to gen-
erate candidate templates. We incorporate the
template information into the encoder-decoder
framework to jointly utilize the templates and
source text. Experiments show that our model
significantly outperforms the baseline models
on four benchmarks and demonstrate the effec-
tiveness of soft target templates.

1 Introduction

Recently, neural machine translation (NMT) (Wu
et al., 2016; Gehring et al., 2017; Vaswani et al.,
2017; Chen et al., 2018) has achieved significant
progress. Some advanced models (Chatterjee et al.,
2016; Niehues et al., 2016; Junczys-Dowmunt
and Grundkiewicz, 2017; Geng et al., 2018; Zhou
et al., 2019a) predict the ultimate translation by
multi-pass generation conditioned on the previous
text such as CMLMs (Ghazvininejad et al., 2019),
ABD-NMT (Zhang et al., 2018), SynST (Akoury
et al., 2019), and Deliberation Network (Xia et al.,
2017).

Inspired by these works and the successful ap-
plication of templates for other intriguing tasks, in-
cluding semantic parsing (Dong and Lapata, 2018),
summarization (Cao et al., 2018; Wang et al.,
2019a), question answering (Duan et al., 2017;
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I       like   playing    basketball

我 喜欢 打 篮球

Source

S like    VP

Template

Target

Figure 1: An example of template guided translation
results. S denotes subject and VP denotes verb phrase.

Pandey et al., 2018), and other text generation tasks
(Wiseman et al., 2018; Guu et al., 2018), we assume
the candidate templates of the target sentences can
guide the sentence translation process. We denote
these templates extracted from the constituency-
based parse tree as soft templates, which consist
of tags and target words. The templates are soft
because no explicit paradigms are inaugurated to
build new translation from them, and the target
tokens could be modified.

In order to effectively use the templates, we in-
troduce soft template-based neural machine trans-
lation (ST-NMT), which can use source text and
soft templates to predict the final translation. Our
approach can be split into two phases. In the first
phase, a standard Transformer model is trained
to predict soft target templates by using source
text and templates extracted from the constituency-
based parse tree. Secondly, we use two encoders,
including a soft target template encoder and a
source language encoder to encode source text and
templates and generate the final translation. As
shown in Figure 1, given the source text “我喜欢
打篮球” and the target template “S like to VP”, the
final translation “I like to play basketball” is gener-
ated by two encoders. In this work, the templates
play a part in guiding, and some target tokens in
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Figure 2: Overview of our ST-NMT. Given the source text and the soft target template predicted by the PθX→Y
,

the source language Transformer encoder and target template Transformer encoder maps two sequences X =
(x1, x2, x3, x4, x5) and T = (t1, y

′
2, t3, t4, t5) into hidden states ZX and ZT . xi denotes the source word, ti

denotes the template tag and yi denotes the target word. y′i also denotes the target word but it can be modified to
the other target words. The ultimate translation Y is generated by a Transformer decoder which incorporates the
context ZX and ZY in the second phase.

the template could also be modified.
In order to prove the effectiveness of our ap-

proach, we conduct main experiments on the pop-
ular benchmarks, including IWSLT14 German-
English translation task, WMT14 English-German
translation task, LDC Chinese-English translation
task, and ASPEC Japanese-Chinese translation task.
Experiments show that our approach achieves sig-
nificant improvement compared to the baselines,
which demonstrates the soft target templates can
provide a positive influence for guiding translation
procedure effectively. Our approach can be used
for diverse scale data sets, different styles, and mul-
tiple language pairs.

2 Our Approach

Our model first reads the source language se-
quence X = (x1, x2, x3, . . . , xn) in the conven-
tional way by a source language Transformer en-
coder and generates the template sequence T =
(t1, t2, t3, . . . , tm) by a template Transformer de-
coder. As shown in Figure 2, our model uses a
source language Transformer encoder and a tem-
plate Transformer encoder, which encodes the
source language sequence X and the template se-
quence T separately. We deploy the target lan-
guage decoder to generate the final translation. In
this section, we present the details of the proposed
template-based approach. Our method mainly in-

cludes two phases: (1) The training data is con-
structed by the constituency-based parse tree. Then,
we adopt a standard Transformer to convert the
source text to the soft target template for the next
generation. (2) Based on the source text and the
predicted soft target template, we utilize two en-
coders to encode two sequences into hidden states
separately and a target language decoder to gener-
ate the ultimate translation.

2.1 Soft Template Prediction

In this procedure, we model the PθX→T
(T |X) to

predict soft target templates on top of the con-
structed training data DX,T . To construct DX,T ,
we use a constituency-based parser to parse the
target sequence and get a tree structure. Then, we
prune nodes which are deeper than the specific
depth and recover the left leaf nodes to the ordered
template sequence. Through these operations, we
gain the parallel training dataDX,T and train a stan-
dard Transformer model PθX→T

(T |X) to predict
the soft target template.

The constituency-based parse tree could reveal
the structure information of the whole sentence
which utilizes the constituency grammar to dis-
tinguish terminal and non-terminal nodes. More
specifically, the interior nodes are labeled by non-
terminal categories which belong to the set of non-
terminal tokens S, while the leaf nodes are labeled
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Pruned

Figure 3: The constituency-based parse tree of the ex-
ample sentence. Given the target sentence and definite
depth of the tree, we gain the sub-tree by pruning the
nodes deeper than 4 in this case. Then, the sub-tree can
be converted to the soft target template “There are NP
VP” from left to right.

by terminal categories V . S = {S, VP, NP, . . . ,
ASBR} and V is the vocabulary set of the target
language. For example, the sentence “There are
some people running” could be expressed as Fig-
ure 3. In this case, the non-terminal tokens con-
sist of S0 = {S, NP, VP, EX, VBP, NP, DT, NNS,
VBG} and the terminal tokens are composed of V0
= {There, are some, people, running}. Our tem-
plate T = {t1, t2, t3, t4} is the ordered sequence
which is composed of non-terminal tokens and ter-
minal tokens. In this case, t1=There, t2=are, t3=VP
and t4=NP. Our template extraction aims to extract
the sub-tree of the specific depth and use these non-
terminal and terminal tokens locating at the leaf
node of sub-tree.

In order to predict the soft target templates, we
train a standard Transformer model given the train-
ing data of the source text and extracted templates.
The Transformer model reads the source text and
predicts the soft target templates using beam search.
Then, we select the top-K results of the beam search
as templates.

The depth of the tree is a trade-off. In Figure 3,
One special case is that when the depth equals 1,
the template only has one symbol “S”. The tem-
plate “S” cannot provide any useful information.
Another special case is that when depth is greater

than 6, the template “There are some people run-
ning” only has terminal tokens. The template only
contains target words, which cannot provide any
additional information. When the depth equals 4,
the template is “There are NP VP”. The template
contains sentence syntactic and structural informa-
tion, which is suitable for our method.

With the Transformer model PθX→T
(T |X), we

need to construct the pseudo training data DX,T,Y

instead of directly using extracted templates by
soft template prediction. Given the source text
X , we use PθX→T

(T |X) to predict the top-1
soft target template T with beam search. There-
fore, we get the triple training data DX,T,Y =
{X(i), T (i), Y (i)}Ni=1 which is prepared for the next
phase.

2.2 Machine Translation via Soft Templates

The triple training data DX,T,Y is used to model
the probability P(X,T )→Y from the two sequences
to the ultimate translation. Our approach could
generate the target sentence Y , given the source
sequence X and template T .

Formulation In formula, we could model the
whole procedure on top of the PθX→T

(T |X) and
Pθ(X,T )→Y

(Y |X,T ).

P (Y |X) = PθX→T
(T |X)Pθ(X,T )→Y

(Y |X,T )
(1)

where θX→T and θ(X,T )→Y are the parameters for
the first and the second phase.

The source language Transformer encoder and
the soft template Transformer encoder maps the
input sequence X and the template T composed
of target language words and tags to the hidden
states. Then, a Transformer decoder interacting
with two encoders generates the final translation Y ,
described by the Equation 1.

Encoder In the second phase, our template
Transformer encoder and the source language
Transformer encoder are stacked by blocks which
contain self-attention layers with residual connec-
tions, layer normalization and fully connected feed-
forward network (FFN). Therefore, the hidden
states of the source language Transformer encoder
and the template Transformer encoder are calcu-
lated by:

hl = TransformerBlock(hl−1) (2)



5982

where hl = hXl for the source language Trans-
former encoder and hl = hTl for the template
Transformer encoder. N is the number of layers
and l ∈ [1, N ].

Decoder Based on the hidden states hXl and hTl ,
the target language Transformer decoder use the
encoder-decoder multi-head attention to jointly use
the source language and template information to
generate the ultimate translation Y . Besides, the
target sequence decoder uses multi-head attention
to obtain the representations of target language de-
coder with the parameters (WQ

X ,W
K
X ,W

V
X ) and

(WQ
T ,W

K
T ,W

V
T ) for different encoders.

In each attention head, the input sequence X =
(x1, . . . , xm) and the template T = (t1, . . . , tn)
can be mapped into ZX = (zX1 , z

X
2 , . . . , z

X
m) and

ZT = (zT1 , z
T
2 , . . . , z

T
n ) using the source language

Transformer encoder and the template Transformer
encoder.

On top of the ZX and ZT , the decoder separately
calculate the multi-head attention with source sen-
tence context X = (x1, . . . , xm) and target tem-
plate sentence T = (t1, . . . , tn), then our model
obtain two hidden states ZX,Y and ZT,Y by at-
tention with source context and template context.
Here, We incorporate the ZX,Y containing source
language information and ZX,Y including template
information in a reasonable way:

Z = βZX,Y + (1− β)ZT,Y (3)

where β is the parameter to control the degree of
incorporation between source text and template.

In order to effectively incorporate source and
template information, we calculate the parameter
β as below:

β = σ(WYZ
X,Y + UTZ

X,T ) (4)

where ZY is the decoder hidden state and WY

and UT are parameter matrices. σ is the sigmoid
activation function.

2.3 Training Strategy
Similar to the conventional NMT, in order to make
the model predict the target sequence, we use max-
imum likelihood estimation (MLE) loss function
to update the model parameter by maximizing the
log likelihood of translation over training set D.
When we train the PθX→Y

without the template
Transformer encoder, we only need to optimize the
following loss function:

LθX→Y
(D) =

∑
X,Y ∈D

logPθX→Y
(Y |X) (5)

where θX→Y are the parameters of the source lan-
guage Transformer encoder and the target language
Transformer decoder.

When we train the Pθ(X,T )→Y
with the template

Transformer encoder, the loss function could be
calculated by:

Lθ(X,T )→Y
(D) =

∑
X,Y ∈D

logPθ(X,T )→Y
(Y |X,T )

(6)

where θ(X,T )→Y are the parameters of the source
language Transformer encoder, template language
Transformer encoder and target language Trans-
former decoder.

To balance the two objectives, our model is
trained on LθX→Y

(D) objective for the α% iter-
ations, and trained on Lθ(X,T )→Y

(D) objective for
the (1−α)% interations. Therefore, this procedure
is equivalent to the following formula:

Lθ(D) = αLθX→Y
(D) + (1− α)Lθ(X,T )→Y

(D)

(7)

where α is a scaling factor accounting for the
difference in magnitude between LθX→Y

(D) and
Lθ(X,T )→Y

(D).
In practice, we find optimizing these two ob-

jectives can make training procedure easier and
get a higher BLEU score since there exist a few
low-quality templates to influence the translation
quality. Through optimizing two objectives simul-
taneously, we can reduce the effect of some low-
quality templates and improve the stability of our
model.

3 Experiments

We conducted experiments on four benchmarks,
including LDC Chinese-English, WMT14 English-
German, IWSLT14 German-English, and ASPEC
Japanese-Chinese translation tasks. By conducting
experiments on these four benchmarks, these set-
tings prove that our approach is suitable for diverse
situations: (1) These four benchmarks provide a
wide coverage of both scale and genres. They vary
from small scale to large scale (2) We use the dif-
ferent domains, which include news, science, and
talk domain. (3) We also conduct the experiments
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on different language pairs, including the German-
English translation task, the English-German trans-
lation task, the Chinese-English translation task,
and the Japanese-Chinese translation task.

3.1 Datasets

In order to verify the effectiveness of our method,
we conduct experiments on four benchmarks.
WMT14 and LDC datasets are from the news do-
main. IWSLT14 dataset is from TED talk. ASPEC
dataset is from a scientific paper excerpt corpus.

LDC Chinese-English We use a subset from
LDC corpus1 which has nearly 1.4M sentences
originally. The training set is selected from the
LDC corpus that consists of 1.2M sentence pairs
after dropping the low-quality sentence pairs of
which the length is more than 2. We used the NIST
2006 dataset as the validation set for evaluating per-
formance in the training procedure, and NIST 2003,
2005, 2008 and 2012 as test sets, which all have 4
English references for each Chinese sentence.

IWSLT14 German-English This dataset con-
tains 16K training sequence pairs. We randomly
sample 5% of the training data as valid test. Be-
sides, we merge the multiple testsets dev2010,
dev2012, tst2010, tst2011, tst2012 for testing.

WMT14 English-German The training data
consists of 4.5M sentence pairs. The validation
set is devtest2014, and the test set is newstest2014.

ASPEC Japanese-Chinese We use 0.67M sen-
tence pairs from ASPEC Japanese-Chinese corpus
(Nakazawa et al., 2016) 2. We use the devtest as the
development data, which contains 2090 sentences,
and the test data contains 2107 sentences with a
single reference per source sentence.

3.2 Preprocessing and Training Details

LDC Chinese-English The base Transformer
model is used for this task, which includes 6 layers,
each layer of which has the hidden dimensions of
512, feedforward dimensions of 2048 , and 8 atten-
tion heads. We use Moses (Koehn et al., 2007) to
tokenize English sentences and our in-house tool
to tokenize Chinese sentences. We use Byte Pair
Encoding (BPE) (Sennrich et al., 2016) to encode

1LDC2002E17, LDC2002E18, LDC2003E07,
LDC2003E14, LDC2005E83, LDC2005T06, LDC2005T10,
LDC2006E17, LDC2006E26, LDC2006E34, LDC2006E85,
LDC2006E92, LDC2006T06, LDC2004T08, LDC2005T10

2http://orchid.kuee.kyoto-u.ac.jp/ASPEC/

sentences using a shared vocabulary of 40K sym-
bols.

IWSLT14 German-English We adopt the small
setup of the Transformer model. The model has 6
layers with the embedding size of 512, a feedfor-
ward size of 1024, and 4 attention heads. In order
to prevent overfitting, we use a dropout of 0.3, a
l2 weight decay of 10−4, and a label smoothing of
0.1. We use BPE to encode sentences with a shared
vocabulary of 10K symbols.

WMT14 English-German We use the big set-
ting of Transformer (Vaswani et al., 2017), in which
both the encoder and the decoder have 6 layers,
with the embedding size of 1024, feedforward size
of 4096, and 16 attention heads. The dropout rate
is fixed as 0.3. We adopt Adam (Kingma and Ba,
2015) optimizer with a learning rate 0.1 of the simi-
lar learning rate schedule as Transformer (Vaswani
et al., 2017). We set the batch size as 6000 and the
update frequency as 16 on 8 GPUs for updating
parameters (Ott et al., 2018) to imitate 128 GPUs.
The datasets are encoded by BPE with a shared
vocabulary (Sennrich et al., 2016) of 40K symbols.

ASPEC Japanese-Chinese We use the base set-
ting of Transformer the same to the Chinese-
English translation task. Following the similar
learning rate schedule (Vaswani et al., 2017), we
set the learning rate as 0.1. Chinese and Japanese
sentences are tokenized with our in-house tools and
encoded by BPE with a shared vocabulary of 10K
symbols.

3.3 Evaluation

We evaluate the performance of the translation re-
sults. The evaluation metric is BLEU (Papineni
et al., 2002). For the Chinese-English and German-
English translation tasks, we use case-insensitive
tokenized BLEU scores. For the English-German
translation task, we use case-sensitive tokenized
BLEU scores for evaluation. All the experiments
last for 150 epochs and use Stanford parser to gen-
erate templates (Manning et al., 2014).

For all translation tasks, we use the checkpoint,
which has the best valid performance on the valid
set. For different test sets, we adapt the beam size
and the length penalty to get better performance.
In order to avoid the difference of the tokenizer
for Chinese translation result evaluation, we adopt
the character-level BLEU for testing. Checkpoint
averaging is not used, except notification.
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Zh→ En MT06 MT03 MT05 MT08 MT12 Avg.

ConvS2S (Gehring et al., 2017) 39.98 42.25 41.22 33.43 32.21 37.28
GNMT (Wu et al., 2016) 40.53 42.88 42.73 33.97 32.55 38.03

Transformer (our implementation) 43.60 45.80 44.52 36.62 34.60 40.39
ST-NMT (our proposed) 44.69 46.56 46.04 37.53 35.99 41.53

Table 1: Evaluation results on Zh → En translation task with BLEU% metric. The “Avg.” column means the
averaged result of all NIST test sets except NIST2006. The result of our model is statistically significant compared
to the other baselines (p < 0.01).

3.4 Baselines

We compare our approach with two types of base-
lines including one-pass baselines and multi-pass
baselines.

One-pass Baselines: ConvS2S (Gehring et al.,
2017) is a strong CNN-based baseline. We re-
port the results referring to the paper of convo-
lutional sequence to sequence model (ConvS2S).
RNMT+ (Chen et al., 2018) is a state-of-the-art
RNN-based NMT model. GNMT (Wu et al., 2016)
is the typical encoder-decoder framework. We use
the similar setting3 for all experiments. Trans-
former (Vaswani et al., 2017) is a strong baseline
which has the state-of-the-art performance. We
reimplement this baseline4. LightConv and Dy-
namicConv (Wu et al., 2019) are simpler but effec-
tive baselines. We directly report the results in the
paper.

Multi-pass Baselines: Deliberation network
(Xia et al., 2017) and SoftPrototype (Wang et al.,
2019b) generates and polishes the raw text by a
two-pass manner. SB-NMT (Zhou et al., 2019a) is
a synchronous bidirectional neural machine transla-
tion which predicts its outputs using two direction
simultaneously. ABD-NMT (Zhang et al., 2018)
is an encoder-decoder NMT framework with the
forward and backward decoder. By considering
the agreement of both directions left-to-right (L2R)
and right-to-left (R2L), Rerank-NMT (Liu et al.,
2016) rescores all candidates. SBSG (Zhou et al.,
2019b) is a synchronous bidirectional sequence
generation model which predicts its translation
from both sides to the middle simultaneously. In-
sertion Transformer (Stern et al., 2019) is a non-
monotonic method which predicts the translation

3https://github.com/NVIDIA/DeepLearningExamples/tree/
master/PyTorch/Translation/GNMT

4https://github.com/pytorch/fairseq

De→ En BLEU

GNMT (Wu et al., 2016) 31.44
RNMT+ (Chen et al., 2018) 34.51
ConvS2S (Gehring et al., 2017) 30.41
LightConv (Wu et al., 2019) 34.80
DynamicConv (Wu et al., 2019) 35.20
Rerank-NMT (Liu et al., 2016) 34.82

Transformer (our implementation) 34.43
ST-NMT (our proposed) 35.24

Table 2: BLEU-4 scores (%) on IWSLT14 De→En
task. The result of our model is statistically significant
compared to the other baselines (p < 0.05).

by inserting method.

3.5 Results

For the IWSLT14 German-English machine trans-
lation task, we present the results of the ST-NMT
and other strong baselines in Table 2. We compare
our method with other various methods, includ-
ing GNMT, RNMT+, convS2S, LightConv, Dy-
namicConv, and the Transformer model with the
small setting. The Rerank-NMT model gets 34.82
BLEU by using the two-pass results, including left-
to-right (L2R) and right-to-left (R2L), and selects
the best candidates. As shown in Table 2, our
model also significantly outperforms others and
gains an improvement of 0.81 BLEU points than
a strong Transformer baseline model. Moreover,
our method outperforms the GNMT by 3.80 BLEU
points, ConvS2S by 4.83 BLEU, LightConv by
0.44 BLEU, Dynamic by 0.04 BLEU and Rerank-
NMT by 0.42 BLEU.

We secondly evaluate our method on the LDC
Chinese-English translation task. The evaluation
results on all NIST test sets against baselines are
listed in Table 1. Our ST-NMT beats the other
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En→ De BLEU

GNMT (Wu et al., 2016) 24.61
ConvS2S (Gehring et al., 2017) 25.16
Transformer (Vaswani et al., 2017) 28.40
RNMT+ (Chen et al., 2018) 28.49
Rerank-NMT (Liu et al., 2016) 27.81
ABD-NMT (Liu et al., 2016) 28.22
Deliberation Network (Xia et al., 2017) 29.11
SoftPrototype (Wang et al., 2019b) 29.46
SB-NMT (Zhou et al., 2019a) 29.21
SBSG (Zhou et al., 2019b) 27.45
Insertion Transformer (Stern et al., 2019) 27.41

Transformer (our implementation) 29.25
ST-NMT (our proposed) 29.68

Table 3: BLEU-4 scores (%) on WMT14 En→De task.
The result of our model is statistically significant com-
pared to the other baselines (p < 0.05).

Ja→ Zh BLEU

GNMT (Wu et al., 2016) 49.12
ConvS2S (Gehring et al., 2017) 50.32

Transformer (our implementation) 52.02
ST-NMT (our proposed) 52.84

Table 4: Character-level BLEU-4 scores (%) on AS-
PEC Ja→Zh task. The result of our model is sta-
tistically significant compared to the other baselines
(p < 0.01).

baselines and outperforms the Transformer base-
line by 1.14 BLEU point on average, which shows
that the template could effectively improve the per-
formance. More specifically, our model outper-
forms the Transformer model by 0.76 BLEU on
NIST2003, 1.52 BLEU on NIST 2005, 0.91 BLEU
on NIST 2008, and 1.39 BLEU on NIST 2012.

We further demonstrate the effectiveness of our
model on WMT14 English-German translation
tasks, and we also compare our model with other
competitive models, including ABD-NMT (Zhang
et al., 2018), Deliberation Network (Xia et al.,
2017), SoftPrototype (Wang et al., 2019b), SB-
NMT (Zhou et al., 2019a) and SBSG (Zhou et al.,
2019b). As shown in Table 3, our model also sig-
nificantly outperforms others and gets an improve-
ment of 0.43 BLEU points than a strong Trans-
former model.

To investigate the effect of our approach on
the different language pairs, we also evaluate

1 2 3 4 5 6 7 8
The number of templates

29.2

29.3

29.4

29.5

29.6

29.7

BL
EU

29.68

29.54

29.44
29.48

29.62

29.55

29.34

29.22

ST-NMT

Figure 4: The effect of the multiple templates. We feed
the the top-K results of the beam search as multiple tem-
plates and source sentence to generate the target trans-
lation.

our model on the Japanese-Chinese translation
task. According to Table 4, ST-NMT outperforms
GNMT by 3.72 BLEU points, ConvS2S by 2.52
BLEU points, and the Transformer model by 0.82
BLEU points, which demonstrates that the soft tem-
plate extracted by constituency-based parse tree can
also bring strong positive effects.

3.6 Multiple Templates

Because of the diversity of the templates, we in-
vestigate the performance with the different num-
bers of the templates. On top of the original par-
allel training data D = {(x(i), y(i))}Ni=1, we con-
struct the training data from the source text to the
soft target template DX→T = {(x(i), t(i))}Ni=1,
by the model PθX→T

. Through this construc-
tion procedure, we could use the top-K results of
the beam search as multiple templates by model
PθX→T

. We could expand the training data of the
source text to the target template as DX→T =

{(x(1), t(1)top1), . . . , (x
(1), t

(1)
topK

), . . . , (x(N), t
(N)
top1

),

. . . , (x(N), t
(N)
topK

)}. As shown in Figure 4, our
model gains the best performance only using the
single template. When the number of templates
is 8, our model gains the worst BLEU score of
29.22. We can summarize that our model can be
more robust but maybe get worse performance with
the number of templates rising. Besides, in order
to further improve the stability of our model, we
expand the dataset by selecting random templates
for the source sentence. The different templates
confuse our model, although it can make our model
more robust.
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Figure 5: We use two objective to update our model
parameters. One objective only use source sentence
and another utilizes source and soft template sentences
together to generate the final translation. The hyper-
parameter α is used to balance the two objectives,

3.7 Balance of Two Objectives
To further control how much our model lever-
ages templates for translation, we tune the hyper-
parameter α. With the value rising, the con-
tribution of template information gradually de-
creases. We study the influence of the ra-
tio α. To investigate the effect of this hyper-
parameter, we set the discrete value α =
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%, 100%}. According to Figure 5, when the
α switches from 0.4 to 0.9, our model can get
the better performance which is greater than or
equal to 29.3 BLEU. The results show that we can
set the hyper-parameter α in a reasonable inter-
val (0.4 ≤ α ≤ 0.9) to keep the balance between
source text and template.

3.8 Depth of Parsing Tree
Considering that the template derived from the spe-
cific depth can lead to the divergent performance,
our model is examined with the different depth.
The effect of the template extraction which is de-
scribed as Section 3 is decided by the sub-tree
which is controlled by the depth of sub-tree. For
the same constituency-based parse tree, the differ-
ent sub-tree can be obtained based on the different
chosen depth d. When we get the sub-tree, the
template could be derived from it. The depth of
the constituency-based parse tree is decided by a
simple but effective strategy as formula:

d = min(max(L× λ, γ1), γ2) (8)

where L is the length of the input sentence, γ1
is the lower bound, γ2 is the upper bound depth

λ MT03 MT05 MT08 MT12

0.10 45.92 45.01 36.55 35.34
0.15 46.56 46.04 37.53 35.99
0.20 46.02 45.20 37.08 35.82
0.25 46.27 44.83 36.88 35.64
0.30 46.08 45.02 36.72 35.54
0.35 46.22 44.92 36.84 35.51
0.40 46.32 45.40 36.94 35.61

Table 5: The results of the different depth on
NIST2003, NIST2005, NIST2008 and NIST2012.

λ MT03 MT05 MT08 MT12

0.15 79.4 81.6 78.6 77.6

Table 6: The ratio(%) of overlapping words between
the predicted soft target template and the translation on
NIST2003, NIST2005, NIST2008 and NIST2012.

of the sub-tree and λ is the ratio of the length of
source sentence. When the λ approximates 1.0, the
template contains more target tokens and less tags.
In addition, we tune the depth on the LDC training
data and list the results. According to the Table
5, the soft templates of the specific depth provide
helpful information to the translation procedure
when the λ = 0.15 in the LDC dataset.

3.9 Ratio of Overlapping Words
To measure contribution of the predicted soft target
template for final translation, we calculate the over-
lapping words between the template and the trans-
lation. Table 6 gives the specific overlapping words
ratio on the different test sets including NIST2003,
NIST2005, NIST2008 and NIST2012. The overlap-
ping ratio is calculated by the following formula:

ratio =

∑
w∈T min (County(w), Countt(w))∑

w∈T Countt(w)

(9)

where County(·) and Countt(·) denote the num-
ber of w in the target translation Y and the tem-
plate T , and w is the words in the target language.
The overlapping ratio represents the correlation
between the predicted template T and the target
translation Y . According to Table 6, the correla-
tion between the template T and the translation Y
is highly relevant which demonstrates the contribu-
tion of our template to the final translation.
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Source 另一方面 , 如果我们反应过度 , 将会被他们欺骗 .

Reference on the other hand , if we overreact , we will be deceived by their trick .

Template on the other hand , if NP VP , we will VP .

Ours on the other hand , if we react too much , we will be hit by them .

Table 7: A Chinese-English translation example of our proposed method. VP and NP represent non-terminal nodes
in the constituency-based parse tree.

3.10 Example Study

To further illustrate which aspects of NMT are im-
proved by the target soft template, we provide a
Chinese-English translation example shown in 7.
Templates provide the structural and grammatical
information of the target sentence. For instance,
Chinese source sentence “另一方面 , 如果我们
反应 过度 , 将 会 被 他们 欺骗 ”, our model
first predicts the target template “on the other hand
, if NP VP , we will VP ”, and then generate the
final translation “on the other hand , if we react
too much, we will be hit by them”. Our target
template provides the sentence pattern “If sb. do
sth, sb. will be done”. Our method introduces
the constituency-based parse tree and utilizes the
constituency grammar to distinguish terminal and
non-terminal nodes. Therefore, our model can auto-
matically learn sentence patterns, including gram-
matical and structural information.

4 Related Work

Many types of encoder-decoder architecture (Bah-
danau et al., 2015; Wu et al., 2016; Gehring et al.,
2017; Vaswani et al., 2017; Chen et al., 2018) have
been proposed in the past few years. Furthermore,
Transformer enhances the capability of NMT in
capturing long-distance dependencies based on
these backbone models, including CNN-based,
RNN-based, and Transformer based architecture.

To improve the quality of the translation, many
authors have endeavored to adopt multi-pass gen-
eration decoding method, their models first predict
the rough translation and then generate the final
translation based on the previous draft (Niehues
et al., 2016; Chatterjee et al., 2016; Junczys-
Dowmunt and Grundkiewicz, 2017; Xia et al.,
2017; Geng et al., 2018; Wang et al., 2019b).

Besides, some works (Liu et al., 2016; Zhang
et al., 2018; Zhou et al., 2019b,a) use the right-to-
left (R2L) and left-to-right (L2R) to improve the
quality of machine translation. Non-Autoregressive

decoding (Ghazvininejad et al., 2019) first predicts
the target tokens and masked tokens, which will be
filled in the next iterations. Then, the model pre-
dicts the unmasked tokens on top of the source text
and a mixed translation consisting of the masked
and unmasked tokens. Semi-autoregressive also
(Akoury et al., 2019) predicts chunked fragments
or the unmasked tokens based on the tree structure
before the final translation. In addition, there are
many existing works (Eriguchi et al., 2016; Aha-
roni and Goldberg, 2017; Wu et al., 2017; Wang
et al., 2018; Dong and Lapata, 2018; Wang et al.,
2018; Gu et al., 2018) which incorporate syntax
information or the tree structure into NMT to im-
prove the quality of translation results.

5 Conclusion

In this work, we propose a novel approach that
utilizes source text and additional soft templates.
More specifically, our approach can extract the tem-
plates from the sub-tree, which derives from the
specific depth of the constituency-based parse tree.
Then, we use a Transformer model to predict the
soft target templates conditioned on the source text.
On top of soft templates and source text, we incor-
porate the template information to guide the trans-
lation procedure. We compare our soft-template
neural machine translation (ST-NMT) with other
baselines on four benchmarks and multiple lan-
guage pairs. Experimental results show that our
ST-NMT significantly improves performance on
these datasets.
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