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Abstract

Event Detection (ED) is a fundamental task
in automatically structuring texts. Due to the
small scale of training data, previous meth-
ods perform poorly on unseen/sparsely la-
beled trigger words and are prone to overfit-
ting densely labeled trigger words. To ad-
dress the issue, we propose a novel Enrich-
ment Knowledge Distillation (EKD) model to
leverage external open-domain trigger knowl-
edge to reduce the in-built biases to frequent
trigger words in annotations. Experiments
on benchmark ACE2005 show that our model
outperforms nine strong baselines, is espe-
cially effective for unseen/sparsely labeled
trigger words. The source code is released on
https://github.com/shuaiwa16/ekd.git.

1 Introduction

Event Detection (ED) aims at detecting trigger
words in sentences and classifying them into pre-
defined event types, which shall benefit numer-
ous applications, such as summarization (Li et al.,
2019) and reading comprehension (Huang et al.,
2019). For instance, in S1 of Figure 1, ED aims
to identify the word fire as the event trigger and
classify its event type as Attack. Mainstream re-
searches (Chen et al., 2015; Liu et al., 2017, 2018b;
Liao and Grishman, 2010b; Zhao et al., 2018; Liu
et al., 2018a) focus on the second step event type
disambiguation via lexical and contextual features.
However, it is also crucial to identify trigger words
correctly as the preliminary step.

Trigger word identification is a non-trivial task,
which suffers from the long tail issue. Take the
benchmark ACE2005 as an example: trigger words
with frequency less than 5 account for 78.2% of the
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Densely 

Labeled Triggers

Unseen/Sparsely 
Labeled Triggers

S1: Now we 're hearing the boom of Iraqi guns as 
they fireAttack towards our positions .

S2: Troops were trying to break up stone-throwing 
protests , but did not use live fireAttack.

S4: The intifadaAttack exploded in September 2000

S3: A man was hackedAttack to death by the criminal

Trigger identified by Open-domain Trigger Knowledge

Figure 1: Examples of ED. fire is the densely labeled
trigger for Attack event in ACE2005. Hacked and in-
tifada are the unseen/sparsely labeled triggers in the
training corpus. The red ones illustrate the triggers
identified by open-domain trigger knowledge.

total. The long tail issue makes supervised methods
(Li et al., 2013; Yang et al., 2019) prone to overfit-
ting and perform poorly on unseen/sparsely labeled
triggers (Lu et al., 2019). Automatically generat-
ing more training instances seems to be a solution:
expanding more instances by bootstrapping (Fer-
guson et al., 2018; Zhang et al., 2019; Cao et al.,
2019) and expending more data from distantly su-
pervised methods (Chen et al., 2017; Wang et al.,
2019a). However, the performance of these meth-
ods on unseen/sparsely labeled trigger words is
still unsatisfied, as shown in Table 1. We argue
that these methods either lead to the homogeneity
of the generated corpus, or subject to the low cov-
erage of knowledge base. More importantly, the
expanded data itself is unevenly distributed, and
we cannot expect to alleviate the long tail problem
with built-in bias data.

In the paper, we empower the model with ex-
ternal knowledge called Open-Domain Trigger
Knowledge to provides extra semantic support
on unseen/sparsely labeled trigger words and im-
prove trigger identification. Open-Domain Trig-
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Table 1: F score on unseen/sparsely and densely la-
beled triggers. DMBERT (Chen et al., 2015) refers to
a supervised-only model with dynamic multi-pooling
to capture contextual features; BOOTSTRAP (He and
Sun, 2017) expands training data via bootstrapping.
DGBERT expands training data with Freebase (Chen
et al., 2017).

Method Unseen Sparse Dense
DMBERTsup−only 54.4 72.5 84.1

BOOTSTRAPsemi−sup 56.6 73.6 86.9
DGBERTdistant−sup 54.7 72.8 84.3

ger Knowledge is defined as a prior that specifies
which words can trigger events without subject to
pre-defined event types and the domain of texts.
As shown in S1 of Figure 1, open-domain trigger
knowledge can identify that hearing and fire as
event triggers, even if hearing does not fit into any
pre-defined event types in ACE2005. With open-
domain trigger knowledge, we are able to discover
unseen/sparsely triggers from the large-scale un-
labeled corpus, which will improve the recall in
trigger words identification. However, it is chal-
lenging to incorporate open-domain trigger knowl-
edge into ED: Triggers identified by open-domain
trigger knowledge do not always fit well with in-
domain labels, and thus can not be directly adopted
as the trigger identification result. For example in
S4 of Figure 1, open-domain trigger knowledge
argues that exploded is the trigger word, while un-
der the labeling rules of ACE2005, intifada is the
trigger word.

Specifically, we propose an Enrichment Knowl-
edge Distillation (EKD) model to efficiently distill
open-domain trigger knowledge from both labeled
and abundant unlabeled corpora. We first apply a
light-weight pipeline to equipment unlabeled sen-
tences with trigger knowledge from WordNet. The
method is not limited to specific domains, and thus
can guarantee the coverage of trigger words. Then,
given the knowledge enhanced data as well as ED
annotations, we train a teacher model for better per-
formance; meanwhile, a student model is trained to
mimic teacher’s outputs using data without knowl-
edge enhancement, which conforms to the distri-
bution during inference. We further promote the
generalization of the model by adding noise to the
inputs of the student model.

We evaluate our model on the ACE2005 ED
benchmark. Our method surpasses nine strong
baselines, and is especially effective for un-
seen/sparsely labeled triggers word. Experiments

also show that the proposed EKD architecture is
very flexible, and can be conveniently adapted to
distill other knowledge, such as entity, syntactic
and argument.

Our contributions can be summarized as:

• To the best of our knowledge, we are the first
to leverage the wealth of the open-domain
trigger knowledge to improve ED.

• We propose a novel teacher-student model
(EKD) that can learn from both labeled and
unlabeled data, so as to improve ED perfor-
mance by reducing the in-built biases in anno-
tations.

• Experiments on benchmark ACE2005 show
that our method surpasses nine strong base-
lines which are also enhanced with knowledge.
Detailed studies show that our method can be
conveniently adapted to distill other knowl-
edge, such as entities.

2 Related Work

2.1 Event Detection

Traditional feature-based methods exploit both lex-
ical and global features to detect events (Li et al.,
2013). As neural networks become popular in NLP
(Cao et al., 2018), data-driven methods use various
superior DMCNN, DLRNN and PLMEE model
(Duan et al., 2017; Nguyen and Grishman, 2018;
Yang et al., 2019) for end-to-end event detection.
Recently, weakly-supervised methods (Judea and
Strube, 2016; Huang et al., 2017; Zeng et al., 2018;
Yang et al., 2018) has been proposed to generate
more labeled data. (Gabbard et al., 2018) identi-
fies informative snippets of text as expending anno-
tated data via curated training. (Liao and Grishman,
2010a; Ferguson et al., 2018) rely on sophisticated
pre-defined rules to bootstrap from the paralleling
news streams. (Wang et al., 2019a) limits the data
range of adversarial learning to trigger words ap-
pearing in labeled data. Due to the long tail issue
of labeled data and the homogeneity of the gen-
erated data, previous methods perform badly on
unseen/sparsely labeled data and turn to overfitting
densely labeled data. With open-domain trigger
knowledge, our model is able to perceive the un-
seen/sparsely labeled trigger words from abundant
unlabeled data, and thus successfully improve the
recall of the trigger words.
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2.2 Knowledge Distillation

Knowledge Distillation, initially proposed by (Hin-
ton et al., 2015), has been widely adopted in NLP
to distill external knowledge into the model (Laine
and Aila, 2016; Saito et al., 2017; Ruder and Plank,
2018). The main idea is to adopt a student model
to learn from a robust pre-trained teacher model.
(Lee et al., 2018; Gong et al., 2018) reinforces
the connection between teacher and student model
by singular value decomposition and the laplacian
regularized least squares. (Tarvainen and Valpola,
2017; Huang et al., 2018) stabilize the teacher
model by a lazy-updated mechanism to enable stu-
dent model not susceptible to external disturbances.
(Liu et al., 2019) uses an adversarial imitation ap-
proach to enhance the learning procedure. Unlike
previous methods that relied on golden annotations,
our method is able to learn from pseudo labels and
effectively extract knowledge from both labeled
and unlabeled corpus.

3 Methodology

In the section, we introduce the proposed Enrich-
ment Knowledge Distillation (EKD) model, which
leverages open-domain trigger knowledge to im-
prove ED. In general, we have a teacher model
and a student model. The teacher is fully aware of
open-domain trigger knowledge, while the student
is not equipped with open-domain trigger knowl-
edge. We make the student model to imitate the
teacher’s prediction to distill the open-domain trig-
ger knowledge to our model. Figure 2 illustrates
the architecture of the proposed EKD model. Dur-
ing training, we first pre-train the teacher model
on labeled data, and then force the student model,
under the knowledge-absent situation, to generate
pseudo labels as good as the teacher model on both
labeled and unlabeled data. By increasing the cog-
nitive gap between teacher and student model, the
student model has to learn harder.

We first introduce how to collect the open-
domain trigger knowledge in Knowledge Collec-
tion. We then illustrate how to exploit the labeled
data to pre-train the teacher model in Feature Ex-
traction and Event Prediction. Finally, we elaborate
on how to force the student model to learn from the
teacher model in Knowledge Distillation.

3.1 Notation

Given the labeled corpus L = {(Si, Yi)}NL
i=1 and

abundant unlabeled corpus U = {(Sk)}NT
k=NL+1,

our goal is to jointly optimize two objections: 1)
maximize the prediction probability P (Yi|Si) on
labeled corpus L, 2) minimize the prediction prob-
ability discrepancy between the teacher P (Y

′
k |S

+
k )

and student model P (Y
′
k |S

−
k ) on both L and U ,

where NT stand for the total number of sentences
in both labeled and unlabeled data. S+ and S−

stand for the enhanced and weakened variant of
the raw sentence S, we will explain them in detail
in the Section 3.5. Y = {y1, y2, . . . , yn} stands
for the golden event type label, where each y ∈ Y
belongs to the 33 event types pre-defined in ACE
and a ”NEGATIVE” event type (Chen et al., 2015;
Nguyen et al., 2016; Feng et al., 2018). Y

′
is

the pseudo label proposed by pre-trained teacher
model.

3.2 Knowledge Collection

Open-domain trigger knowledge elaborates
whether a word triggers an event from the
perspective of word sense. Whether the trigger
is densely labeled or unseen/sparsely labeled,
open-domain trigger knowledge will identify them
without distinction. For instance in S3 in Figure 1,
although hacked is a rare word and has not been
labeled, judging from word sense, open-domain
trigger knowledge successfully identifies hacked
as a trigger word.

We adopt a light-weight pipeline method, called
Trigger From WordNet (TFW), to collect open-
domain trigger knowledge (Araki and Mitamura,
2018).

S+ = TFW (S) (1)

TFW uses WordNet as the intermediary. It has two
steps, 1) disambiguate word into WordNet sense,
2) determine whether a sense triggers an event. For
the first step, we adopt IMS (Zhong and Ng, 2010)
to disambiguate word into word sense in WordNet
(Miller et al., 1990). We obtain the input features
by POS tagger and dependency parser in Stanford
CoreNLP (Manning et al., 2014). For the second
step, we adopt the simple dictionary-lookup ap-
proach proposed in (Araki and Mitamura, 2018) to
determine whether a sense triggers an event. TFW
is not limited to particular domains, which is able
to provide unlimited candidate triggers. With the
support of the lexical database, TFW has high effi-
ciency and can be applied to large-scale knowledge
collection.

Finally, we obtain a total of 733,848 annotated
sentences from New York Times (Sandhaus, 2008)
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S5  Troops were trying to break up stone-throwing     
      protests, but not use live fire. Attack
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S6+ A man was hacked to death by the criminal
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Figure 2: The architecture of the proposed EKD model. Besides the supervised signals, EKD exploits abundant
unlabeled data by ensuring the prediction consistency of raw sentence and knowledge-attending sentence.

corpus in the first half of 2007. The total number
of triggers is 2.65 million, with an average of 3.6
triggers per sentence.

3.3 Feature Extraction
We adopt BERT to obtain the hidden representation
for both labeled and unlabeled sentences. BERT is
a pre-trained language representation model, and
BERT has achieved SOTA performance on a wide
range of tasks, such as question answering and
language inference. The powerful capability of
BERT has also been demonstrated in ED scenario
(Wang et al., 2019a).

Formally, given the raw sentence S and
knowledge-attending sentence S+, we feed them
into BERT respectively, and adopt the sequence
output of the last layer as the hidden representation
for each word in S and S+.

H = BERT (S)

H+ = BERT (S+)
(2)

3.4 Event Prediction
After obtaining the hidden representation of senten-
cen S, we adopt a full-connected layer to determine
the event type Y for each word in sentence S.

We use S(i) and Y(i) to denote the i-th training
sentence and its event type in labeled corpus L.
We first transform the hidden representation H ob-
tained from Section 3.3 to a result vector O, where
Oijc represents the probability that the j-th word
in Si belongs to the c-th event class. And then we
normalize O by the softmax function to obtain the
conditional probability.

p(Y(i)|S(i), θ) =
n∑

j=1

exp(Oijc)∑C
c=1 exp(Oijc)

/n (3)

Given the labeled corpus L = {Si, Yi}|NL
i=1, the

optimization object is defined as:

JL(θ) = −
NL∑
i=1

log p(Y(i)|S(i), θ) (4)

3.5 Knowledge Distillation
In this section, we distill open-domain trigger
knowledge into our model. The main idea is to
force the student model, with only raw texts as
the input, to generate as good pseudo labels as the
teacher model on both labeled and unlabeled data.

Formally, given golden event type Y , the objec-
tive is:

p(Y |S+θ) = p(Y |S−, θ) (5)

where p(Y |S+θ) and p(Y |S−, θ) are the predic-
tions from the teacher and student model respec-
tively.

We share the parameters of the teacher and stu-
dent model. The input of teacher model S+ is
aware of the open-domain trigger knowledge, and
the input of student model S− does not know. We
give the detailed construction process of S+ and
S− below.

Knowledge-attending Sentences (S+) We em-
bed the open-domain trigger knowledge into the
sentence by Marking Mechanism. Specifically,
we introduce two symbols, named B-TRI and E-
TRI to mark the beginning and ending bound-
ary of triggers identified by open-domain trig-
ger knowledge. Formally, given the raw sen-
tence S = {w1, w2, . . . , wi, . . . , wn} and trig-
ger wi identified by open-domain trigger knowl-
edge, the knowledge-attending sentence is S+ =
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{w1, w2, . . . ,B-TRI, wi,E-TRI, . . . , wn}. Marking
mechanism works well for our feature extractor
BERT (Soares et al., 2019), which is very flexi-
ble in embedding knowledge, and can be conve-
niently adapted to other types of knowledge with-
out heavily-engineered work.

Note that the newly added symbols are lack of
pre-trained embedding in BERT. Random initial-
ization undermines the semantic meaning of the
introduced symbols, where B-TRI indicates the be-
ginning of a trigger, and E-TRI means the ending.
We address the issue by fine-tuning BERT on the
annotation sentences in Section 3.2. Specifically,
we adopt Masked LM task (Devlin et al., 2018) to
exploit surrounding words to learn the semantic
representation of the introduced symbols (B-TRI
and E-TRI) based on the Harris distributional hy-
pothesis (Harris, 1954). The mask word rate is set
to 0.15 and the accuracy of masked words achieves
92.3% after fine-tune.

Knowledge-absent Sentences (S−) To make
the student model learn harder from the teacher
model, we further disturb the input of student
model by randomly masking out triggers identi-
fied by open-domain trigger knowledge. In this
way, the student model has to judge the event
type of trigger word solely based on the sur-
rounding context. Formally, given the raw sen-
tence S = {w1, w2, . . . , wi, . . . , wn} and trig-
ger wi identified by open-domain trigger knowl-
edge, the knowledge-absent sentence is S− =
{w1, w2, . . . ,[MASK], . . . , wn}. The mask words
are not randomly selected, but among triggers deter-
mined by open-domain trigger knowledge, avoid-
ing the model is optimized only for the non-trigger
negative class.

KL-divergence Loss We move the added symbols
to the end of the sentence to ensure strict align-
ment of words in S+ and S−, and then we mini-
mize the discrepancy between conditional probabil-
ity p(Y |S−, θ) and p(Y |S+θ) with KL-divergence
loss. Given the collection of labeled and unlabeled
corpus T = {(Sk)}NL+NU

k=1 , the KL-divergence
loss is:

JT (θ) = KL(p(Y |S+, θ)||p(Y |S−, θ))

=

NL+NU∑
k=1

p(Y(k)|S+
(k), θ)

p(Y(k)|S+
(k), θ)

p(Y(k)|S−
(k), θ)

(6)
KL divergence is asymmetric in the two distribu-

tions. We treat predictions from knowledge-absent

inputs as approximate distributions and predictions
from knowledge-attending inputs as approximated
distributions. If we reverse the direction of ap-
proximation, the experimental results decline sig-
nificantly. The reason may be that we should en-
sure the low-confidence predictions approximate
the high-confidence predictions.

3.6 Joint Training
The final optimization objection is the integration
of the supervised loss from labeled dataset and KL-
divergence loss from unlabeled dataset defined in
Equation 4 and 6.

J(θ) = JL(θ) + λ ∗ JT (θ) (7)

We stop the gradient descent of teacher model when
calculating JT to ensure that the learning is from
teacher to student.

Since unlabeled data is much larger than the la-
beled data, joint training leads the model quickly
overfitting the limited labeled data while still under-
fitting the unlabeled data. To handle the issue, we
adopt the Training Signal Annealing (TSA) tech-
nique proposed in (Xie et al., 2019) to linearly re-
lease the ‘training signals’ of the labeled examples
as training progresses.

4 Experiment

4.1 Experiment Setup

Datasets For the labeled corpus, we adopt dataset
ACE2005 to evaluate the overall performance.
ACE2005 contains 13,672 labeled sentences dis-
tributed in 599 articles. Besides the pre-defined
33 event types, we incorporate an extra ”Negative”
event type for non-trigger words. Following (Chen
et al., 2015), we split ACE2005 into 529/30/40 for
train/dev/test respectively.

Evaluation We report the Precision, Recall and
micro-averaged F1 scores in the form of percentage
over all 33 events. A trigger is considered correct
if both its type and offsets match the annotation.

Hyperparameters For feature extraction, we
adopt BERT as our backbone, which has 24 16-
head attention layers and 1024 hidden embedding
dimension. For the batch size, The batch size of
labeled data is 32, and we set the proportion of
labeled and unlabeled data to 1:6. For most of
our experiments, we set the learning rate 3e-5, the
maximum sequence length 128 and the λ in joint
training 1. Our model trains on one V100 for a
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half day. The best result appears around 12,500
epochs. Balancing the performance and training ef-
ficiency, we actually use 40,236 unlabeled data for
knowledge distillation unless otherwise stated. All
reported results are the average results of ten runs.
We use Adam as the gradient descent optimizer.

Baselines As our methods incorporate open-
domain trigger knowledge, for fair competition, we
compare our methods with two data-driven meth-
ods and five state-of-the-art knowledge-enhanced
methods, including: DMCNN proposes a dynamic
multi-pooling layer above CNN model to improve
event detection (Chen et al., 2015). DLRNN ex-
ploits document information via recurrent neural
networks (Duan et al., 2017). ANN-S2 exploits ar-
gument information to improve ED via supervised
attention mechanisms (Liu et al., 2017).GMLATT
adopts a gated cross-lingual attention to exploit
the complement information conveyed by multi-
lingual data (Liu et al., 2018a). GCN-ED ex-
ploits structure dependency tree information via
graph convolutions networks and entity mention-
guided pooling (Nguyen and Grishman, 2018).
Lu’s DISTILL proposes a -learning approach to
distill generalization knowledge to handle over-
fitting (Lu et al., 2019). TS-DISTILL exploits
the entity ground-truth and uses an adversarial im-
itation based knowledge distillation approach for
ED (Liu et al., 2019). AD-DMBERT adopts an
adversarial imitation model to expend more train-
ing data (Wang et al., 2019b). DRMM employs an
alternative dual attention mechanism to effectively
integrate image information into ED (Tong et al.,
2020). The last two baselines both use BERT as
feature extractor.

4.2 Overall Performance

Table 2: Overall Performance on ACE2005 dataset (%).
The results of baselines are adapted from their original
papers.

Method Precision Recall F1
DMCNN 75.6 63.6 69.1
DLRNN 77.2 64.9 70.5
ANN-S2 78.0 66.3 71.7
GMLATT 78.9 66.9 72.4
GCN-ED 77.9 68.8 73.1

Lu’s DISTILL 76.3 71.9 74.0
TS-DISTILL 76.8 72.9 74.8

AD-DMBERT 77.9 72.5 75.1
DRMM 77.9 74.8 76.3

EKD (Ours) 79.1 78.0 78.6

Table 2 presents the overall performance of the

proposed approach on ACE2005. As shown in
Table 2, EKD (our) outperforms various state-of-
the-art models, showing the superiority of open-
domain trigger knowledge and the effectiveness of
the proposed teacher-student model. BERT-based
models AD-DMBERT, DRMM and EKD (ours)
significantly outperform the CNN-based or LSTM-
based models, which is due to the ability to capture
contextual information as well as large scale pre-
training of BERT. Compared to these BERT-based
models, our methods consistently improves the F
score by 3.5% and 2.3%, which shows the superi-
ority of our method even if the encoder is powerful
enough.

Compared to data-driven methods DMCNN and
DLRNN, knowledge enhanced methods Lu’s DIS-
TILL, TS-DISTILL and EKD (ours) improve the
recall by a large margin. Due to the small scale
of ACE2005, it is quite tricky to disambiguate
triggers solely based on the surrounding context.
Enhanced by external knowledge, these methods
have a stand-by commonsense to depend on, which
prevents from overfitting densely labeled trigger
words and thus can discover more trigger words.
Among them, our model achieves the best perfor-
mance, which may be caused by two reasons: 1)
The superiority of open-domain trigger knowledge.
Compared to general linguistic knowledge used in
Lu’s DISTILL and entity type knowledge used in
TS-DISTILL, open-domain trigger knowledge is
more task-related, which directly provides trigger
candidates for trigger identification, and thus is
more informative. 2) The superiority of the pro-
posed teacher-student model. Our method is able
to learn open-domain trigger knowledge from un-
limited unlabeled data, while Lu’s DISTILL and
TS-DISTILL can only learn from labeled data.

It is worth noting that our model simultaneously
improves precision. Unseen/sparsely labeled trig-
ger words are usually rare words, which are typi-
cally monosemous and exhibiting a single clearly
defined meaning. These words are easier for the
model to distinguish, thereby resulting in the im-
provement of the overall precision.

To evaluate whether EKD has distilled knowl-
edge into model, we report the performance of
EKD in the test set with and without knowledge.
As illustrated in Table 3, whether the input data
masters the open-domain knowledge or not, the
performance makes no big difference (78.4% vs
78.6%), which shows EKD (our) already distills



5893

the knowledge into the model. During testing, our
model needs no more engineering work for knowl-
edge collection.

Table 3: Performance of test set with or without open-
domain trigger knowledge

Test Set P R F
without knowledge 78.8 78.1 78.4

with knowledge 79.1 78.0 78.6

4.3 Domain Adaption Scenario

We use ACE2005 to simulate a domain adaption
scenario. ACE2005 is a multi-domain dataset,
with six domains: broadcast conversation (bc),
broadcast news (bn), telephone conversation (cts),
newswire (nw), usenet (un) and webblogs (wl). Fol-
lowing the common practice (Plank and Moschitti,
2013; Nguyen and Grishman, 2014), we adopt the
union of bc and nw as source domains, and bc,
ct, wl as three target domains. The event types
and vocabulary distribution are quite different be-
tween the source and target domains (Plank and
Moschitti, 2013). For evaluation, we split source
domain data into train/test 4:1 and report the aver-
age results on ten runs as the final result. For base-
lines, MaxEnt and Joint (Li et al., 2013) are two
feature-enriched methods, exploiting both lexical
and global features to enhance the domain adaption
ability. Nguyen’s CNN (Nguyen and Grishman,
2015) integrates the feature and neural approaches
and proposes a joint CNN for domain adaption.
We also compare with supervised SOTA PLMEE
(Yang et al., 2019), which exploits the pre-trained
language model BERT for event extraction.

As illustrated in Table 4, our method achieves the
best adaptation performance on both bc and wl tar-
get domains and achieve comparable performance
on cts target domain. The superior of domain
adaption may come from the open-domain trigger
knowledge. The open-domain trigger knowledge
is not subject to specific domains, which will de-
tect all the event-oriented trigger words and cover
the event type from both the source and the target
domains. Armed with open-domain trigger knowl-
edge, our model reinforces associations between
source and target data, and thus has superior per-
formance in domain adaption.

4.4 Various Labeling Frequencies

In the section, we answer the question whether
our model can address the long tail problem. Ac-

cording to the frequency in the training set, we
divide trigger words into three categories: Un-
seen, Sparsely-Labeled and Densely-Labeled. The
frequency of Sparsely-Labeled is less than 5 and
the frequency of Densely-Labeled is more than 30.
The baselines are 1) supervised-only method DM-
BERT (Chen et al., 2015), 2) distant-supervised
method DGBERT (Chen et al., 2017) and 3) semi-
supervised method BOOTSTRAP (He and Sun,
2017). We replace the encoders in the three base-
lines to more powerful BERT to make the baseline
stronger.

As illustrated in Table 5, all the three base-
lines show a significant performance degrada-
tion in unseen/sparsely labeled scenarios due to
the limited training data. Our method surpasses
the baselines in all three settings. Especially,
our method gains more improvement on unseen
(+6.1%) and sparsely-labeled settings (+2.8%).
Open-domain trigger knowledge allows us to dis-
cover unseen/sparsely triggers from the large-scale
unlabeled corpus, which increases the frequency at
which the model sees unseen/sparsely triggers.

4.5 Knowledge-Agnostic

Then, to evaluate whether EKD (ours) can distill
other knowledge types, we conduct experiments
on the three most commonly used knowledge in
ED scenario: 1) Entity knowledge. Entity type
is an important feature for trigger disambiguation
in ED (Zhang et al., 2007). We compare with
(Liu et al., 2019), which distills ground-truth entity
type knowledge via an adversarial teacher-student
model. 2) Syntactic knowledge. Syntactic knowl-
edge is implied in the dependency parse tree. The
closer in tree, the more important of the word for
the trigger (McClosky et al., 2011). Our baseline
(Nguyen and Grishman, 2018) is the best syntactic
knowledge enhanced model, which exploits struc-
ture dependency tree information via graph convo-
lutions networks. 3) Argument knowledge. Event
arguments play an important role in ED. Our base-
line ANN-S2 (Liu et al., 2017) designs a supervised
attention to leverage the event argument knowl-
edge.

For the adaption of our model, we obtain en-
tity annotations by Stanford CoreNLP, syntactic
by NLP-Cube(Boro et al., 2018) and argument by
CAMR (Wang et al., 2015). The marking con-
tents are: 1) For entity, we tag three basic entity
types, People, Location and Organization. 2) For
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Table 4: Performance on domain adaption. We train our model on two source domains bn and nw, and test our
model on three target domains bc, cts and wl.

Methods In-Domain (bn+nw) bc cts wl
P R F P R F P R F P R F

MaxEnt 74.5 59.4 66.0 70.1 54.5 61.3 66.4 49.9 56.9 59.4 34.9 43.9
Joint 73.5 62.7 67.7 70.3 57.2 63.1 64.9 50.8 57.0 59.5 38.4 46.7

Nguyen’s CNN 69.2 67.0 68.0 70.2 65.2 67.6 68.3 58.2 62.8 54.8 42.0 47.5
PLMEE 77.1 65.7 70.1 72.9 67.1 69.9 70.8 64.0 67.2 62.6 51.9 56.7

EKD (ours) 77.8 76.1 76.9 80.8 65.1 72.1 71.7 61.3 66.1 69.0 49.9 57.9

Table 5: Performance of our method on various labeling frequencies trigger words.

Methods Unseen Sparsely Labeled Densely Labeled
P R F P R F P R F

DMBERTsupervised−only 66.7 45.9 54.4 74.4 70.7 72.5 84.8 83.5 84.1
DGBERTdistant−supervised 76.5 42.6 54.7 75.7 70.1 72.8 85.9 83.8 84.3

BOOTSTRAPsemi−supervised 73.7 45.9 56.6 76.0 71.3 73.6 90.6 83.5 86.9
EKD (ours) 79.0 52.0 62.7 80.8 72.4 76.4 92.5 82.2 87.1

syntactic, we take the first-order neighbor of trig-
ger word on dependency parse tree. We consider
neighbors in both directions. 3) For argument, we
focus on the words played as the ARG0-4 roles of
the trigger in AMR parser following (Huang et al.,
2017). As we do not know trigger words on un-
labeled data, we use pseudo labels generated by
pre-trained BERT instead. We encode the entity,
syntactic and argument knowledge into sentences
with the same Marking Mechanism in Section 3.2.
To prevent information leakage, we only use that
knowledge in the training procedure.

As illustrated in Table 7, Our three adaption mod-
els, EKD-Ent, EKD-Syn and EKD-Arg, consis-
tently outperform baselines on the F score, proving
that the effectiveness of EKD is independent to spe-
cific knowledge type. EKD increases the cognitive
gap between teacher model and student model to
maximize knowledge utilization, and the idea uni-
versally works for all types of knowledge distilla-
tion. If we compare the performances from the per-
spective of knowledge type, the results show that
open-domain trigger knowledge (EKD) is better
than the argument knowledge (EKD-Arg), and they
are both superior to the entity knowledge (EKD-
Ent) and syntactic knowledge (EKD-Syn). The
reason might be the more task-related of the knowl-
edge, the more informative of the knowledge. Since
open-domain trigger knowledge and event argu-
ment knowledge consider the important words di-
rectly from the event sides, they are more valuable
than the entity and syntactic knowledge in ED.

4.6 Case Study

We answer the question of how and when the
open-domain trigger knowledge enhances the un-
derstanding of event triggers. Table 6 gives exam-
ples about how open-domain trigger knowledge
affects predictions of ED. In S1, since trek is a rare
word that never shows up in the training procedure,
supervised-only method fails to recognize it. Open-
domain trigger knowledge provides the priory that
trek should be an event trigger. Coupled with pre-
trained information that trek is similar to densely-
labeled trigger words such as move, our model suc-
cessfully recalls it. In S3, be is a very ambiguous
word, and in most cases, be is not used as a trigger
word in the labeled data. Supervised-only method
is prone to overfitting the labeled data and fails
to recognize it. Open-domain trigger knowledge
owns word sense disambiguation ability, which
knows that be here belongs to the word sense ‘oc-
cupy a certain position’ instead of the common
word sense ‘have the quality of being’, and thus
can successfully identify be as the trigger for event
Start-Position.

5 Conclusion

We leverage the wealth of the open-domain trig-
ger knowledge to address the long-tail issue in
ACE2005. Specifically, we adopt a WordNet-based
pipeline for efficient knowledge collection, and
then we propose a teacher-student model, EKD, to
distill open-domain trigger knowledge from both
labeled and abundant unlabeled data. EKD forces
the student model to learn open-domain trigger
knowledge from teacher model by mimicking the
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Table 6: Error analysis: How and When does the open-domain trigger knowledge improve ED? GT refers to the
ground truth labels. On the unlabeled data, we use a majority vote of three humans as the ground truth.

Sentence GT Prediction
S S+

S1: Mr. Caste leaves at 5 A.M. for a train trek
to manhatten and does not return utill 6 P.M. Transport O Transport

S2: Militants in the region escalate their attacks in the
weeks leading up to the inauguration of Nigeria’s president. Start-Position O Start-Position

S3: Mr.Mason, who will be president of CBS radio, said that
it would play to radio’s strengths in delivering local news. Start-Position O Start-Position

Table 7: Knowledge-Agnostic.

Knowledge
Type Methods Metrics

P R F

Entity
TS-DISTILL 76.8 72.9 74.8
EKD-Ent 74.5 78.6 76.5
improvement -2.3 +4.7 +1.7

Syntactic
GCN-ED 77.9 68.8 73.1
EKD-Syn 76.5 76.3 76.4
improvement -1.4 +7.5 +3.3

Argument
ANN-S2 78.0 66.3 71.7
EKD-Arg 75.8 78.4 77.1
improvement -2.2 +23.1 +5.4

predicted results of the teacher model. Experi-
ments show that our method surpasses seven strong
knowledge-enhanced baselines, and is especially
efficient for unseen/sparsely triggers identification.

6 Acknowledgments

This work is supported by the National Key
Research and Development Program of China
(2018YFB1005100 and 2018YFB1005101), NSFC
Key Projects (U1736204, 61533018). It also got
partial support from National Engineering Labora-
tory for Cyberlearning and Intelligent Technology,
and Beijing Key Lab of Networked Multimedia.
This research is supported by the National Research
Foundation, Singapore under its International Re-
search Centres in Singapore Funding Initiative.

References
Jun Araki and Teruko Mitamura. 2018. Open-domain

event detection using distant supervision. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 878–891.

Tiberiu Boro, Stefan Daniel Dumitrescu, and Ruxan-
dra Burtica. 2018. NLP-cube: End-to-end raw text
processing with neural networks. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
171–179.

Yixin Cao, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2018.
Neural collective entity linking. In COLING.

Yixin Cao, Zikun Hu, Tat-seng Chua, Zhiyuan Liu, and
Heng Ji. 2019. Low-resource name tagging learned
with weakly labeled data. In EMNLP.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and
Jun Zhao. 2017. Automatically labeled data genera-
tion for large scale event extraction. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 409–419.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), volume 1, pages
167–176.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Shaoyang Duan, Ruifang He, and Wenli Zhao. 2017.
Exploiting document level information to improve
event detection via recurrent neural networks. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 352–361.

Xiaocheng Feng, Bing Qin, and Ting Liu. 2018.
A language-independent neural network for event
detection. Science China Information Sciences,
61(9):092106.

James Ferguson, Colin Lockard, Daniel Weld, and Han-
naneh Hajishirzi. 2018. Semi-supervised event ex-
traction with paraphrase clusters. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 359–364, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Ruan Gabbard, Jay DeYoung, and Marjorie Freedman.
2018. Events beyond ace: Curated training for
events. arXiv preprint arXiv:1809.05576.

Chen Gong, Xiaojun Chang, Meng Fang, and Jian
Yang. 2018. Teaching semi-supervised classifier via
generalized distillation. In IJCAI, pages 2156–2162.

https://doi.org/10.18653/v1/N18-2058
https://doi.org/10.18653/v1/N18-2058


5896

Zellig S. Harris. 1954. Distributional structure.
¡i¿WORD¡/i¿, 10(2-3):146–162.

Hangfeng He and Xu Sun. 2017. A unified model
for cross-domain and semi-supervised named entity
recognition in chinese social media. In Thirty-First
AAAI Conference on Artificial Intelligence.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos qa: Machine reading
comprehension with contextual commonsense rea-
soning. arXiv preprint arXiv:1909.00277.

Lifu Huang, Heng Ji, Kyunghyun Cho, and Clare R
Voss. 2017. Zero-shot transfer learning for event ex-
traction. arXiv preprint arXiv:1707.01066.

Mingkun Huang, Yongbin You, Zhehuai Chen, Yanmin
Qian, and Kai Yu. 2018. Knowledge distillation for
sequence model. In Interspeech, pages 3703–3707.

Alex Judea and Michael Strube. 2016. Incremental
global event extraction. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 2279–
2289.

Samuli Laine and Timo Aila. 2016. Temporal ensem-
bling for semi-supervised learning. arXiv preprint
arXiv:1610.02242.

Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song.
2018. Self-supervised knowledge distillation using
singular value decomposition. In European Confer-
ence on Computer Vision, pages 339–354. Springer.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 73–82.

Wei Li, Dezhi Cheng, Lei He, Yuanzhuo Wang, and
Xiaolong Jin. 2019. Joint event extraction based on
hierarchical event schemas from framenet. IEEE Ac-
cess, 7:25001–25015.

Shasha Liao and Ralph Grishman. 2010a. Filtered
ranking for bootstrapping in event extraction. In
Proceedings of the 23rd International Conference on
Computational Linguistics, pages 680–688. Associ-
ation for Computational Linguistics.

Shasha Liao and Ralph Grishman. 2010b. Using doc-
ument level cross-event inference to improve event
extraction. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
ACL ’10, pages 789–797, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Jian Liu, Yubo Chen, and Kang Liu. 2019. Exploit-
ing the ground-truth: An adversarial imitation based
knowledge distillation approach for event detection.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6754–6761.

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018a.
Event detection via gated multilingual attention
mechanism. Statistics, 1000:1250.

Shaobo Liu, Rui Cheng, Xiaoming Yu, and Xueqi
Cheng. 2018b. Exploiting contextual information
via dynamic memory network for event detection.
arXiv preprint arXiv:1810.03449.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve event
detection via supervised attention mechanisms. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1789–1798.

Yaojie Lu, Hongyu Lin, Xianpei Han, and Le Sun.
2019. Distilling discrimination and generaliza-
tion knowledge for event detection via delta-
representation learning. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4366–4376.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual meet-
ing of the association for computational linguistics:
system demonstrations, pages 55–60.

David McClosky, Mihai Surdeanu, and Christopher D
Manning. 2011. Event extraction as dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages
1626–1635. Association for Computational Linguis-
tics.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller. 1990.
Introduction to wordnet: An on-line lexical database.
International journal of lexicography, 3(4):235–
244.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 300–309.

Thien Huu Nguyen and Ralph Grishman. 2014. Em-
ploying word representations and regularization for
domain adaptation of relation extraction. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 68–74.

http://dl.acm.org/citation.cfm?id=1858681.1858762
http://dl.acm.org/citation.cfm?id=1858681.1858762
http://dl.acm.org/citation.cfm?id=1858681.1858762


5897

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 365–371, Beijing, China. Associa-
tion for Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pool-
ing for event detection. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding semantic similarity in tree kernels for do-
main adaptation of relation extraction. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 1498–1507.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. arXiv preprint arXiv:1804.09530.

Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.
2017. Asymmetric tri-training for unsupervised do-
main adaptation. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 2988–2997. JMLR. org.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching the
blanks: Distributional similarity for relation learn-
ing. arXiv preprint arXiv:1906.03158.

Antti Tarvainen and Harri Valpola. 2017. Mean teach-
ers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning
results. In Advances in neural information process-
ing systems, pages 1195–1204.

Meihan Tong, Shuai Wang, Yixin Cao, Bin Xu, Juaizi
Li, Lei Hou, and Tat-Seng Chua. 2020. Image en-
hanced event detection in news articles.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. A transition-based algorithm for AMR pars-
ing. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 366–375, Denver, Colorado. Association
for Computational Linguistics.

Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
and Peng Li. 2019a. Adversarial training for weakly
supervised event detection. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 998–1008.

Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
and Peng Li. 2019b. Adversarial training for weakly
supervised event detection. In NAACL.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V Le. 2019. Unsupervised data aug-
mentation for consistency training. arXiv preprint
arXiv:1904.12848.

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and Jun
Zhao. 2018. Dcfee: A document-level chinese finan-
cial event extraction system based on automatically
labeled training data. In Proceedings of ACL 2018,
System Demonstrations, pages 50–55.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan,
and Dongsheng Li. 2019. Exploring pre-trained lan-
guage models for event extraction and generation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5284–
5294.

Ying Zeng, Yansong Feng, Rong Ma, Zheng Wang, Rui
Yan, Chongde Shi, and Dongyan Zhao. 2018. Scale
up event extraction learning via automatic training
data generation. In Thirty-Second AAAI Conference
on Artificial Intelligence.

Kuo Zhang, Juan Zi, and Li Gang Wu. 2007. New
event detection based on indexing-tree and named
entity. In Proceedings of the 30th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 215–222.
ACM.

Tongtao Zhang, Heng Ji, and Avirup Sil. 2019. Joint
entity and event extraction with generative adversar-
ial imitation learning. Data Intelligence, 1(2):99–
120.

Yue Zhao, Xiaolong Jin, Yuanzhuo Wang, and Xueqi
Cheng. 2018. Document embedding enhanced event
detection with hierarchical and supervised attention.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 414–419.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In Proceedings of the ACL 2010 Sys-
tem Demonstrations, pages 78–83, Uppsala, Swe-
den. Association for Computational Linguistics.

https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.3115/v1/N15-1040
https://doi.org/10.3115/v1/N15-1040
https://www.aclweb.org/anthology/P10-4014
https://www.aclweb.org/anthology/P10-4014
https://www.aclweb.org/anthology/P10-4014

