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Abstract

We introduce a novel approach to transformers
that learns hierarchical representations in mul-
tiparty dialogue. First, three language model-
ing tasks are used to pre-train the transformers,
token- and utterance-level language modeling
and utterance order prediction, that learn both
token and utterance embeddings for better un-
derstanding in dialogue contexts. Then, multi-
task learning between the utterance prediction
and the token span prediction is applied to fine-
tune for span-based question answering (QA).
Our approach is evaluated on the FRIENDSQA
dataset and shows improvements of 3.8% and
1.4% over the two state-of-the-art transformer
models, BERT and RoBERTa, respectively.

1 Introduction

Transformer-based contextualized embedding ap-
proaches such as BERT (Devlin et al., 2019), XLM
(CONNEAU and Lample, 2019), XLNet (Yang
et al., 2019), RoBERTa (Liu et al., 2019), and
AlBERT (Lan et al., 2019) have re-established the
state-of-the-art for practically all question answer-
ing (QA) tasks on not only general domain datasets
such as SQUAD (Rajpurkar et al., 2016, 2018), MS
MARCO (Nguyen et al., 2016), TRIVIAQA (Joshi
et al., 2017), NEWSQA (Trischler et al., 2017), or
NARRATIVEQA (Koisk et al., 2018), but also multi-
turn question datasets such as SQA (Iyyer et al.,
2017), QUAC (Choi et al., 2018), COQA (Reddy
et al., 2019), or CQA (Talmor and Berant, 2018).
However, for span-based QA where the evidence
documents are in the form of multiparty dialogue,
the performance is still poor even with the latest
transformer models (Sun et al., 2019; Yang and
Choi, 2019) due to the challenges in representing
utterances composed by heterogeneous speakers.

Several limitations can be expected for language
models trained on general domains to process dia-
logue. First, most of these models are pre-trained

on formal writing, which is notably different from
colloquial writing in dialogue; thus, fine-tuning for
the end tasks is often not sufficient enough to build
robust dialogue models. Second, unlike sentences
in a wiki or news article written by one author with
a coherent topic, utterances in a dialogue are from
multiple speakers who may talk about different top-
ics in distinct manners such that they should not be
represented by simply concatenating, but rather as
sub-documents interconnected to one another.

This paper presents a novel approach to the latest
transformers that learns hierarchical embeddings
for tokens and utterances for a better understand-
ing in dialogue contexts. While fine-tuning for
span-based QA, every utterance as well as the ques-
tion are separated encoded and multi-head atten-
tions and additional transformers are built on the
token and utterance embeddings respectively to pro-
vide a more comprehensive view of the dialogue
to the QA model. As a result, our model achieves
a new state-of-the-art result on a span-based QA
task where the evidence documents are multiparty
dialogue. The contributions of this paper are:1

• New pre-training tasks are introduced to improve
the quality of both token-level and utterance-level
embeddings generated by the transformers, that
better suit to handle dialogue contexts (§2.1).

• A new multi-task learning approach is proposed
to fine-tune the language model for span-based
QA that takes full advantage of the hierarchical
embeddings created from the pre-training (§2.2).

• Our approach significantly outperforms the pre-
vious state-of-the-art models using BERT and
RoBERTa on a span-based QA task using dia-
logues as evidence documents (§3).

1All our resources including the source codes and the dataset
with the experiment split are available at
https://github.com/emorynlp/friendsqa

https://github.com/emorynlp/friendsqa
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(a) Token-level MLM (§2.1.1)
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(b) Utterance-level MLM (§2.1.2)
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(c) Utterance order prediction (§2.1.3)

Figure 1: The overview of our models for the three pre-training tasks (Section 2.1).

2 Transformers for Learning Dialogue

This section introduces a novel approach for pre-
training (Section 2.1) and fine-tuning (Section 2.2)
transformers to effectively learn dialogue contexts.
Our approach has been evaluated with two kinds
of transformers, BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), and shown significant
improvement to a question answering task (QA) on
multiparty dialogue (Section 3).

2.1 Pre-training Language Models

Pre-training involves 3 tasks in sequence, the token-
level masked language modeling (MLM; §2.1.1),
the utterance-level MLM (§2.1.2), and the utter-
ance order prediction (§2.1.3), where the trained
weights from each task are transferred to the next
task. Note that the weights of publicly available
transformer encoders are adapted to train the token-
level MLM, which allows our QA model to han-
dle languages in both dialogues, used as evidence
documents, and questions written in formal writing.
Transformers from BERT and RoBERTa are trained
with static and dynamic MLM respectively, as de-
scribed by Devlin et al. (2019); Liu et al. (2019).

2.1.1 Token-level Masked LM
Figure 1(a) illustrates the token-level MLM model.
Let D = {U1, . . . , Um} be a dialogue where Ui =
{si, wi1, . . . , win} is the i’th utterance in D, si is
the speaker of Ui, and wij is the j’th token in Ui.

All speakers and tokens in D are appended in order
with the special token CLS, representing the entire
dialogue, which creates the input string sequence
I = {CLS}⊕U1⊕ . . .⊕Un. For everywij ∈ I , let
Iµij = (I \{wij})∪{µij}, where µij is the masked
token substituted in place of wij . I

µ
ij is then fed

into the transformer encoder (TE), which generates
a sequence of embeddings {ec} ⊕ E1 ⊕ . . .⊕ Em
where Ei = {esi , ewi1, .., ewin} is the embedding list
for Ui, and (ec, esi , e

w
ij , e

µ
ij) are the embeddings of

(CLS, si, wij , µij) respectively. Finally, eµij is fed
into a softmax layer that generates the output vector
oµij ∈ R|V | to predict µij , where V is the set of all
vocabularies in the dataset.2

2.1.2 Utterance-level Masked LM

The token-level MLM (t-MLM) learns attentions
among all tokens in D regardless of the utterance
boundaries, allowing the model to compare every
token to a broad context; however, it fails to catch
unique aspects about individual utterances that can
be important in dialogue. To learn an embedding
for each utterance, the utterance-level MLM model
is trained (Figure 1(b)). Utterance embeddings can
be used independently and/or in sequence to match
contexts in the question and the dialogue beyond
the token-level, showing an advantage in finding
utterances with the correct answer spans (§2.2.1).

2n: the maximum number of words in every utterance,
m: the maximum number of utterances in every dialogue.
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Figure 2: The overview of our fine-tuning model exploiting multi-task learning (Section 2.2).

For every utterance Ui, the masked input sequence
Iµij = {CLSi}⊕ {(Ui \ {wij})∪µij} is generated.
Note that CLSi now represents Ui instead of D and
Iµij is much shorter than the one used for t-MLM.
Iµij is fed into TE, already trained by t-MLM, and
the embedding sequence Ei = {eci , esi , ewi1, .., ewin}
is generated. Finally, eci , instead of eµij , is fed into
a softmax layer that generates oµij to predict µij .
The intuition behind the utterance-level MLM is
that once eci learns enough contents to accurately
predict any token in Ui, it consists of most essential
features about the utterance; thus, eci can be used
as the embedding of Ui.

2.1.3 Utterance Order Prediction
The embedding eci from the utterance-level MLM
(u-MLM) learns contents within Ui, but not across
other utterances. In dialogue, it is often the case
that a context is completed by multiple utterances;
thus, learning attentions among the utterances is
necessary. To create embeddings that contain cross-
utterance features, the utterance order prediction
model is trained (Figure 1(c)). Let D = D1 ⊕D2

where D1 and D2 comprise the first and the second
halves of the utterances in D, respectively. Also,
let D′ = D1⊕D′2 where D′2 contains the same set
of utterances as D2 although the ordering may be
different. The task is whether or not D′ preserves
the same order of utterances as D.

For each Ui ∈ D′, the input Ii = {CLSi}⊕Ui is
created and fed into TE, already trained by u-MLM,
to create the embeddings Ei = {eci , esi , ewi1, .., ewin}.
The sequence Ec = {ec1, . . . , ecn} is fed into two
transformer layers, TL1 and TL2, that generate the
new utterance embedding list T c = {tc1, . . . , tcn}.
Finally, T c is fed into a softmax layer that generates
oν ∈ R2 to predict whether or not D′ is in order.

2.2 Fine-tuning for QA on Dialogue

Fine-tuning exploits multi-task learning between
the utterance ID prediction (§2.2.1) and the token
span prediction (§2.2.2), which allows the model to
train both the utterance- and token-level attentions.
The transformer encoder (TE) trained by the utter-
ance order prediction (UOP) is used for both tasks.
Given the question Q = {q1, . . . , qn} (qi is the i’th
token in Q) and the dialogue D = {U1, . . . , Um},
Q and all U∗ are fed into TE that generates Eq =
{ecq, e

q
1, .., e

q
n} and Ei = {eci , esi , ewi1, .., ewin} for Q

and every Ui, respectively.

2.2.1 Utterance ID Prediction
The utterance embedding list Ec = {ecq, ec1, .., ecn}
is fed into TL1 and TL2 from UOP that generate
T c = {tcq, tc1, .., tcn}. T c is then fed into a softmax
layer that generates ou ∈ Rm+1 to predict the ID of
the utterance containing the answer span if exists;
otherwise, the 0’th label is predicted, implying that
the answer span for Q does not exist in D.

2.2.2 Token Span Prediction
For every Ei, the pair (E′q, E

′
i) is fed into the multi-

head attention layer, MHA, where E′q = Eq \ {ecq}
and E′i = Ei \ {eci}. MHA (Vaswani et al., 2017)
then generates the attended embedding sequences,
T a1 , . . . , T

a
m, where T ai = {tsi , twi1, .., twin}. Finally,

each T ai is fed into two softmax layers, SL and SR,
that generate o`i ∈ Rn+1 and ori ∈ Rn+1 to predict
the leftmost and the rightmost tokens in Ui respec-
tively, that yield the answer span for Q. It is possi-
ble that the answer spans are predicted in multiple
utterances, in which case, the span from the utter-
ance that has the highest score for the utterance ID
prediction is selected, which is more efficient than
the typical dynamic programming approach.
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3 Experiments

3.1 Corpus
Despite of all great work in QA, only two datasets
are publicly available for machine comprehension
that take dialogues as evidence documents. One is
DREAM comprising dialogues for language exams
with multiple-choice questions (Sun et al., 2019).
The other is FRIENDSQA containing transcripts
from the TV show Friends with annotation for span-
based question answering (Yang and Choi, 2019).
Since DREAM is for a reading comprehension task
that does not need to find the answer contents from
the evidence documents, it is not suitable for our
approach; thus, FRIENDSQA is chosen.

Each scene is treated as an independent dialogue
in FRIENDSQA. Yang and Choi (2019) randomly
split the corpus to generate training, development,
and evaluation sets such that scenes from the same
episode can be distributed across those three sets,
causing inflated accuracy scores. Thus, we re-split
them by episodes to prevent such inflation. For fine-
tuning (§2.2), episodes from the first four seasons
are used as described in Table 1. For pre-training
(§2.1), all transcripts from Seasons 5-10 are used
as an additional training set.

Set D Q A E
Training 973 9,791 16,352 1 - 20

Development 113 1,189 2,065 21 - 22
Evaluation 136 1,172 1,920 23 - *

Table 1: New data split for FriendsQA. D/Q/A: # of
dialogues/questions/answers, E: episode IDs.

3.2 Models
The weights from the BERTbase and RoBERTabase
models (Devlin et al., 2019; Liu et al., 2019) are
transferred to all models in our experiments. Four
baseline models, BERT, BERTpre, RoBERTa, and
RoBERTapre, are built, where all models are fine-
tuned on the datasets in Table 1 and the *pre mod-
els are pre-trained on the same datasets with the
additional training set from Seasons 5-10 (§3.1).
The baseline models are compared to BERTour and
RoBERTAour that are trained by our approach.3

3.3 Results
Table 2 shows results achieved by all the models.
Following Yang and Choi (2019), exact matching
(EM), span matching (SM), and utterance match-
ing (UM) are used as the evaluation metrics. Each
3Detailed experimental setup are provided in Appendices.

model is developed three times and their average
score as well as the standard deviation are reported.
The performance of RoBERTa* is generally higher
than BERT* although RoBERTabase is pre-trained
with larger datasets including CC-NEWS (Nagel,
2016), OPENWEBTEXT (Gokaslan and Cohen,
2019), and STORIES (Trinh and Le, 2018) than
BERTbase such that results from those two types of
transformers cannot be directly compared.

Model EM SM UM
BERT 43.3(±0.8) 59.3(±0.6) 70.2(±0.4)
BERTpre 45.6(±0.9) 61.2(±0.7) 71.3(±0.6)
BERTour 46.8(±1.3) 63.1(±1.1) 73.3(±0.7)
RoBERTa 52.6(±0.7) 68.2(±0.3) 80.9(±0.8)
RoBERTapre 52.6(±0.7) 68.6(±0.6) 81.7(±0.7)
RoBERTaour 53.5(±0.7) 69.6(±0.8) 82.7(±0.5)

Table 2: Accuracies (± standard deviations) achieved
by the BERT and RoBERTa models.

The *pre models show marginal improvement over
their base models, implying that pre-training the
language models on FRIENDSQA with the original
transformers does not make much impact on this
QA task. The models using our approach perform
noticeably better than the baseline models, showing
3.8% and 1.4% improvements on SM from BERT
and RoBERTa, respectively.

Type Dist. EM SM UM
Where 18.16 66.1(±0.5) 79.9(±0.7) 89.8(±0.7)
When 13.57 63.3(±1.3) 76.4(±0.6) 88.9(±1.2)
What 18.48 56.4(±1.7) 74.0(±0.5) 87.7(±2.1)
Who 18.82 55.9(±0.8) 66.0(±1.7) 79.9(±1.1)
How 15.32 43.2(±2.3) 63.2(±2.5) 79.4(±0.7)
Why 15.65 33.3(±2.0) 57.3(±0.8) 69.8(±1.8)

Table 3: Results from the RoBERTaour model by differ-
ent question types.

Table 3 shows the results achieved by RoBERTaour
w.r.t. question types. UM drops significantly for
Why that often spans out to longer sequences and
also requires deeper inferences to answer correctly
than the others. Compared to the baseline models,
our models show more well-around performance
regardless the question types.4

3.4 Ablation Studies
Table 4 shows the results from ablation studies to
analyze the impacts of the individual approaches.
BERTpre and RoBERTapre are the same as in Ta-
ble 2, that are the transformer models pre-trained by
4Question type results for all models are in Appendices.
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the token-level masked LM (§2.1.1) and fine-tuned
by the token span prediction (§2.2.2). BERTuid and
RoBERTauid are the models that are pre-trained by
the token-level masked LM and jointly fine-tuned
by the token span prediction as well as the utter-
ance ID prediction (UID: §2.2.1). Given these two
types of transformer models, the utterance-level
masked LM (ULM: §2.1.2) and the utterance order
prediction (UOP: §2.1.3) are separately evaluated.

Model EM SM UM
BERTpre 45.6(±0.9) 61.2(±0.7) 71.3(±0.6)
⊕ULM 45.7(±0.9) 61.8(±0.9) 71.8(±0.5)
⊕ULM⊕UOP 45.6(±0.9) 61.7(±0.7) 71.7(±0.6)
BERTuid 45.7(±0.8) 61.1(±0.8) 71.5(±0.5)
⊕ULM 46.2(±1.1) 62.4(±1.2) 72.5(±0.8)
⊕ULM⊕UOP 46.8(±1.3) 63.1(±1.1) 73.3(±0.7)
RoBERTapre 52.6(±0.7) 68.6(±0.6) 81.7(±0.7)
⊕ULM 52.9(±0.8) 68.7(±1.1) 81.7(±0.6)
⊕ULM⊕UOP 52.5(±0.8) 68.8(±0.5) 81.9(±0.7)
RoBERTauid 52.8(±0.9) 68.7(±0.8) 81.9(±0.5)
⊕ULM 53.2(±0.6) 69.2(±0.7) 82.4(±0.5)
⊕ULM⊕UOP 53.5(±0.7) 69.6(±0.8) 82.7(±0.5)

Table 4: Results for the ablation studies. Note that the
*uid⊕ULM⊕UOP models are equivalent to the *our mod-
els in Table 2, respectively.

These two dialogue-specific LM approaches, ULM
and UOP, give very marginal improvement over the
baseline models, that is rather surprising. However,
they show good improvement when combined with
UID, implying that pre-training language models
may not be enough to enhance the performance by
itself but can be effective when it is coupled with
an appropriate fine-tuning approach. Since both
ULM and UOP are designed to improve the quality
of utterance embeddings, it is expected to improve
the accuracy for UID as well. The improvement
on UM is indeed encouraging, giving 2% and 1%
boosts to BERTpre and RoBERTapre, respectively
and consequently improving the other two metrics.

3.5 Error Analysis

As shown in Table 3, the major errors are from the
three types of questions, who, how, and why; thus,
we select 100 dialogues associated with those ques-
tion types that our best model, RoBERTaour, incor-
rectly predicts the answer spans for. Specific exam-
ples are provided in Tables 12, 13 and 14 (§A.3).
Following Yang et al. (2019), errors are grouped
into 6 categories, entity resolution, paraphrase and
partial match, cross-utterance reasoning, question
bias, noise in annotation, and miscellaneous.

Table 5 shows the errors types and their ratios with
respect to the question types. Two main error types
are entity resolution and cross-utterance reasoning.
The entity resolution error happens when many of
the same entities are mentioned in multiple utter-
ances. This error also occurs when the QA system
is asked about a specific person, but predicts wrong
people where there are so many people appearing in
multiple utterances. The cross-utterance reasoning
error often happens with the why and how ques-
tions where the model relies on pattern matching
mostly and predicts the next utterance span of the
matched pattern.

Error Types Who How Why

Entity Resolution 34% 23% 20%
Paraphrase and Partial Match 14% 14% 13%
Cross-Utterance Reasoning 25% 28% 27%

Question Bias 11% 13% 17%
Noise in Annotation 4% 7% 9%

Miscellaneous 12% 15% 14%

Table 5: Error types and their ratio with respect to the
three most challenging question types.

4 Conclusion

This paper introduces a novel transformer approach
that effectively interprets hierarchical contexts in
multiparty dialogue by learning utterance embed-
dings. Two language modeling approaches are pro-
posed, utterance-level masked LM and utterance
order prediction. Coupled with the joint inference
between token span prediction and utterance ID
prediction, these two language models significantly
outperform two of the state-of-the-art transformer
approaches, BERT and RoBERTa, on a span-based
QA task called FriendsQA . We will evaluate our
approach on other machine comprehension tasks
using dialogues as evidence documents to further
verify the generalizability of this work.
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