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Abstract
We address the problem of extractive question
answering using document-level distant super-
vision, pairing questions and relevant docu-
ments with answer strings. We compare previ-
ously used probability space and distant super-
vision assumptions (assumptions on the corre-
spondence between the weak answer string la-
bels and possible answer mention spans). We
show that these assumptions interact, and that
different configurations provide complemen-
tary benefits. We demonstrate that a multi-
objective model can efficiently combine the
advantages of multiple assumptions and out-
perform the best individual formulation. Our
approach outperforms previous state-of-the-art
models by 4.3 points in F1 on TriviaQA-Wiki
and 1.7 points in Rouge-L on NarrativeQA
summaries.1

1 Introduction

Distant supervision assumptions have enabled the
creation of large-scale datasets that can be used
to train fine-grained extractive short answer ques-
tion answering (QA) systems. One example is
TriviaQA (Joshi et al., 2017). There the au-
thors utilized a pre-existing set of Trivia question-
answer string pairs and coupled them with rele-
vant documents, such that, with high likelihood,
the documents support answering the questions
(see Fig. 1 for an illustration). Another example
is the NarrativeQA dataset (Kočiský et al., 2018),
where crowd-sourced abstractive answer strings
were used to weakly supervise answer mentions
in the text of movie scripts or their summaries. In
this work, we focus on the setting of document-
level extractive QA, where distant supervision is
specified as a set A of answer strings for an input
question-document pair.

1Based on the TriviaQA-Wiki leaderboard, our approach
was the SOTA when this work was submitted on Dec 04,
2019.

Question: How is Joan Molinsky better known?
Answer:    Joan Rivers

: { Joan Rivers, Diary of a Mad Diva } 

P1: Joan Alexandra Molinsky, known professionally as Joan Rivers, 
was an American comedian, actress, writer, producer, and television 
host.  … Joan Rivers was strongly influenced by Lenny Bruce. …

P2: … She received a Grammy Award for Best Spoken Word Album for 
her book, Diary of a Mad Diva. …

P3: Joan Alexandra Molinsky was born on June 8, 1933, in Brooklyn, 
New York. … Before entering show business, she chose Joan Rivers as 
her stage name. …

Question: Where do the dancers purify themselves?
Answer:    in the spring at mount helicon  mount helicon

: { in the spring at mount helicon, mount helicon } 

P1: The play begins with three pages … 

P2: The courtiers … She sentences them to make reparation and to 
purify themselves by bathing in the spring at mount helicon. The 
figure of Actaeon in the play may represent ...

TriviaQA

NarrativeQA

Figure 1: TriviaQA and NarrativeQA examples. In the Triv-
iaQA example, there are three occurrences of the original an-
swer string “Joan Rivers” (blue), and one alternate but incor-
rect alias “Diary of a Mad Diva” (purple). Only two “Joan
Rivers” mentions (shown in blue boxes) support answering
the question. In the NarrativeQA example, there are two an-
swer stings in A: “in the spring at mount helicon” (blue) and
“mount helicon” (orange), with the latter being a substring of
the former. Both mentions in P2 are correct answer spans.

Depending on the data generation process, the
properties of the resulting supervision from the
sets A may differ. For example, the provided an-
swer sets in TriviaQA include aliases of original
trivia question answers, aimed at capturing seman-
tically equivalent answers but liable to introducing
semantic drift. In Fig. 1, the possible answer string
“Diary of a Mad Diva” is related to “Joan Rivers”,
but is not a valid answer for the given question.

On the other hand, the sets of answer strings in
NarrativeQA are mostly valid since they have high
overlap with human-generated answers for the
given question/document pair. As shown in Fig. 1,
“in the spring at mount helicon” and “mount he-
licon” are both valid answers with relevant men-
tions. In this case, the annotators chose answers
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that appear verbatim in the text but in the more
general case, noise may come from partial phrases
and irrelevant mentions.

While distant supervision reduces the annota-
tion cost, increased coverage often comes with
increased noise (e.g., expanding entity answer
strings with aliases improves coverage but also in-
creases noise). Even for fixed document-level dis-
tant supervision in the form of a set of answers A,
different interpretations of the partial supervision
lead to different points in the coverage/noise space
and their relative performance is not well under-
stood.

This work systematically studies methods for
learning and inference with document-level dis-
tantly supervised extractive QA models. Using a
BERT (Devlin et al., 2019) joint question-passage
encoder, we study the compound impact of:

• Probability space (§2): ways to define the
model’s probability space based on independent
paragraphs or whole documents.
• Distant supervision assumptions (§3): ways to

translate the supervision from possible stringsA
to possible locations of answer mentions in the
document.
• Optimization and inference (§4): ways to

define corresponding training objectives (e.g.
Hard EM as in Min et al. (2019) vs. Maxi-
mum Marginal Likelihood) and make answer
string predictions during inference (Viterbi or
marginal inference).

We show that the choice of probability space
puts constraints on the distant supervision as-
sumptions that can be captured, and that all three
choices interact, leading to large differences in
performance. Specifically, we provide a frame-
work for understanding different distant supervi-
sion assumptions and the corresponding trade-off
among the coverage, quality and strength of dis-
tant supervision signal. The best configuration de-
pends on the properties of the possible annotations
A and is thus data-dependent. Compared with re-
cent work also using BERT representations, our
study show that the model with most suitable prob-
abilistic treatment achieves large improvements of
4.6 F1 on TriviaQA and 1.7 Rouge-L on Narra-
tiveQA respectively. Additionally, we design an
efficient multi-loss objective that can combine the
benefits of different formulations, leading to sig-
nificant improvements in accuracy, surpassing the
best previously reported results on the two studied

BERT

…

𝒑𝟏𝒒

(“Joan Rivers”| 𝒑𝟏)

Begin and End
Probabilities 

(𝑷𝒃, 𝑷𝒆)

(“Joan Rivers”| 𝒑𝟑)

…

…

…
Span 

Probabilities
(𝑷𝒔)

String 
Probabilities 

(𝑷𝒂)

𝑷𝒂(“Joan Rivers”)

…

𝑷𝒂(“Diary of a Mad Diva”)

Contextualized 
Representation

𝚵 𝚵

BERT

𝒑𝟑𝒒 ……

…

Figure 2: The document-level QA model as used for
test-time inference. The lower part is a BERT-based
paragraph-level answer scoring component, and the up-
per part illustrates the probability aggregation across
answer spans sharing the same answer string. Ξ refers
to either a sum or a max operator. In the given example,
“John Rivers” is derived from two paragraphs.

tasks. Results are further strengthened by transfer
learning from fully labeled short-answer extrac-
tion data in SQuAD 2.0 (Rajpurkar et al., 2018),
leading to a final state-of-the-art performance of
76.3 F1 on TriviaQA-Wiki and 62.9 on the Narra-
tiveQA summaries task.2

2 Probability Space

Here, we first formalize both paragraph-level and
document-level models, which have been previ-
ously used for document-level extractive QA. Typ-
ically, paragraph-level models consider each para-
graph in the document independently, whereas
document models integrate some dependencies
among paragraphs.

To define the model, we need to specify the
probability space, consisting of a set of possible
outcomes and a way to assign probabilities to in-
dividual outcomes. For extractive QA, the proba-
bility space outcomes consist of token positions of
answer mention spans.

The overall model architecture is shown in
Fig. 2. We use BERT (Devlin et al., 2019) to
derive representations of document tokens. As
is standard in state-of-the-art extractive QA mod-
els (Devlin et al., 2019; Lee et al., 2019; Min
et al., 2019), the BERT model is used to encode
a pair of a given question with one paragraph
from a given document into neural text represen-
tations. These representations are then used to

2The code is available at https://github.com/
hao-cheng/ds_doc_qa

https://github.com/hao-cheng/ds_doc_qa
https://github.com/hao-cheng/ds_doc_qa
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define scores/probabilities of possible answer be-
gin and end positions, which are in turn used to
define probabilities over possible answer spans.
Then the answer string probabilities can be de-
fined as the aggregation over all possible answer
spans/mentions.

In the following, we show that paragraph-level
and document-level models differ only in the
space of possible outcomes and the way of com-
puting answer span probabilities from answer po-
sition begin and end scores.

Scoring answer begin and end positions Given
a question q and a document d consisting of
K paragraphs p1, . . . , pK , the BERT encoder
produces contextualized representations for each
question-paragraph pair (q, pk). Specifically, for
each token position ik in pk, the final hidden vec-
tor h(i,k) ∈ Rd is used as the contextualized token
embedding, where d is the vector dimension.

The span-begin score is computed as sb(i
k) =

wT
b h

(i,k) using a weight vector wb ∈ Rd. The
span-end score se(j

k) is defined in the same way.
The probabilities for a start position ik and an end
position jk are

Pb(i
k) =

exp(sb(i
k))

Zb
, (1)

Pe(j
k) =

exp(se(j
k))

Ze
, (2)

where Zb, Ze are normalizing factors, depending
on the probability space definition (detailed be-
low). The probability of an answer span from ik

to jk is defined as Ps(i
k, jk) = Pb(i

k)Pe(j
k).

The partition functions Zb and Ze depend on
whether we use a paragraph-level or document-
level probability space.

Paragraph-level model In paragraph level
models, we assume that for a given question
against a document d, each of its paragraphs
p1, . . . , pK independently selects a pair of answer
positions (ik, jk), which are the begin and end
of the answer from paragraph pk. In the case
that pk does not support answering the question
q, special NULL positions are selected (follow-
ing the SQuAD 2.0 BERT implementation3).
Thus, the set of possible outcomes Ω in the
paragraph-level probability space is the set of
lists of begin/end position pairs, one from each
paragraph: {[(i1, j1), . . . , (iK , jK)]}, where ik

3https://github.com/google-research/bert

and jk range over positions in the respective
paragraphs.

The answer positions in different paragraphs
are independent, and the probability of each para-
graph’s answer begin and end is computed by nor-
malizing over all possible positions in that para-
graph, i.e.,

Zk
b =

∑
i∈Ik∪{NULL}

exp(sb(i)), (3)

Zk
e =

∑
j∈Ik∪{NULL}

exp(se(j)), (4)

where Ik is the set of all positions in the para-
graph pk. The probability of an answer begin at
ik is Pb(i

k) = exp(sb(i
k))/Zb

k and the prob-
ability of an end at jk is defined analogously.
The probability of a possible answer position as-
signment for the document d is then defined as
P ([(i1, j1), . . . , (iK , jK)]) =

∏
k Pb(i

k)Pe(j
k).

As we can see from the above definition, due
to the independence assumption, models using
paragraph-level normalization do not learn to di-
rectly calibrate candidate answers from different
paragraphs against each other.

Document-level model In document-level mod-
els, we assume that for a given question against
document d, a single answer span is selected
(as opposed to one for each paragraph in the
paragraph-level models).4 Here, the possible posi-
tions in all paragraphs are a part of a joint probabil-
ity space and directly compete against each other.

In this case, Ω is the set of token spans {(i, j)},
where i and j are the begin and end positions of
the selected answer. The normalizing factors are
therefore aggregated over all paragraphs, i.e.,

Z∗b =
K∑
k=1

∑
i∈Ik

exp(sb(i)), (5)

Z∗e =

K∑
k=1

∑
j∈Ik

exp(se(j)). (6)

Compared with (3) and (4), since there is always a
valid answer in the document for the tasks stud-
ied here, NULL is not necessary for document-
level models and thus can be excluded from the

4In this paper, we focus on datasets where the document
is known to contain a valid answer. It is straightforward to
remove this assumption and consider document-level NULL
for future work.

https://github.com/google-research/bert
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Coverage Quality Strength

H1 ↗ ↘ ↗
H2 −→ −→ −→
H3 ↘ ↗ ↘

Table 1: Distant supervision assumptions and their cor-
responding tradeoffs. (↗) indicates highest value, (→)
medium, and (↘) lowest value.

inner summation of (5) and (6). The probabil-
ity of a possible outcome, i.e. an answer span, is
P (i, j) = exp(sb(i) + se(j))/(Z∗bZ

∗
e ).

3 Distant Supervision Assumptions

There are multiple ways to interpret the distant su-
pervision signal from A as possible outcomes in
our paragraph-level and document-level probabil-
ity spaces, leading to corresponding training loss
functions. Although several different paragraph-
level and document-level losses (Chen et al., 2017;
Kadlec et al., 2016; Clark and Gardner, 2018; Lin
et al., 2018; Min et al., 2019) have been studied in
the literature, we want to point out that when in-
terpreting the distant supervision signal, there is a
tradeoff among multiple desiderata:
• Coverage: maximize the number of instances

of relevant answer spans, which we can use to
provide positive examples to our model.
• Quality: maximize the quality of annotations

by minimizing noise from irrelevant answer
strings or mentions.
• Strength: maximize the strength of the signal

by reducing uncertainty and pointing the model
more directly at correct answer mentions.

We introduce three assumptions (H1, H2, H3)
for how the distant supervision signal should be in-
terpreted, which lead to different tradeoffs among
the desiderata above (see Table 1).

We begin with setting up additional useful nota-
tion. Given a document-question pair (d, q) and
a set of answer strings A, we define the set of
A-consistent token spans YA in d as follows: for
each paragraph pk, span (ik, jk) ∈ Yk

A if and only
if the string spanning these positions in the para-
graph is in A. For paragraph-level models, if for
paragraph pk the set Yk

A is empty, we redefine Yk
A

to be {NULL}. Similarly, we define the set of A-
consistent begin positions Yk

b,A as the start posi-
tions of consistent spans: Yk

b,A = ∪(i,j)∈Yk
A
{i}.

Yk
e,A for A-consistent end positions is defined

analogously. In addition, we term an answer span
(i, j) correct for question q, if its corresponding
answer string is a correct answer to q, and the con-
text of the specific mention of that answer string
from positions i to j entails this answer. Similarly,
we term an answer begin/end position correct if
there exists a correct answer span starting/ending
at that position.

H1: All A-consistent answer spans are correct.
While this assumption is evidently often incorrect
(low on the quality dimension ↘), especially for
TriviaQA, as seen from Fig. 1, it provides a large
number of positive examples and a strong supervi-
sion signal (high on coverage↗ and strength↗).
We include this in our study for completeness.

H1 translates differently into possible outcomes
for corresponding models depending on the prob-
ability space (paragraph or document). Paragraph-
level models select multiple answer spans, one for
each paragraph, to form a possible outcome. Thus,
multiple A-consistent answer spans can occur in
a single outcome, as long as they are in differ-
ent paragraphs. For multiple A-consistent answer
spans in the same paragraph, these can be seen as
mentions that can be selected with equal probabil-
ity (e.g., by different annotators). Document-level
models select a single answer span in the docu-
ment and therefore multiple A-consistent answer
spans can be seen as occurring in separate anno-
tation events. Table 2 shows in row one the log-
probability of outcomes consistent with H1.

H2: Every positive paragraph has a correct an-
swer in its A-consistent set. Under this assump-
tion, each paragraph with a non-empty set of A-
consistent spans (termed a positive paragraph) has
a correct answer. As we can see from the Trivi-
aQA example in Fig. 1, this assumption is correct
for the first and third paragraph, but not the sec-
ond one, as it only contains a mention of a noisy
answer alias. This assumption has medium cov-
erage (→), as it generates positive examples from
multiple paragraphs but does not allow multiple
positive mentions in the same paragraph. It also
decreases noise (higher quality→) (e.g. does not
claim that all the mentions of “Joan Rivers” in the
first paragraph support answering the question).
The strength of the supervision signal is weakened
(→) relative to H1, as now the model needs to fig-
ure out which of the multiple A-consistent men-
tions in each paragraph is correct.

H2 has two variations: correct span, assuming
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Span-Based Position-Based

H1
∑

k∈K
∑

(ik,jk)∈Yk
A

logPs(i
k, jk)

∑
k∈K

∑
ik∈Yk

b,A
logPb(i

k) +
∑

k∈K
∑

jk∈Yk
e,A

logPe(j
k)

H2
∑

k∈K log Ξ(ik,jk)∈Yk
A
Ps(i

k, jk)
∑

k∈K log Ξik∈Yk
b,A

Pb(i
k) +

∑
k∈K log Ξjk∈Yk

e,A
Pe(j

k)

H3 log Ξk∈KΞ(ik,jk)∈Yk
A
Ps(i

k, jk) log Ξk∈KΞik∈Yk
b,A

Pb(i
k) + log Ξk∈KΞjk∈Yk

e,A
Pe(j

k)

Table 2: Objective functions for a document-question pair (d, q) under different distant supervision assumptions.
Ξ refers to

∑
and max for MML and HardEM, respectively.

that one of the answer spans (ik, jk) in Yk
A is cor-

rect, and correct position, assuming that the para-
graph has a correct answer begin position from
Yk
b,A and a correct answer end position from Yk

e,A,
but its selected answer span may not necessarily
belong to Yk

A. For example, if A contains {abcd,
bc}, then abc would have correct begin and end,
but not be a correct span. It does not make sense
for modeling to assume the paragraph has correct
begin and end positions instead of a correct an-
swer span (i.e., we don’t really want to get in-
consistent answers like abc above), but given that
our probabilistic model assumes independence of
begin and end answer positions, it may not be
able to learn well with span-level weak supervi-
sion. Some prior work (Clark and Gardner, 2018)
uses an H2 position-based distant supervision as-
sumption with a pair-paragraph model akin to our
document-level ones. Lin et al. (2018) use an H2
span-based distant supervision assumption. The
impact of position vs. span-based modeling of the
distant supervision is not well understood. As we
will see in the experiments, for the majority of set-
tings, position-based weak supervision is more ef-
fective than span-based for our model.

For paragraph-level and document-level mod-
els, H2 corresponds differently to possible out-
comes. For paragraph models, one outcome can
select answer spans in all positive paragraphs and
NULL in negative ones. For document-level mod-
els, we view answers in different paragraphs as
outcomes of multiple draws from the distribution.
The identity of the particular correct span or be-
gin/end position is unknown, but we can compute
the probability of the event comprising the consis-
tent outcomes. Table 2 shows the log-probability
of the outcomes consistent with H2 in row two
(right for span-based and left for position-based
interpretation, when plugging in

∑
for Ξ).

H3: The document has a correct answer in
its A-consistent set YA. This assumption posits
that the document has a correct answer span (or

begin/end positions), but not every positive para-
graph needs to have one. It further improves super-
vision quality (↗), because for example, it allows
the model to filter out the noise in paragraph two
in Fig. 1. Since the model is given a choice of any
of the A-consistent mentions, it has the capability
to assign zero probability mass on the supervision-
consistent mentions in that paragraph.

On the other hand, H3 has lower coverage (↘)
than H1 and H2, because it provides a single pos-
itive example for the whole document, rather than
one for each positive paragraph. It also reduces
the strength of the supervision signal (↘), as the
model now needs to figure out which mention to
select from the larger document-level set YA.

Note that we can only use H3 coupled with a
document-level model, because a paragraph-level
model cannot directly tradeoff answers from dif-
ferent paragraphs against each other, to select a
single answer span from the document. As with
the other distant supervision hypotheses, span-
based and position-based definitions of the possi-
ble consistent outcomes can be formulated. The
log-probabilities of these events are defined in row
three of Table 2, when using

∑
for Ξ. H3 was

used by Kadlec et al. (2016) for cloze-style dis-
tantly supervised QA with recurrent neural net-
work models.

The probability-space (paragraph vs. document-
level) and the distant supervision assumption (H1,
H2, and H3, each position or span-based) together
define our interpretation of the distant supervision
signal resulting in definitions of probability space
outcomes consistent with the supervision. Next,
we define corresponding optimization objectives
to train a model based on this supervision and de-
scribe the inference methods to make predictions
with a trained model.

4 Optimization and Inference Methods

For each distant supervision hypothesis, we max-
imize either the marginal log-likelihood of A-
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consistent outcomes (MML) or the log-likelihood
of the most likely outcome (HardEM). The latter
was found effective for weakly supervised tasks
including QA and semantic parsing by Min et al.
(2019).

Table 2 shows the objective functions for all
distant supervision assumptions, each compris-
ing a pairing of a distant supervision hypothesis
(H1, H2, H3) and position-based vs. span-based
interpretation. The probabilities are defined ac-
cording to the assumed probability space (para-
graph or document). In the table, K denotes the
set of all paragraphs in the document, and Yk

denotes the set of weakly labeled answer spans
for the paragraph pk (which can be {NULL} for
paragraph-level models). Note that span-based
and position-based objective functions are equiv-
alent for H1 because of the independence assump-
tion, i.e. Ps(i

k, jk) = Pb(i
k)Pe(j

k).
Inference: Since the task is to predict an an-
swer string rather than a particular mention for a
given question, it is potentially beneficial to aggre-
gate information across answer spans correspond-
ing to the same string during inference. The score
of a candidate answer string can be obtained as
Pa(x) = Ξ(i,j)∈XPs(i, j), where X is the set of
spans corresponding to the answer string x, and Ξ
can be either

∑
or max.5 It is usually beneficial to

match the training objective with the correspond-
ing inference method, i.e. MML with marginal in-
ference Ξ =

∑
, and HardEM with max (Viterbi)

inference Ξ = max. Min et al. (2019) showed
HardEM optimization was useful when using an
H2 span-level distant supervision assumption cou-
pled with max inference, but it is unclear whether
this trend holds when

∑
inference is useful or

other distant supervision assumptions perform bet-
ter. We therefore study exhaustive combinations
of probability space, distant supervision assump-
tion, and training and inference methods.

5 Experiments

5.1 Data and Implementation

Two datasets are used in this paper: TriviaQA
(Joshi et al., 2017) in its Wikipedia formulation,
and NarrativeQA (summaries setting) (Kočiský
et al., 2018). Using the same preprocessing as

5For inference with marginal (
∑

) scoring, we use an ap-
proximate scheme where we only aggregate probabilities of
candidates strings generated from a 20-best list of begin/end
answer positions for each paragraph.

Clark and Gardner (2018) for TriviaQA-Wiki6,
we only keep the top 8 ranked paragraphs up to
400 tokens for each document-question pair for
both training and evaluation. Following Min et al.
(2019), for NarrativeQA we define the possible
answer string sets A using Rouge-L (Lin, 2004)
similarity with crouwdsourced abstractive answer
strings. We use identical data preprocessing and
the evaluation script provided by the authors.

In this work, we use the BERT-base model for
text encoding and train our model with the de-
fault configuration as described in (Devlin et al.,
2019), fine-tuning all parameters. We fine-tune
for 3 epochs on TriviaQA and 2 epochs on Nar-
rativeQA.

5.2 Optimization and Inference for Latent
Variable Models

Here we look at the cross product of optimization
(HardEM vs MML) and inference (Max vs Sum)
for all distant supervision assumptions that result
in models with latent variables. We therefore ex-
clude H1 and look at the other two hypotheses, H2
and H3, each coupled with a span-based (Span) or
position-based (Pos) formulation and a paragraph-
level (P) or a document level (D) probability space.
The method used in Min et al. (2019) corresponds
to span-based H2-P with HardEM training and
Max inference. The results are shown in Fig. 3.

First, we observe that inference with Sum leads
to significantly better results on TriviaQA un-
der H2-P and H2-D, and slight improvement un-
der H3-D. On NarrativeQA, inference with Max
is better. We attribute this to the fact that cor-
rect answers often have multiple relevant mentions
for TriviaQA (also see §5.6), whereas for Narra-
tiveQA this is rarely the case. Thus, inference with
Sum in NarrativeQA could potentially boost the
probability of irrelevant frequent strings.

Consistent with (Min et al., 2019), we observe
that span-based HardEM works better than span-
based MML under H2-P, with a larger advantage
on NarrativeQA than on TriviaQA. However, un-
der H2-D and H3-D, span-based MML performs
consistently better than span-based HardEM. For
position-based objectives, MML is consistently
better than HardEM (potentially because HardEM
may decide to place its probability mass on begin-
end position combinations that do not contain
mentions of strings in A). Finally, it can be ob-

6https://github.com/allenai/document-qa

https://github.com/allenai/document-qa
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Figure 3: Comparison of different optimization and in-
ference choices grouped by distant supervision hypoth-
esis based on dev set results for TriviaQA and Narra-
tiveQA.

served that under each distant supervision hypoth-
esis/probability space combination, the position-
based MML is always the best among the four ob-
jectives. Position-based objectives may perform
better due to the independence assumptions for be-
gin/end positions of the model we use and future
work may arrive at different conclusions if posi-
tion dependencies are integrated. Based on this
thorough exploration, we focus on experimenting
with position-based objectives with MML for the
rest of this paper.

5.3 Probability Space and Distant
Supervision Assumptions

In this subsection, we compare probability space
and distant supervision assumptions. Table 3
shows the dev set results, where the upper sec-
tion compares paragraph-level models (H1-P, H2-
P), and the lower section compares document-
level models (H1-D, H2-D, H3-D). The perfor-
mance of models with both Max and Sum infer-
ence is shown. We report F1 and Exact Match
(EM) scores for TriviaQA, and Rouge-L scores for
NarrativeQA.

For TriviaQA, H3-D achieves significantly bet-

Objective Infer TriviaQA NarrativeQA

F1 EM Rouge-L

Paragraph-level Models

H1-P
Max 67.9 63.3 55.3
Sum 70.4 66.0 53.6

H2-P
Max 71.9 67.7 59.2
Sum 73.0 69.0 57.8

Document-level Models

H1-D
Max 55.8 51.0 59.4
Sum 65.2 61.2 59.1

H2-D
Max 70.3 66.2 60.1
Sum 72.4 68.4 59.9

H3-D
Max 75.1 70.6 59.1
Sum 75.3 70.8 59.2

Table 3: Comparison of distant supervision hypothe-
ses using MML-Pos objectives on TriviaQA and Nar-
rativeQA dev sets.

ter results than other formulations. Only H3-
D is capable of “cleaning” noise from positive
paragraphs that don’t have a correct answer (e.g.
paragraph two in Fig. 1), by deciding which A-
consistent mention to trust. The paragraph-level
models H1-P and H2-P outperform their corre-
sponding document-level counterparts H1-D and
H2-D. This may be due to the fact that without
H3, and without predicting NULL, Dmodels do not
learn to detect irrelevant paragraphs.

Unlike for TriviaQA, H2-D models achieve the
best performance for NarrativeQA. We hypothe-
size this is due to the fact that positive paragraphs
that don’t have a correct answer are very rare in
NarrativeQA (as summaries are relatively short
and answer strings are human-annotated for the
specific documents). Therefore, H3 is not needed
to clean noisy supervision, and it is not useful
since it also leads to a reduction in the number of
positive examples (coverage) for the model. Here,
document-level models always improve over their
paragraph counterparts, by learning to calibrate
paragraphs directly against each other.

5.4 Multi-Objective Formulations and Clean
Supervision

Here we study two methods to further improve
weakly supervised QA models. First, we com-
bine two distant supervision objectives in a multi-
task manner, i.e. H2-P and H3-D for TriviaQA, and
H2-P and H2-D for NarrativeQA, chosen based
on the results in §5.3. H2 objectives have higher
coverage than H3 while being more susceptible
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Objective Clean Infer TriviaQA NarrativeQA

F1 EM Rouge-L

Single-objective

Par
X Max 71.9 67.7 59.2

Sum 73.0 69.0 57.8

X
Max 74.2 70.1 61.7
Sum 74.9 70.9 61.7

Doc
X Max 75.1 70.6 60.1

Sum 75.3 70.8 59.9

X
Max 75.5 70.8 62.8
Sum 75.5 70.9 62.9

Multi-objective

Par
+

Doc

X Max 75.6 71.2 60.5
Sum 75.9 71.6 60.5

X
Max 75.8 71.2 63.0
Sum 76.2 71.7 63.1

Table 4: Dev set results comparing multi-objectives
and clean supervison. X indicates the QA model is
pre-trained on SQUAD.

to noise. Paragraph-level models have the ad-
vantage of learning to score irrelevant paragraphs
(via NULL outcomes). Note that we use the same
parameters for the two objectives and the multi-
objective formulation does not have more param-
eters and is no less efficient than the individual
models. Second, we use external clean supervi-
sion from SQUAD 2.0 (Rajpurkar et al., 2018)
to train the BERT-based QA model for 2 epochs.
This model matches the P probability space and
is able to detect both NULL and extractive answer
spans. The resulting network is used to initialize
the models for TriviaQA and NarrativeQA. The re-
sults are shown in Table 4.

It is not surprising that using external clean
supervision improves model performance (e.g.
(Min et al., 2017)). We note that, interestingly,
this external supervision narrows the performance
gap between paragraph-level and document-level
models, and reduces the difference between the
two inference methods.

Compared with their single-objective compo-
nents, multi-objective formulations improve per-
formance on both TriviaQA and NarrativeQA.

5.5 Test Set Evaluation

Table 5 reports test set results on TriviaQA and
NarrativeQA for our best models, in comparison to
recent state-of-art (SOTA) models. For TriviaQA,
we report F1 and EM scores on the full test set
and the verified subset. For NarrativeQA, Rouge-

TriviaQA Wiki

Full Verified

F1 EM F1 EM

Ours (H2-P+H3-D) 76.3 72.1 85.5 82.2
w/o SQUAD 75.7 71.6 83.6 79.6

(Wang et al., 2018b) 71.4 66.6 78.7 74.8
(Clark and Gardner, 2018) 68.9 64.0 72.9 68.0
(Min et al., 2019) 67.1 – – –

NarrativeQA Summary

Rouge-L

Ours (H2-P+H2-D) 62.9
w/o SQUAD 60.5

(Nishida et al., 2019) 59.9
w/o external data 54.7

(Min et al., 2019) 58.8

Table 5: Test set results on TriviaQA Wiki and Narra-
tiveQA Summaries. “w/o SQUAD” refers to our best
model without pretraining on SQUAD 2.0. “w/o exter-
nal data” refers to the model from (Nishida et al., 2019)
without using MS MARCO data (Bajaj et al., 2018).

L scores are reported.
Compared to recent TriviaQA SOTA (Wang

et al., 2018b), our best models achieve 4.9 F1
and 5.5 EM improvement on the full test set, and
6.8 F1 and 7.4 EM improvement on the verified
subset. On the NarrativeQA test set, we improve
Rouge-L by 3.0 over (Nishida et al., 2019). The
large improvement, even without additional fully
labeled data, demonstrates the importance of se-
lecting an appropriate probability space and inter-
preting the distant-supervision in a way cognizant
of the properties of the data, as well as selecting
a strong optimization and inference method. With
external fully labeled data to initialize the model,
performance is further significantly improved.

5.6 Analysis

In this subsection, we carry out analyses to study
the relative performance of paragraph-level and
document-level models, depending on the size
of answer string set |A| and the number of A-
consistent spans, which are hypothesized to cor-
relate with label noise. We use the TriviaQA dev
set and the best performing models, i.e. H2-P and
H3-D with Sum inference.

We categorize examples based on the size of
their answer string set, |A|, and the size of
their corresponding set of A-consistent spans, |I|.
Specifically, we divide the data into 4 subsets and
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Subset |A| |I| Size H2-P H3-D ∆

Qss = 1 ≤ 5 2585 66.8 67.4 0.6
Qls > 1 ≤ 5 853 68.7 70.1 1.4
Qsl = 1 > 5 1149 82.0 84.9 2.9
Qll > 1 > 5 3034 86.3 88.4 2.1

Table 6: F1 scores on 4 subsets of TriviaQA dev,
grouped by the size of their answer string sets A and
corresponding set of possible mentions I. ∆ indicates
the improvement from H2-P to H3-D.

report performance separately on each subset, as
shown in Table 6. In general, we expect Qsl and
Qll to be noisier due to the larger I, whereQsl po-
tentially includes many irrelevant mentions while
Qll likely contains more incorrect answer strings
(false aliases). We can observe that the improve-
ment is more significant for these noisier subsets,
suggesting document-level modeling is crucial for
handling both types of label noise.

6 Related Work

Distant supervision has been successfully used
for decades for information extraction tasks such
as entity tagging and relation extraction (Craven
and Kumlien, 1999; Mintz et al., 2009). Sev-
eral ways have been proposed to learn with DS,
e.g., multi-label multi-instance learning (Surdeanu
et al., 2012), assuming at least one supporting
evidence (Hoffmann et al., 2011), integration of
label-specific priors (Ritter et al., 2013), and adap-
tion to shifted label distributions (Ye et al., 2019).

Recent work has started to explore distant su-
pervision to scale up QA systems, particularly
for open-domain QA where the evidence has to
be retrieved rather than given as input. Read-
ing comprehension (RC) with evidence retrieved
from information retrieval systems establishes a
weakly-supervised QA setting due to the noise in
the heuristics-based span labels (Chen et al., 2017;
Joshi et al., 2017; Dunn et al., 2017; Dhingra et al.,
2017). One line of work jointly learns RC and
evidence ranking using either a pipeline system
(Wang et al., 2018a; Lee et al., 2018; Kratzwald
and Feuerriegel, 2018) or an end-to-end model
(Lee et al., 2019).

Another line of work focuses on improving
distantly-supervised RC models by developing
learning methods and model architectures that can
better use noisy labels. Clark and Gardner (2018)
propose a paragraph-pair ranking objective, which
has components of both our H2-P and H3-D

position-based formulations. They don’t explore
multiple inference methods or combinations of ob-
jectives and use less powerful representations. In
(Lin et al., 2018), a coarse-to-fine model is pro-
posed to handle label noise by aggregating infor-
mation from relevant paragraphs and then extract-
ing answers from selected ones. Min et al. (2019)
propose a hard EM learning scheme which we in-
cluded in our experimental evaluation.

Our work focuses on examining probabilistic
assumptions for document-level extractive QA.
We provide a unified view of multiple methods
in terms of their probability space and distant su-
pervision assumptions and evaluate the impact of
their components in combination with optimiza-
tion and inference methods. To the best of our
knowledge, the three DS hypotheses along with
position and span-based interpretations have not
been formalized and experimentally compared on
multiple datasets. In addition, the multi-objective
formulation is new.

7 Conclusions

In this paper, we demonstrated that the choice of
probability space and interpretation of the distant
supervision signal for document-level QA have a
large impact, and that they interact. Depending on
the properties of the data, different configurations
are best, and a combined multi-objective formula-
tion can reap the benefits of its constituents.

A future direction is to extend this work to ques-
tion answering tasks that require reasoning over
multiple documents, e.g., open-domain QA. In ad-
dition, the findings may generalize to other tasks,
e.g., corpus-level distantly-supervised relation ex-
traction.
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