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Abstract

Recent proposed approaches have made
promising progress in dialogue state tracking
(DST). However, in multi-domain scenarios,
ellipsis and reference are frequently adopted
by users to express values that have been men-
tioned by slots from other domains. To han-
dle these phenomena, we propose a Dialogue
State Tracking with Slot Connections (DST-
SC) model to explicitly consider slot correla-
tions across different domains. Given a target
slot, the slot connecting mechanism in DST-
SC can infer its source slot and copy the source
slot value directly, thus significantly reducing
the difficulty of learning and reasoning. Ex-
perimental results verify the benefits of ex-
plicit slot connection modeling, and our model
achieves state-of-the-art performance on Mul-
tiWOZ 2.0 and MultiWOZ 2.1 datasets.

1 Introduction

Task-oriented dialogue systems assist users to
achieve their certain goals, such as making a restau-
rant reservation or booking a taxi. To fulfill users’
goals, dialogue state tracking (DST) is employed
to estimate dialogue states at each turn. Dialogue
states consist of constraints and requests conveyed
by user utterances, typically are represented by a
set of predefined slots and their corresponding val-
ues. For instance, the user utterance “I am looking
for a Korean restaurant in the centre” mentions
two slots, food and area, whose values are Korean
and centre respectively.

Numerous methods are proposed to tackle the
challenge of DST recently, and these methods can
be mainly categorized into two types: fixed vocabu-
lary and open vocabulary (Eric et al., 2019). Fixed
vocabulary models are designed in the paradigm of
multi-class classification, relying on a predefined
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Turns Target Slot Source Slot
U0: I am looking for a Korean restaurant

in the centre.
S0: I have 1 restaurant name Little Seoul

in the expensive price range.

restaurant-food
restaurant-area

...

–
–
...

U2: Are there any places to go in the
same area as the restaurant?

S2: There are dozens of places to go in
city centre. What type of attraction
are you interested in today?

attraction-area
restaurant-food
restaurant-area

...

restaurant-area
–
–
...

U5: I also need a taxi to commute and need
it to arrive at the restaurant.

S5: I have booked a cab to take you to the
restaurant when you leave All Saint’s
church. The booked car type is a yellow
volkswagen.

taxi-departure
taxi-destination
attraction-area
restaurant-food
restaurant-area

...

attraction-name
restaurant-name

restaurant-area
–
–
...

Table 1: An example of multi-domain dialogue with
slot connections expressed by ellipsis and reference.
(We omit some turns and slots for simplicity.)

ontology(Henderson et al., 2014a; Mrkšić et al.,
2017; Zhong et al., 2018). Open vocabulary ap-
proaches (Xu and Hu, 2018; Wu et al., 2019; Gao
et al., 2019; Ren et al., 2019) break the assumption
of predefined ontologies, turning to generate values
only given target slots. Wu et al. (2019) propose a
copy-augmented encoder-decoder model to track
dialogue states, which outperforms fixed vocabu-
lary models and achieves the state-of-the-art result
in multi-domain DST.

Despite significant improvements achieved by
those open vocabulary models, they always suffer
from understanding enormous ellipsis and refer-
ence expressions in multi-domain scenarios. As
shown in Table 1, there are several slot connec-
tions across multiple domains and turns. For exam-
ple, at the second turn, the value of the target slot
attraction-area is informed by a referring expres-
sion “in the same area as the restaurant”. Thus, the
system needs to retrieve the value of its source slot
restaurant-area. The last turn shows an obscurer
utterance with multiple slot connections, in which
target slots taxi-departure and taxi-destination are
implicitly connected to their source slots attraction-
name and restaurant-name respectively. For those



35

slots that need connections, existing methods at-
tempt to find their values out from the lengthy di-
alogue history, which usually fail because of high
learning complexity.

In this paper, we formally consider the above
challenge as related-slot problem and propose a
novel model DST-SC (Dialogue State Tracking
with Slot Connections) to address it. We follow
previous work to build a copy-augmented encoder-
decoder model. Specially, DST-SC is designed
with a slot connecting mechanism to establish the
connection between the target slot and its source
slot explicitly. Thus it can take advantage of the
source slot value directly instead of reasoning from
preceding turns. The contributions of this work are
two-fold:

• To the best of our knowledge, this work is the
first one to discuss the related-slot problem in
multi-domain DST and address it by explicitly
modeling slot connections across domains.

• We demonstrate that DST-SC is more effective
for handling the related-slot problem and outper-
forms state-of-the-art baselines.

2 Model

In this section, we will describe DST-SC model in
detail. DST-SC is an open vocabulary model based
on the encoder-decoder architecture. As shown in
Figure 1, there are three components that contribute
to obtain the target slot value: (1) word generation
from the vocabulary; (2) word copying from the
dialogue history; (3) value copying from the source
slot. To reduce the burden on the decoder, DST-SC
also equips with a slot gate (Wu et al., 2019) to
predict for slot values of none and dontcare.

2.1 Encoder
Our model uses a bi-directional GRU (Cho et al.,
2014) to encode the dialogue history x =
{w1, w2, · · · , wm}, where m is the number of to-
kens in the dialogue history. Each input token is
first embedded using a word embedding function
φemb and then encoded into a fix-length vector hi.

hi = GRU(φemb(wi)). (1)

2.2 Word Generation
We employ another GRU to decode slot values.
Each slot is comprised of a domain name and a
slot name, e.g., hotel-area. While decoding the

j-th slot sj , its summed embedding is fed as the
first input. The last hidden state of the encoder
initializes the decoder hidden state. At decoding
step t, the hidden state is represented as h̃j

t . (The
superscript j will be omitted for simplicity.)

Following the vanilla attention-based decoder
architecture (Bahdanau et al., 2014), h̃t is used to
apply attention over encoder outputs and aggregate
them to get the context vector ct.

ati = softmax(fmlp([h̃t,hi])), (2)

ct =
m∑
i=1

ati hi. (3)

The distribution of generating token yt is given by:

Pgen(yt) = softmax(Wgen [h̃t, ct]). (4)

2.3 Word Copying
The copy mechanism is shown to be effective in
DST (Lei et al., 2018; Xu and Hu, 2018; Wu et al.,
2019). Here, we follow Wu et al. (2019) to augment
the vanilla attention-based decoder with pointer-
generator copying, enabling it to capture slot values
that explicitly occur in the dialogue history.

Pwc(yt = w) =
∑

i:wi=w

ati. (5)

A soft gate g1 is used to combine word copying
distribution and generative distribution.

g1 = sigmoid(Wg1 [h̃t, ct, φ
emb(yt−1)]), (6)

Porig(yt) = g1 Pgen(yt) + (1− g1)Pwc(yt).
(7)

2.4 Slot Connecting Mechanism
As claimed in Section 1, connecting the target slot
with its source slot helps to decrease the reason-
ing difficulty. Therefore, we enhance the copy-
augmented encoder-decoder model with a slot con-
necting mechanism to model slot correlations di-
rectly. When decoding the target slot sj , DST-SC
infers its source slot from last dialogue states, then
copies its value for the final distribution.

Last dialogue states are represented by (slot,
value) tuples: {(s1, v1), (s2, v2), · · · , (sn, vn)}.
We use h̃0 as the query to attend the potential
source slot.

ak = softmax(fmlp([h̃0, sk])), (8)

where sk is the summed slot embedding, k ∈
{1, 2, · · · , n} \ {j}. Attention score ak measures
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Figure 1: DST-SC model architecture (best viewed in color). Three processing flows leading to Pgen, Pwc, Pvc are
respectively generation (brown), copying from dialogue history (green), copying from last dialogue states (purple).

how related sk is to the target slot sj . It is computed
only once at the first decoding step and maintained
consistency to subsequent tokens in the value vk.
At the t-th decoding step, the t-th token vkt con-
tributes to form value copying distribution Pvc(yt).

Pvc(yt = w) =
∑

k: vkt=w

ak. (9)

Similar to the copy-augmented decoder, we com-
bine value copying distribution and original dis-
tributions using a soft gate g2 to get final output
distribution.

g2 = sigmoid(Wg2 c0), (10)

P (yt) = g2 Pvc(yt) + (1− g2)Porig(yt). (11)

3 Experimental Setup

3.1 Datasets

To evaluate the effectiveness of DST-SC, we
conducted experiments on MultiWOZ 2.0
(Budzianowski et al., 2018) and MultiWOZ
2.1 datasets (Eric et al., 2019). MultiWOZ 2.0
is a multi-domain dialogues corpus, and some
annotation errors are corrected in MultiWOZ 2.1.

3.2 Baselines

We compare DST-SC with several baseline meth-
ods. FJST and HJST (Eric et al., 2019) apply a
separate feed-forward network to classify for ev-
ery single state slot. HyST (Goel et al., 2019) is a
hybrid approach, which combines the joint track-
ing fixed vocabulary approach and open vocabu-
lary approach. COMER (Ren et al., 2019) adopts
three hierarchically stacked decoders to generate

dialogue states. TRADE (Wu et al., 2019) gener-
ates dialogue states from the dialogue history using
a copy-augmented decoder.

3.3 Implementation Details

In our experiments, we used Glove (Pennington
et al., 2014) and character embeddings (Hashimoto
et al., 2017) to initialize word embeddings, each
word is represented by a 400-dimensional vector.
The hidden sizes of all GRU layers are set to 400. In
the training phase, we used ground truth prior-turn
dialogue states in the slot connecting mechanism.
Adam optimizer (Kingma and Ba, 2015) is applied
with 0.001 learning rate initially. The learning rate
then reduced by a factor of 0.2, and the training
stopped early when the performance in validation
set was not improved for 6 consecutive epochs. We
used a batch size of 32 and dropout rate of 0.2.
Greedy search strategy is used for decoding, with
maximum 10 decoded tokens and 50% probability
of teacher forcing. Also, we followed previous
work to utilize our model with the word dropout
(Wu et al., 2019) by masking input tokens with
a 20% probability. All experiments are averaged
across 3 seeds.

4 Results and Analysis

4.1 Experimental Results

We follow previous work to compare the perfor-
mance of joint goal accuracy. We get the joint
goal correct if the predicted state exactly matches
the ground truth state for every slot. As shown
in Table 2, open vocabulary approaches achieve
higher accuracy than fixed vocabulary approaches.
DST-SC achieves state-of-the-art performance on
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Model MultiWOZ 2.0 MultiWOZ 2.1
FJST† 40.20% 38.00%
HJST† 38.40% 35.55%
HyST† 42.33% 38.10%
COMER† 48.79% –
TRADE1 50.83% 48.29%

DST-SC 52.24% 49.58%

Table 2: Joint goal accuracy on MultiWOZ 2.0 and
MultiWOZ 2.1. Results marked with † are from origi-
nal papers.

MultiWOZ 2.0 and MultiWOZ 2.1, with the joint
goal accuracy of 52.24% and 49.58%.

4.2 Related-slot Tests

We conducted further related-slot tests to verify
the effectiveness of DST-SC in solving the related-
slot problem. The dataset for related-slot tests is
constructed by manually extracting dialogues with
the related-slot problem from MultiWOZ 2.1 test
set. We made an observation that slot connections
are common at target slots such as attraction-area,
hotel-area, hotel-book day and so on. We only
need to focus on target slot accuracy of turns with
slot connections. However, some target slots occur
infrequently in the extracted dataset. Considering
that target slots from different domains with the
same slot type always correspond to similar slot
connection expressions, we can neglect their do-
mains and calculate the accuracy of each slot type
instead. For example, we can calculate the accu-
racy of slot type price instead of calculating the
accuracy of hotel-price range and restaurant-price
range separately. Table 3 lists slot types and their
corresponding target slots.

To make more convincing tests, we performed
data augmentations to get more samples for each
slot type. We used two heuristic rules to augment
the extracted data and obtained 100 dialogues for
each slot type. (1) Paraphrasing: we rewrote
some utterances to get multiple phrases with the
same intent. For example, the phrase “in the same
area as the restaurant” can be rewritten as “close
to the restaurant”. (2) Replacing values: we re-
placed some slot values to exclude the influence of
overfitting. For example, the phrase “stay in the
east” can be replaced as “stay in the west”.

1We re-implemented TRADE as described in section 2.2
and section 2.3 and got a stronger baseline.

Slot Type Target Slots

area
attraction-area, hotel-area,
restaurant-area

day
hotel-book day, train-day,
restaurant-book day

people
hotel-book people,
restaurant-book people,
train-book people

departure taxi-departure
destination taxi-destination

price
hotel-price range,
restaurant-price range

time
restaurant-book time,
taxi-arrive by, taxi-leave at,
train-arrive by, train-leave at

Table 3: Slot types and corresponding target slots in-
volved in related-slot tests.

As shown in Table 4, DST-SC outperforms
TRADE by a large margin at most slot types. Case
1 in Table 5 illustrates the advantage of DST-SC
explicitly. We find that both generation and word
copying miss the correct token. However, the slot
connecting mechanism in DST-SC helps to find out
the correct source slot and merges its value into P
under the control of gate g2.

Note that there are no obvious improvements on
slot types departure and destination. We suspect
that this is caused by lots of missing annotations for
attraction-name, hotel-name and restaurant-name,
which usually act as source slots for departure and
destination. The absence of these critical informa-
tion makes DST-SC pay less attention to values
from source slots. As shown in case 2 in Table 5,
even if the slot connection mechanism has inferred
the correct source slot, the unconfidence of g2 leads
to the final incorrect output.

5 Related Work

Traditional approaches for dialogue state tracking
(Henderson et al., 2014b; Sun et al., 2014; Zilka
and Jurcı́cek, 2015; Mrkšić et al., 2015) rely on
manually constructed semantic dictionaries to ex-
tract features from input text, known as delexicali-
sation. These methods are vulnerable to linguistic
variations and difficult to scale. To overcome these
problems, Mrkšić et al. (2017) propose the first
data-driven model for DST, the employed deep
learning approaches provide stronger representa-
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Model area day departure destination people price time
TRADE 49.33% 16.00% 49.66% 48.33% 12.00% 26.33% 86.66%
DST-SC 86.33% 92.00% 46.66% 48.66% 87.00% 53.33% 87.33%

Table 4: Slot type accuracy of related-slot tests.

Case 1: dialogue idx=PMUL0129 (success) Case 2: dialogue idx=MUL1228 (failure)

U1: I want to book a table for 4 people ... S3: I have 1 hotel in the moderate range, cityroomz. Would you like ...
· · · U4: Yes, please. Can you book a room for Friday for 1 person, 3 nights?
S3: The Bridge guest house is available. Would you like ... · · ·
U4: Yes, please. For the same number of people, 2 nights ... U6: ... I need the taxi to take me to the hotel.

Target slot: hotel-book people=4 Target slot: taxi-destination=cityroomz
Source slot: restaurant-book people=4 Source slot: hotel-name=cityroomz

Model Pgen Pwc Pvc g1 g2 P Model Pgen Pwc Pvc g1 g2 P

TRADE “3” “people” – 0.999 – “3” TRADE “none” “peking” – 0.148 – “peking”
DST-SC “1” “the” “4” 0.999 0.991 “4” DST-SC “lensfield” “hotel” “cityroomz” 0.942 0.078 “lensfield”

Table 5: Case study. We only list tokens with the highest output probability in Pgen, Pwc, Pvc and P .

tion learning ability. By sharing parameters among
slots (Ren et al., 2018; Zhong et al., 2018; Nouri
and Hosseini-Asl, 2018), the model is further im-
proved to track rare slot values. These approaches
are all designed in the paradigm of multi-class clas-
sification over predefined slot value candidates and
usually referred to as fixed vocabulary approaches.

Fixed vocabulary approaches always require a
predefined ontology, which is usually impractical.
Their applications are usually limited in a single
domain. Therefore, several open vocabulary ap-
proaches in generative fashion (Xu and Hu, 2018;
Wu et al., 2019; Gao et al., 2019; Ren et al., 2019)
are proposed to handle unlimited slot values in
more complicated dialogues. Open vocabulary
models show the promising performance in multi-
domain DST. However, ellipsis and reference phe-
nomena among multi-domain slots are still less
explored in existing literature.

6 Conclusion

In this paper, we highlight a regularly appeared yet
rarely discussed problem in multi-domain DST,
namely the related-slot problem. We propose
a novel dialogue state tracking model DST-SC,
which equips with the slot connecting mechanism
to build slot connections across domains. Our
model achieves significant improvements on two
public datasets and shows effectiveness on related-
slot problem tests. Annotations complement for
MultiWOZ dataset in the future might enable DST-
SC to handle the related-slot problem more effec-
tively and further improve the joint accuracy.
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