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Abstract

Many natural language questions require qual-
itative, quantitative or logical comparisons be-
tween two entities or events. This paper ad-
dresses the problem of improving the accuracy
and consistency of responses to comparison
questions by integrating logic rules and neu-
ral models. Our method leverages logical and
linguistic knowledge to augment labeled train-
ing data and then uses a consistency-based
regularizer to train the model. Improving
the global consistency of predictions, our ap-
proach achieves large improvements over pre-
vious methods in a variety of question answer-
ing (QA) tasks including multiple-choice qual-
itative reasoning, cause-effect reasoning, and
extractive machine reading comprehension. In
particular, our method significantly improves
the performance of RoBERTa-based models
by 1-5% across datasets. We advance state of
the art by around 5-8% on WIQA and QuaRel
and reduce consistency violations by 58% on
HotpotQA. We further demonstrate that our
approach can learn effectively from limited
data.1

1 Introduction

Comparison-type questions (Tandon et al., 2019;
Tafjord et al., 2019; Yang et al., 2018) ask about re-
lationships between properties of entities or events
such as cause-effect, qualitative or quantitative rea-
soning. To create comparison questions that re-
quire inferential knowledge and reasoning ability,
annotators need to understand context presented
in multiple paragraphs or carefully ground a ques-
tion to the given situation. This makes it chal-
lenging to annotate a large number of comparison
questions. Most current datasets on comparison
questions are much smaller than standard machine
reading comprehension (MRC) datasets (Rajpurkar

1Our code and data is available at https://github.
com/AkariAsai/logic_guided_qa.

Q: The ceramic vase was less flexible 
than the plastic ball so it was
A: more breakable 

Q: The ceramic vase was more flexible 
than the plastic ball so it was
A: less breakable 

Q: If it is silent, does the outer ear collect 
less sound waves?
A: more [positive causal relationship]

Q: If the outer ear collect less sound 
waves, is less sound being detected?
A: more [positive causal relationship]

Q: If it is silent, is less sound being 
detected?
A: more [positive causal relationship]
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Figure 1: Inconsistent predictions by RoBERTa. Top
row shows an example of symmetric inconsistency and
the second row shows an example of transitive incon-
sistency. The examples are partially modified.

et al., 2016; Joshi et al., 2017). This poses new
challenges to standard models, which are known
to exploit statistical patterns or annotation artifacts
in these datasets (Sugawara et al., 2018; Min et al.,
2019a). Importantly, state-of-the-art models show
inconsistent comparison predictions as shown in
Figure 1. Improving the consistency of predictions
has been previously studied in natural language in-
ference (NLI) tasks (Minervini and Riedel, 2018;
Li et al., 2019), but has not been addressed in QA.

In this paper, we address the task of produc-
ing globally consistent and accurate predictions for
comparison questions leveraging logical and sym-
bolic knowledge for data augmentation and train-
ing regularization. Our data augmentation uses a
set of logical and linguistic knowledge to develop
additional consistent labeled training data. Sub-
sequently, our method uses symbolic logic to in-
corporate consistency regularization for additional
supervision signal beyond inductive bias given
by data augmentation. Our method generalizes
previous consistency-promoting methods for NLI
tasks (Minervini and Riedel, 2018; Li et al., 2019)

https://github.com/AkariAsai/logic_guided_qa
https://github.com/AkariAsai/logic_guided_qa
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to adapt to substantially different question formats.
Our experiments show significant improvement

over the state of the art on a variety of QA tasks:
a classification-based causal reasoning QA, a mul-
tiple choice QA for qualitative reasoning and an
extractive MRC task with comparisons between en-
tities. Notably, our data augmentation and consis-
tency constrained training regularization improves
performance of RoBERTa-based models (Liu et al.,
2019) by 1.0%, 5.0% and 2.5% on WIQA, QuaRel
and HotpotQA. Our approach advances the state-
of-the-art results on WIQA and QuaRel with 4.7
and 8.4% absolute accuracy improvement, respec-
tively, reducing inconsistent predictions. We fur-
ther demonstrate that our approach can learn effec-
tively from limited labeled data: given only 20%
of the original labeled data, our method achieves
performance on par with a competitive baseline
learned with the full labeled data.

2 Related Work

Data augmentation has been explored in a variety of
tasks and domains (Krizhevsky et al., 2009; Cubuk
et al., 2019; Park et al., 2019). In NLP, using back-
translation (Yu et al., 2018) or dictionary based
word replacement (Zhang et al., 2015) has been
studied. Most relevant to our work, Kang et al.
(2018) study NLI-specific logic and knowledge-
based data augmentation. Concurrent to our work,
Gokhale et al. (2020) study visual QA models’ abil-
ity to answer logically composed questions, and
show the effectiveness of logic-guided data aug-
mentation. Our data augmentation does not rely on
task-specific assumptions, and can be adapted to
different formats of QA task. We further leverage
consistency-promoting regularization, which gives
improvements in accuracy and consistency.

Improving prediction consistency via training
regularization has been studied in NLI tasks. Min-
ervini and Riedel (2018) present model-dependent
first-order logic guided adversarial example gener-
ation and regularization. Li et al. (2019) introduce
consistency-based regularization incorporating the
first-order logic rules. Previous approach is model-
dependent or relies on NLI-specific rules, while our
method is model-agnostic and is more generally ap-
plicable by combining it with data augmentation.

Regularizing loss to penalize violations of struc-
tural constraints in models’ output has been also
studied in previous work on constraint satisfaction
in structured learning (Lee et al., 2019; Ganchev

et al., 2010). Our work regularizes models to pro-
duce globally consistent predictions among aug-
mented data following logical constraints, while
those studies incorporates structured prediction
models following linguistics rules.

3 Method

We present the components of our QA method:
first-order logic guided data augmentation (Sec-
tion 3.1 and Section 3.2), and consistency-based
regularization (Section 3.3).

3.1 Consistent Question Answering
For globally consistent predictions in QA, we re-
quire responses to follow two important general
logical rules: symmetric consistency and transitive
consistency, which are illustrated in Figure 1 and
are formally described below.

Let q, p, a be a question, a paragraph and an
answer predicted by a model. A is a set of answer
candidates. Each element of A can be a span in
p, a class category, or an arbitrary answer choice.
X = {q, p, a} represents a logic atom.

Symmetric consistency In a comparison ques-
tion, small surface variations such as replacing
words with their antonyms can reverse the answer,
while keeping the overall semantics of the ques-
tion as before. We define symmetry of questions
in the context of QA as follows: (q, p, a∗) ↔
(qsym, p, a

∗
sym), where q and qsym are antonyms of

each other, and a∗sym is the opposite of the ground-
truth answer a∗ in A. For example, the two ques-
tions in the first row of Figure 1 are symmetric pairs.
We define the symmetric consistency of predictions
in QA as the following logic rule:

(q, p, a)→ (qsym, p, asym), (1)

which indicates a system should predict asym given
(qsym, p), if it predicts a for (q, p).

Transitive consistency. Transitive inference be-
tween three predicates A,B,C is represented as:
A → B ∧ B → C then A → C (Gazes et al.,
2012). In the context of QA, the transitive exam-
ples are mainly for causal reasoning questions that
inquire about the effect e given the cause c. The
second row of Figure 1 shows an example where
transitive consistency is violated. For two ques-
tions q1 and q2 in which the effect of q1 (= e1)
is equal to the cause of q2 (= c2), we define the
transitive consistency of predictions as follows:

(q1, p, a1)∧ (q2, p, a2)→ (qtrans, p, atrans). (2)
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WIQA QuaRel HotpotQA
(Tandon et al., 2019) (Tafjord et al., 2019) (Yang et al., 2018)

reasoning Causal Reasoning Qualitative Reasoning Qualitative Comparison of entities
format classification multiple choice span extraction

p

The rain seeps into the wood surface.
When rain evaporates it leaves the wood.
It takes the finish of the wood with it.
The wood begins to lose it’s luster.

Supposed you were stand-
ing on the planet Earth and
Mercury. When you look up
in the sky and see the sun,

Golf Magazine is a monthly golf
magazine owned by Time Inc. El
Nuevo Cojo Ilustrado is an Ameri-
can Spanish language magazine.

q
q1:If a tsunami happens, will wood be
more moist?, q2: If wood is more
moist, is more weathering occurring?

Which planet would the sun
appear larger?

El Nuevo Cojo and Golf Magazine,
which one is owned by Time Inc?

A {more, less, no effects} {Mercury, Earth} {Golf Magazine, El Nuevo Cojo}
a∗ a∗1 : more, a∗2 : more Mercury Golf Magazine

qaug
If a tsunami happens, is more weather-
ing occurring?

Which planet would the sun
appear smaller?

Which one is not owned by Time
Inc, Golf Magazine El Nuevo Cojo?

a∗aug more Earth El Nuevo Cojo

Table 1: An augmented transitive example for WIQA, and symmetric examples for QuaRel and HotpotQA. We
partially modify paragraphs and questions. The bold characters denote a shared event connecting two questions.
The parts written in red or blue denote antonyms, and highlighted text is negation added by our data augmentation.

3.2 Logic-guided Data Augmentation

Given a set of training examples X in the form
of (q, p, a∗), we automatically generate additional
examples Xaug = {qaug, p, a∗aug} using symme-
try and transitivity logical rules. The goal is to
augment the training data so that symmetric and
transitive examples are observed during training.
We provide some augmented examples in Table 1.

Augmenting symmetric examples To create a
symmetric question, we convert a question into
an opposite one using the following operations:
(a) replace words with their antonyms, (b) add, or
(c) remove words. For (a), we select top frequent
adjectives or verbs with polarity (e.g., smaller, in-
creases) from training corpora, and expert annota-
tors write antonyms for each of the frequent words
(we denote this small dictionary as D). More de-
tails can be seen in Appendix A. For (b) and (c),
we add negation words or remove negation words
(e.g., not). For all of the questions in training data,
if a question includes a word in D for the oper-
ation (a), or matches a template (e.g., which *
is↔ which * is not) for operations (b) and
(c), we apply the operation to generate qsym.2 We
obtain a∗sym by re-labeling the answer a∗ to its op-
posite answer choice in A (see Appendix B).

Augmenting transitive examples We first find a
pair of two cause-effect questions X1 = (q1, p, a

∗
1)

and X2 = (q2, p, a
∗
2), whose q1 and q2 consist of

2We observe that (b)(c) are less effective than (a) in WIQA
or QuaRel, while especially (b) contributes to the performance
improvements on HotpotQA as much as (a) does.

(c1, e1) and (c2, e2), where e1 = c2 holds. When
a∗1 is a positive causal relationship, we create a new
example Xtrans = (q3, p, a

∗
2) for q3 = (c1, e2).

Sampling augmented data Adding all consis-
tent examples may change the data distribution
from the original one, which may lead to a dete-
rioration in performance (Xie et al., 2019). One
can select the data based on a model’s prediction
inconsistencies (Minervini and Riedel, 2018) or
randomly sample at each epoch (Kang et al., 2018).
In this work, we randomly sample augmented data
at the beginning of training, and use the same ex-
amples for all epochs during training. Despite its
simplicity, this yields competitive or even better
performance than other sampling strategies.3

3.3 Logic-guided Consistency Regularization

We regularize the learning objective (task loss,
Ltask) with a regularization term that promotes con-
sistency of predictions (consistency loss, Lcons).

L = Ltask(X) + Lcons(X,Xaug). (3)

The first term Ltask penalizes making incorrect pre-
dictions. The second term Lcons4 penalizes making
predictions that violate symmetric and transitive
logical rules as follows:

Lcons = λsymLsym + λtransLtrans, (4)

where λsym and λtrans are weighting scalars to
balance the two consistency-promoting objectives.

3We do not add Xaug if the same pair has already exist.
4We mask the Lcons for the examples without symmetric

or transitive consistent examples.
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Dataset WIQA QuaRel HotpotQA
Dev Test v (%) Dev Test v (%) Dev v (%)

x% data 20% 40% 100 % 100% 100% 20% 100% 100% 100% 20% 100 % 100 %
(# of X) (6k) (12k) (30k) (30k) (30k) (0.4k) (2k) (2k) (2k) (18k) (90k) (90k)

SOTA – – – 73.8 – – – 76.6 – – – –
RoBERTa 61.1 74.1 74.9 77.5 12.0 56.4 81.1 80.0 19.2 71.0 75.5 65.2
DA 72.1 75.5 76.3 78.3 6.0 69.3 84.5 84.7 13.3 73.1 78.0 6.3
DA + Reg 73.9 76.1 77.0 78.5 5.8 70.9 85.1 85.0 10.3 71.9 76.9 7.2

Table 2: WIQA, QuaRel and HotpotQA results:we report test and development accuracy (%) for WIQA and
QuaRel and development F1 for HotpotQA. DA and Reg denote data augmentation and consistency regularization.
“SOTA” is Tandon et al. (2019) for WIQA and Mitra et al. (2019) for QuaRel. v presents violations of consistency.

Previous studies focusing on NLI consis-
tency (Li et al., 2019) calculate the prediction in-
consistency between a pair of examples by swap-
ping the premise and the hypothesis, which can-
not be directly applied to QA tasks. Instead, our
method leverages consistency with data augmen-
tation to create paired examples based on general
logic rules. This enables the application of con-
sistency regularization to a variety of QA tasks.

Inconsistency losses The loss computes the dis-
similarity between the predicted probability for the
original labeled answer and the one for the aug-
mented data defined as follows:

Lsym = |log p(a|q, p)−log p(aaug|qaug, p)|. (5)

Likewise, for transitive loss, we use absolute
loss with the product T-norm which projects a logi-
cal conjunction operation (q1, p, a1) ∧ (q2, c, a2)
to a product of probabilities of two operations,
p(a1|q1, p)p(a2|q2, p), following Li et al. (2019).
We calculate a transitive consistency loss as:

Ltrans = |log p(a1|q1, p) + log p(a2|q2, p)−
log p(atrans|qtrans, p)|.

Annealing The model’s predictions may not be
accurate enough at the beginning of training for
consistency regularization to be effective. We per-
form annealing (Kirkpatrick et al., 1983; Li et al.,
2019; Du et al., 2019). We first set λ{sym,trans} =
0 in Eq. (4) and train a model for τ epochs, and
then train it with the full objective.

4 Experiments
Datasets and experimental settings We experi-
ment on three QA datasets: WIQA (Tandon et al.,
2019), QuaRel (Tafjord et al., 2019) and HotpotQA
(oracle, comparison questions5) (Yang et al., 2018).

5We train models on both bridge and comparison questions,
and evaluate them on extractive comparison questions only.

WIQA QuaRel

metric acc v (%) acc v (%)

DA (logic) + Reg 77.0 5.8 85.1 10.3
DA (logic) 76.3 6.0 84.5 13.5
DA (standard) 75.2 12.3 83.3 14.5
Reg 75.8 11.4 – –
Baseline 74.9 12.0 81.1 19.2

Table 3: Ablation studies of data augmentation on
WIQA and QuaRel development dataset.

As shown in Table 1, these three datasets are sub-
stantially different from each other in terms of re-
quired reasoning ability and task format. In WIQA,
there are 3,238 symmetric examples and 4,287 tran-
sitive examples, while 50,732 symmetric pairs and
1,609 transitive triples are missed from the origi-
nal training data. HotpotQA and QuaRel do not
have any training pairs requiring consistency. Our
method randomly samples 50, 80, 90% of the aug-
mented data for WIQA, QuaRel and HotpotQA,
resulting in 24,715/836/3,538 newly created train-
ing examples for those datasets, respectively.

We use standard F1 and EM scores for perfor-
mance evaluation on HotpotQA and use accuracy
for WIQA and QuaRel. We report a violation of
consistency following Minervini and Riedel (2018)
to evaluate the effectiveness of our approach for
improving prediction consistencies. We compute
the violation of consistency metric v as the percent-
age of examples that do not agree with symmetric
and transitive logical rules. More model and exper-
imental details are in Appendix.

Main Results Table 2 demonstrates that our
methods (DA and DA + Reg) constantly give 1
to 5 points improvements over the state-of-the-
art RoBERTa QA’s performance on all three of
the datasets, advancing the state-of-the-art scores
on WIQA and QuaRel by 4.7% and 8.4%, respec-
tively. On all three datasets, our method signifi-
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WIQA Input RoBERTa DA DA+Reg

p Sound enters the ears of a person. The sound hits a drum that is inside the ears.
q If the person has his ears more protected, will less sound be detected? [a∗: More] More (0.79) More (0.93) More (0.93)

qsym If the person has his ears less protected, will less sound be detected? [asym∗: Less] More (0.87) More (0.72) Less (0.89)
p Squirrels try to eat as much as possible. Squirrel gains weight.
q1 If the weather has a lot of snow, cannot squirrels eat as much as possible? [a∗

1 : More] Less (0.75) More (0.48) More (0.94)
q2 If squirrels cannot eat as much as possible, will not the squirrels gain weight? [a∗

2 : More] More (0.86) More (0.94) More (0.93)
qtrans If the weather has a lot of snow, will not the squirrels gain weight? [a∗

trans: More] Less (0.75) More (0.43) More (0.87)

HotpotQA (comparison) Input RoBERTa DA

p B. Reeves Eason is a film director, actor and screenwriter. Albert S. Rogell a film director.
q Who has more scope of profession, B. Reeves Eason or Albert S. Rogell? [a∗: B. Reeves Eason] B. Reeves Eason B. Reeves Eason

qsym Who has less scope of profession, B. Reeves or Albert S. Rogell? [a∗
sym: Albert S. Rogell] B. Reeves Eason Albert S. Rogell

Table 4: Qualitative comparison of RoBERTa, + DA, + DA + Reg. The examples are partially modified.

cantly reduces the inconsistencies in predictions,
demonstrating the effects of both data augmenta-
tion and regularization components. Notably on
WIQA, RoBERTa shows violation of consistency
in 13.9% of the symmetric examples and 10.0% of
the transitive examples. Our approach reduces the
violations of symmetric and transitive consistencies
to 8.3% and 2.5%, respectively.

Results with limited training data Table 2 also
shows that our approach is especially effective un-
der the scarce training data setting: when only 20%
of labeled data is available, our DA and Reg to-
gether gives more than 12% and 14% absolute ac-
curacy improvements over the RoBERTa baselines
on WIQA and QuaRel, respectively.

Ablation study We analyze the effectiveness of
each component on Table 3. DA and Reg each im-
proves the baselines, and the combination performs
the best on WIQA and QuaRel. DA (standard) fol-
lows a previous standard data augmentation tech-
nique that paraphrases words (verbs and adjec-
tives) using linguistic knowledge, namely Word-
Net (Miller, 1995), and does not incorporate logi-
cal rules. Importantly, DA (standard) does not give
notable improvement over the baseline model both
in accuracy and consistency, which suggests that
logic-guided augmentation gives additional induc-
tive bias for consistent QA beyond amplifying the
number of train data. As WIQA consists of some
transitive or symmetric examples, we also report
the performance with Reg only on WIQA. The per-
formance improvements is smaller, demonstrating
the importance of combining with DA.

Qualitative Analysis Table 4 shows qualitative
examples, comparing our method with RoBERTa
baseline. Our qualitative analysis shows that
DA+Reg reduces the confusion between opposite
choices, and assigns larger probabilities to the

ground-truth labels for the questions where DA
shows relatively small probability differences.

On HotpotQA, the baseline model shows large
consistency violations as shown in Table 2.
The HotpotQA example in Table 4 shows that
RoBERTa selects the same answer to both q and
qsym, while DA answers correctly to both ques-
tions, demonstrating its robustness to surface varia-
tions. We hypothesize that the baseline model ex-
ploits statistical pattern, or dataset bias presented in
questions and that our method reduces the model’s
tendency to exploit those spurious statistical pat-
terns (He et al., 2019; Elkahky et al., 2018), which
leads to large improvements in consistency.

5 Conclusion

We introduce a logic guided data augmentation
and consistency-based regularization framework
for accurate and globally consistent QA, especially
under limited training data setting. Our approach
significantly improves the state-of-the-art models
across three substantially different QA datasets.
Notably, our approach advances the state-of-the-art
on QuaRel and WIQA, two standard benchmarks
requiring rich logical and language understanding.
We further show that our approach can effectively
learn from extremely limited training data.
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A Details of Human Annotations

In this section, we present the details of human an-
notations used for symmetric example creation (the
(a) operation). We first sample the most frequent
500 verbs, 50 verb phrases and 500 adjectives from
from the WIQA and QuaRel training data. Then,
human annotators select words with some polarity
(e.g., increase, earlier). Subsequently, they anno-
tate the antonyms for each of the selected verbs and
adjectives. Consequently, we create 64 antonym
pairs mined from a comparison QA dataset. We
reuse the same dictionary for all three datasets. Ex-
amples of annotated antonym pairs are shown in
Table 5.

adjectives verbs & verb phrases

more ↔ less increase ↔ decrease
slowly ↔ quickly heat up ↔ cool down
stronger ↔ weaker lose weight ↔ gain weight
later ↔ earlier raise ↔ drop
younger ↔ older remove ↔ add

Table 5: Ten examples of annotated antonyms for com-
parison type questions.

B Details of answer re-labeling on WIQA
and HotpotQA

We present the details of answer re-labeling opera-
tions in WIQA and HotpotQA, where the number
of the answer candidates is more than two.

Answer re-labeling in WIQA (symmetric) In
WIQA, each labeled answer a∗ takes one of the fol-
lowing values: {more, less, no effects}. Although
more and less are opposite, no effects is a neutral
choice. In addition, in WIQA, a question q consists
of a cause c and an effect e, and we can operate the
three operations (a) replacement, (b) addition and
(c) removal of words. When we add the operations
to both of c and e, it would convert the question
to opposite twice, and thus the original answer re-
mains same. When we add one of the operation to
either of c or e, it would convert the question once,
and thus, the answer should be the opposite one.
Given these two assumption, we re-label answer
as: (i) if we apply only one operation to either e
or c and a∗ is more or less, the a∗sym will be the
opposite of a∗, (ii) if we apply only one operation
to either e or c and a∗ is no effect, the a∗sym will
remain no effect, and (iii) if we apply one operation
to each of e and c, the asym remains the same.
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Answer re-labeling in WIQA (transitive) For
transitive examples, we re-label answers based on
two assumptions on causal relationship. A tran-
sitive questions are created from two questions,
X1 = (q1, p, a

∗
1) and X2 = (q2, p, a

∗
2), where q1

and q2 consist of (c1, e1) and (c2, e2) and e1 = c2
holds. If a1 for X1 is “more”, it means that the
c1 causes e1. e1 is equivalent to the cause for the
second question (c2), and a∗2 represents the causal
relationship between c2 and e2. Therefore, if a∗1 is
a positive causal relationship, c1 and e2 have the
relationship defined as a∗2. We assume that if the
a∗1 is “more”, a∗3(= a∗trans) will be same as a2, and
re-label answer following this assumption.

Answer re-labeling in HotpotQA In Hot-
potQA, answer candidates A are not given. There-
fore, we extract possible answers from q. We ex-
tract two entities included in q by string match-
ing with the titles of the paragraphs given by the
dataset. If we find two entities to be compared and
both of them are included in the gold paragraphs,
we assume the two entities are possible answer can-
didates. The new answer a∗sym will be determined
as the one which is not the original answer a∗.

C Details of Baseline Models

We use RoBERTa (Li et al., 2019) as our baseline.
Here, we present model details for each of the three
different QA datasets.

Classification-based model for WIQA As the
answer candidates for WIQA questions are set to
{more, less, no effects}, we use a classification
based models as studied for NLI tasks. The input
for this model is [CLS] p [SEP] q [SEP]. We
use the final hidden vector corresponding to the
first input token ([CLS]) as the aggregate repre-
sentation. We then predict the probabilities of an
answer being a class C in the same manner as in
(Devlin et al., 2019; Liu et al., 2019).

Multiple-choice QA model for QuaRel For
QuaRel, two answer choices are given, and thus we
formulate the task as multiple-choice QA. In the
original dataset, all of the p, q and A are combined
together (e.g., The fastest land animal on earth, a
cheetah was having a 100m race against a rabbit.
Which one won the race? (A) the cheetah (B) the
rabbit), and thus we process the given combined
questions into p, q and A (e.g., the question written
above will be p =The fastest land animal on earth,

a cheetah was having a 100m race against a rab-
bit. , q =Which one won the race? and A ={the
cheetah, rabbit}). Then the input will be [CLS] p
[SEP] “Q: ” q “A: ” ai [SEP], and we will use
the final hidden vector corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. We then predict the probabilities of an answer
being an answer choice ai in the same manner as
in (Liu et al., 2019).

Span QA model for HotpotQA We use the
RoBERTa span QA model studied for SQuAD (De-
vlin et al., 2019; Liu et al., 2019) for HotpotQA.
As we only consider the questions whose answers
can be extracted from p, we do not add any modifi-
cations to the model unlike some previous studies
in HotpotQA (Min et al., 2019b; Ding et al., 2019).

D Details of Implementations and
Experiments

Implementations Our implementations are all
based on PyTorch. In particular, to implement our
classification based and span-based model, we use
pytorch-transformers (Wolf et al., 2019)6.
To implement our multiple choice model, we use
fairseq (Ott et al., 2019)7.

Hyper-parameters For HotpotQA, we train a
model for six epochs in total. For the model with-
out data augmentation or regularization, we train
on the original dataset for six epochs. For the mod-
els with data augmentation, we first train them on
the original HotpotQA train data (including both
bridge and comparison questions) for three epochs,
and then train our model with augmented data and
regularization for three epochs. For HotpotQA, we
train our model with both bridge and comparison
questions, and evaluate on comparison questions
whose answers can be extracted from the context.

Due to the high variance of the performance in
the early stages of the training for small datasets
such as QuaRel or WIQA, for these two datasets,
we set the maximum number of training epochs to
150 and 15, respectively. We terminate the train-
ing when we do not observe any performance im-
provements on the development set for 5 epochs
for WIQA and 10 epochs for QuaRel, respectively.
We use Adam as an optimizer (ε = 1E − 8) for

6https://github.com/huggingface/
transformers

7https://github.com/pytorch/fairseq

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/pytorch/fairseq
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all of the datasets. Other hyper-parameters can be
seen from Table 6

hyper-parameters WIQA QuaRel HotpotQA

train batch size 4 16 12
gradient accumulation 16 1 1
max token length 256 512 384
doc stride – – 128
learning rate 2E-5 1E-5 5E-5
weight decay 0.01 0.01 0.0
dropout 0.1 0.1 0.1
warm up steps 0 150 0
τ for annealing 3 25 3
λsym 0.5 0.1 0.25
λtrans 0.05 – –

Table 6: Ten examples of annotated antonyms for com-
parison type questions.

E Qualitative Examples on HotpotQA

As shown in Table 2, the state-of-the-art RoBERTa
model produces a lot of consistency violations.
Here, we present several examples where our com-
petitive baseline model cannot answer correctly,
while our RoBERTa+DA model answers correctly.

A question requiring world knowledge One
comparison question asks “Who has more scope of
profession, B. Reeves Eason or Albert S. Rogell”,
given context that B. Reeves is an American film di-
rector, actor and screenwriter and Albert S. Rogell
is an American film director. The model correctly
predicts “B. Reeves Eason” but fails to answer cor-
rectly to “Who has less scope of profession, B.
Reeves Eason or Albert S. Rogell”, although the
two questions are semantically equivalent.

A question with negation We found that due to
this reasoning pattern our model struggles on ques-
tions involving negation. Here we show one ex-
ample. We create a question by adding a negation
word, qsym,“Which species is not native to asia,
corokia or rhodotypos?”, where we add negation
word not and the paragraph corresponding to the
question is p =“Corokia is a genus in the Argo-
phyllaceae family comprising about ten species
native to New Zealand and one native to Australia.
Rhodotypos scandens is a deciduous shrub in the
family Rosaceae and is native to China, possi-
bly also Japan.”. The model predicts Rhodoty-
pos scandens, while the model predicts the same
answer to the original question q, ‘which species
is native to asia, corokia or rhodotypos?”. This
example shows that the model strongly relies on

surface matching (i.e., “native to”) to answer the
question, without understanding the rich linguistic
phenomena or having world knowledge.


