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Abstract

Answer retrieval is to find the most aligned an-
swer from a large set of candidates given a
question. Learning vector representations of
questions/answers is the key factor. Question-
answer alignment and question/answer seman-
tics are two important signals for learning the
representations. Existing methods learned se-
mantic representations with dual encoders or
dual variational auto-encoders. The semantic
information was learned from language mod-
els or question-to-question (answer-to-answer)
generative processes. However, the alignment
and semantics were too separate to capture the
aligned semantics between question and an-
swer. In this work, we propose to cross vari-
ational auto-encoders by generating questions
with aligned answers and generating answers
with aligned questions. Experiments show
that our method outperforms the state-of-the-
art answer retrieval method on SQuAD.

1 Introduction

Answer retrieval is to find the most aligned an-
swer from a large set of candidates given a ques-
tion (Ahmad et al., 2019; Abbasiyantaeb and
Momtazi, 2020). It has been paid increasing at-
tention by the NLP and information retrieval com-
munity (Yoon et al., 2019; Chang et al., 2020).
Sentence-level answer retrieval approaches rely on
learning vector representations (i.e., embeddings)
of questions and answers from pairs of question-
answer texts. The question-answer alignment and
question/answer semantics are expected to be pre-
served in the representations. In other words, the
question/answer embeddings must reflect their se-
mantics in the texts of being aligned as pairs.

One popular scheme “Dual-Encoders” (also
known as “Siamese network” (Triantafillou et al.,
2017; Das et al., 2016)) has two separate encoders
to generate question and answer embeddings and

Table 1: The answer at the bottom of this table was
aligned to 17 different questions at the sentence level.

Question (1): What three stadiums did the NFL de-
cide between for the game?
Question (2): What three cities did the NFL consider
for the game of Super Bowl 50?

...
Question (17): How many sites did the NFL narrow
down Super Bowl 50’s location to?
Answer: The league eventually narrowed the bids to
three sites: New Orleans Mercedes-Benz Superdome,
Miami Sun Life Stadium, and the San Francisco Bay
Area’s Levi’s Stadium.

a predictor to match two embedding vectors (Cer
et al., 2018; Yang et al., 2019). Unfortunately, it
has been shown difficult to train deep encoders
with the weak signal of matching prediction (Bow-
man et al., 2015). Then there has been growing in-
terests in developing deep generative models such
as variational auto-encoders (VAEs) and genera-
tive adversial networks (GANs) for learning text
embeddings (Xu et al., 2017; Xie and Ma, 2019).
As shown in Figure 1(b), the scheme of “Dual-
VAEs” has two VAEs, one for question and the
other for answer (Shen et al., 2018). It used the
tasks of generating reasonable question and an-
swer texts from latent spaces for preserving se-
mantics into the latent representations.

Although Dual-VAEs was trained jointly on
question-to-question and answer-to-answer recon-
struction, the question and answer embeddings
can only preserve isolated semantics of them-
selves. In the model, the Q-A alignment and Q/A
semantics were too separate to capture the aligned
semantics (as we mentioned at the end of the first
paragraph) between question and answer. Learn-
ing the alignment with the weak Q-A matching
signal, though now based on generatable embed-
dings, can lead to confusing results, when (1) dif-
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(b) Dual-VAEs (Shen et al., 2018)
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(c) Dual-CrossVAEs (Ours)

Figure 1: (a)–(b) The Q-A alignment and Q/A semantics were learned too separately to capture the aligned seman-
tics between question and answer. (c) We propose to cross VAEs by generating questions with aligned answers
and generating answers with aligned questions.

ferent questions have similar answers and (2) sim-
ilar questions have different answers. Table 1
shows an examples in SQuAD: 17 different ques-
tions share the same sentence-level answer.

Our idea is that if aligned semantics were pre-
served, the embeddings of a question would be
able to generate its answer, and the embeddings
of an answer would be able to generate the cor-
responding question. In this work, we propose
to cross variational auto-encoders, shown in Fig-
ure 1(c), by reconstructing answers from question
embeddings and reconstructing questions from an-
swer embeddings. Note that compared with Dual-
VAEs, the encoders do not change but decoders
work across the question and answer semantics.

Experiments show that our method improves
MRR and R@1 over the state-of-the-art method
by 1.06% and 2.44% on SQuAD, respectively. On
a subset of the data where any answer has at least
10 different aligned questions, our method im-
proves MRR and R@1 by 1.46% and 3.65%, re-
spectively.

2 Related Work

Answer retrieval (AR) is defined as the answer
of a candidate question is obtained by finding
the most similar answer between multiple candi-
date answers (Abbasiyantaeb and Momtazi, 2020).
While another popular task on SQuAD dataset is
machine reading comprehension (MRC), which is
introduced to ask the machine to answer questions
based on one given context (Liu et al., 2019). In
this section, we review existing work related to an-
swer retrieval and variational autoencoders.

Answer Retrieval. It has been widely stud-
ied with information retrieval techniques and
has received increasing attention in the recent
years by considering deep neural network ap-
proaches. Recent works have proposed differ-
ent deep neural models in text-based QA which
compares two segments of texts and produces
a similarity score. Document-level retrieval
(Chen et al., 2017; Wu et al., 2018; Seo et al.,
2018, 2019) has been studied on many public
datasets including including SQuAD (Rajpurkar
et al., 2016), MsMarco (Nguyen et al., 2016) and
NQ (Kwiatkowski et al., 2019) etc. ReQA pro-
posed to investigate sentence-level retrieval and
provided strong baselines over a reproducible con-
struction of a retrieval evaluation set from the
SQuAD data (Ahmad et al., 2019). We also focus
on sentence-level answer retrieval.

Variational Autoencoders. VAE consists of
encoder and generator networks which encode
a data example to a latent representation and
generate samples from the latent space, respec-
tively (Kingma and Welling, 2013). Recent ad-
vances in neural variational inference have mani-
fested deep latent-variable models for natural lan-
guage processing tasks (Bowman et al., 2016;
Kingma et al., 2016; Hu et al., 2017a,b; Miao
et al., 2016). The general idea is to map the sen-
tence into a continuous latent variable, or code,
via an inference network (encoder), and then
use the generative network (decoder) to recon-
struct the input sentence conditioned on samples
from the latent code (via its posterior distribu-
tion). Recent work in cross-modal generation
adopted cross alignment VAEs to jointly learn rep-
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resentative features from multiple modalities (Liu
et al., 2017; Shen et al., 2017; Schonfeld et al.,
2019). DeConv-LVM (Shen et al., 2018) and
VAR-Siamese (Deudon, 2018) are most relevant
to us, both of which adopt Dual-VAEs models
(see Figure 1(b)) for two text sequence matching
task. In our work, we propose a Cross-VAEs for
questions and answers alignment to enhance QA
matching performance.

3 Proposed Method

Problem Definition. Suppose we have a ques-
tion set Q and an answer set A. Each question
and answer have only one sentence. Each ques-
tion q ∈ Q and answer a ∈ A can be represented
as (q, a, y), where y is a binary variable indicating
whether q and a are aligned. Therefore, the solu-
tion of sentence-level retrieval task could be con-
sidered as a matching problem. Given a question
q and a list of answer candidates C(q) ⊂ A, our
goal is to predict p(y|q, a) of each input question
q with each answer candidate a ∈ C(q).

3.1 Crossing Variational Autoencder

Learning cross-domain constructions under gener-
ative assumption is essentially learning the condi-
tional distribution p(q|za) and p(a|zq) where two
continuous latent variables zq, za ∈ Rdz are inde-
pendently sampled from p(zq) and p(za):

p(q|a) = Eza∼p(za|a)[p(q|za)], (1)

p(a|q) = Ezq∼p(zq |q)[p(a|zq)]. (2)

The question-answer pair matching can be repre-
sented as the conditional distribution p(y|zq, za)
from latent variables p(q|za) and p(a|zq):

p(y|q, a) = Ezq∼p(zq |q),za∼p(za|a)[p(y|zq, za)], (3)

Objectives. We denoteEq andEa as question and
answer encoders that infer the latent variable zq
and za from a given question answer pair (q, a, y),
andDq andDa as two different decoders that gen-
erate corresponding question and answer q and a
from latent variables za and zq. Then, we have
cross construction objective function:

Lcross(θE ,θD)
=y · Eq∼Q[− log pD(q|a,E(a))]

+y · Ea∼A[− log pD(a|q, E(q))].

(4)

Variational Autoencoder (Kingma and Welling,
2013) imposes KL-divergence regularizer to align
both posteriors pE(zq|q) and pE(za|a):

LKL(θE) =y · Eq∼Q[DKL(pE(zq|q)||p(zq))]
+y · Ea∼A[DKL(pE(za|a)||p(za))],

(5)

where θE , θD are all parameters to be optimized.
Besides, we have question answer matching loss
from fφ(y|q, a) as:

Lmatching(φf ) = −
[
y · log pfφ(y|zq, za)

+(1− y) · log(1− pfφ(y|zq, za))
]
,

(6)

where f is a matching function and φf are param-
eters to be optimized. Finally, in order to allow the
model to balance between maximizing the vari-
ational evidence lower bound (ELBO) and mini-
mizing the question answer matching loss, a joint
training objective is given by:

J = −α · Lcross− β · LKL+ γ · Lmatching, (7)

where α, β and γ are introduced as hyper-
parameters to control the importance of each task.

3.2 Model Implementation

Dual Encoders. We use Gated Recurrent Unit
(GRU) as encoders to learn contextual words em-
beddings (Cho et al., 2014). Question and an-
swer embeddings are reduced by weighted sum
through multiple hops self-attention (Lin et al.,
2017) of GRU units and then fed into two linear
transition to obtain mean and standard deviation
as N (zq;µq, diag(σ

2
q )) and N (za;µa, diag(σ

2
a)).

Dual Decoders. We adopt another Gated Recur-
rent Unit (GRU) for generating token sequence
conditioned on the latent variables zq and za.

Question Answer Matching. We adopt cosine
similarity with l2 normalization to measure the
matching probability of a question answer pair.

4 Experiment

4.1 Dataset
Our experiments were conducted on SQuAD
1.1 (Rajpurkar et al., 2016). It has over 100,000
questions composed to be answerable by text from
Wikipedia documents. Each question has one cor-
responding answer sentence extracted from the
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Table 2: Performance of answer retrieval on SQuAD.

Method SQuAD
MRR R@1 R@5

InferSent 36.90 27.91 46.92
SenBERT 38.01 27.34 49.59
BERTQA 48.07 40.63 57.45
QA-Lite 50.29 40.69 61.38
USE-QA 61.23 53.16 69.93

Dual-GRUs 61.06 54.70 68.25
Dual-VAEs 61.48 55.01 68.49
Cross-VAEs 62.29 55.60 70.05

Table 3: Performance of answer retrieval on a subset
of SQuAD in which any answer has more than 8 ques-
tions. Our method outperforms baselines much more.
SSE indicates the sum of squared distances/errors be-
tween two different questions aligned to same answer.

Method SQuAD Subset
MRR R@1 R@5 SSE

BERTQA 37.90 30.81 45.24 0.23
USE-QA 47.06 40.90 53.44 0.14
Cross-VAEs 48.52 44.55 53.52 0.09

Wikipedia document. Since the test set is not pub-
licly available, we partition the dataset into 79,554
(training) / 7,801 (dev) / 10,539 (test) objects.

4.2 Baselines

InferSent (Conneau et al., 2017). It is not explic-
itly designed for answer retrieval, but it produces
results on semantic tasks without requiring addi-
tional fine tuning.

USE-QA (Yang et al., 2019) . It is based on Uni-
versal Sentence Encoder (Cer et al., 2018), but
trained with multilingual QA retrieval and two
other tasks: translation ranking and natural lan-
guage inference. The training corpus contains
over a billion question answer pairs from popular
online forums and QA websites (e.g, Reddit).

QA-Lite. Like USE-QA, this model is also trained
over online forum data based on transformer. The
main differences are reduction in width and depth
of model layers, and sub-word vocabulary size.

BERTQA (Devlin et al., 2019) . BERTQA
first concatenates the question and answer into a
text sequence [[CLS], Q, [SEP ], A, [SEP ]], then
passes through a 12-layers BERT and takes the
[CLS] vector as input to a binary classifier.

SenBERT (Reimers and Gurevych, 2019) . It con-

sists of twin structured BERT-like encoders to rep-
resent question and answer sentence, and then ap-
plies a similarity measure at the top layer.

4.3 Experimental Settings

Implementation details. We initialize each word
with a 768-dim BERT token embedding vector. If
a word is not in the vocabulary, we use the aver-
age vector of its sub-word embedding vectors in
the vocabulary. The number of hidden units in
GRU encoder are all set as 768. All decoders are
multi-layer perceptions (MLP) with one 768 units
hidden layer. The latent embedding size is 512.
The model is trained for 100 epochs by SGD us-
ing Adam optimizer (Kingma and Ba, 2014). For
the KL-divergence, we use an KL cost annealing
scheme (Bowman et al., 2016), which serves the
purpose of letting the VAE learn useful represen-
tations before they are smoothed out. We increase
the weight β of the KL-divergence by a rate of
2/epochs per epoch until it reaches 1. We set
learning rate as 1e-5, and implemented on Pytorch.

Competitive Methods. We compare our proposed
method cross variational autoencoder (Cross-
VAEs) with dual-encoder model and dual varia-
tional autoencoder (Dual-VAEs). For fair compar-
isons, we all use GRU as encoder and decoder, and
keep all other hyperparameters the same.

Evaluation Metrics. The models are evaluated on
retrieving and ranking answers to questions using
three metrics, mean reciprocal rank (MRR) and re-
call at K (R@K). R@K is the percentage of cor-
rect answers in topK out of all the relevant an-
swers. MRR represents the average of the recip-
rocal ranks of results for a set of queries.

Comparing performance with baselines. As
shown in Table 2, two BERT based models do
not perform well, which indicates fune tuning
BERT may not be a good choice for answer re-
trieval task due to unrelated pre-training tasks
(e.g, masked language model). In contrast, us-
ing BERT token embedding can perform better
in our retrieval task. Our proposed method out-
performs all baseline methods. Comparing with
USE-QA, our method improves MRR and R@1
by +1.06% and +2.44% on SQuAD, respectively.
In addition, Dual variational autoencoder (Dual-
VAEs) does not make much improvement on ques-
tion answering retrieval task because it can only
preserve isolated semantics of themselves. Our
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(b) CrossVAEs

Question (1): What halftime performer previously
headlined Super Bowl XLVIII?
Mismatched Answer: Coincidentally, both teams
were coached by John Fox in their last Super Bowl
appearance prior to Super Bowl 50.

Question (2): Which Super Bowl halftime show
did Beyonće headline?
Mismatched Answer: On December 3, the league
confirmed that the show would be headlined by the
British rock group Coldplay.

Correct Answer of Question (1) and (2): The Super Bowl 50 halftime show was headlined by the British 
rock group Cold-play with special guest performers Beyonće and Bruno Mars, who headlined the Super 
Bowl XLVII and Super Bowl XLVIII halftime shows.

(c) Two questions were incorrectly matched by USE-QA, but correctly matched by CrossVAEs.

Figure 2: A case of 14 different questions aligned to the same answer. We use SVD to reduce embedding dimen-
sions to 2, and then project them on the X-Y coordinate axis. The scale of X-Y axis is relative with no practical
significance. We observe that our method makes questions that share the same answer to be closer with each other.

proposed crossing variational autoencoder (Cross-
VAEs) could outperform dual-encoder model and
dual variational autoencoder model, which im-
proves MRR and R@1 by +1.23%/+0.81% and
+0.90%/+0.59%, respectively.

Analyzing performance on sub-dataset. We ex-
tract a subset of SQuAD, in which any answer
has at least eight different questions. As shown
in Table 3, our proposed cross variational au-
toencoder (Cross-VAEs) could outperform base-
line methods on the subset. Our method improves
MRR and R@1 by +1.46% and +3.65% over USE-
QA. Cross-VAEs significantly improve the perfor-
mance when an answer has multiple aligned ques-
tions. Additionally, SSE of our method is smaller
than that of USE-QA. Therefore, the questions of
the same answer are closer in the latent space.

4.4 Case Study

Figures 2(a) and 2(b) visualize embeddings of 14
questions of the same answer. We observe that
crossing variational autoencoders (CrossVAE) can
better capture the aligned semantics between ques-
tions and answers, making latent representations
of questions and answers more prominent. Figure

2(c) demonstrates two of example questions and
corresponding answers produced by USE-QA and
CrossVAEs. We observe that CrossVAEs can bet-
ter distinguish similar answers even though they
all share several same words with the question.

5 Conclusion

Given a candidate question, answer retrieval aims
to find the most similar answer text between can-
didate answer texts. In this paper, We proposed to
cross variational autoencoders by generating ques-
tions with aligned answers and generating answers
with aligned questions. Experiments show that our
method improves MRR and R@1 over the best
baseline by 1.06% and 2.44% on SQuAD.
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