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Abstract

Modern deep learning models for NLP are no-
toriously opaque. This has motivated the de-
velopment of methods for interpreting such
models, e.g., via gradient-based saliency maps
or the visualization of attention weights. Such
approaches aim to provide explanations for a
particular model prediction by highlighting im-
portant words in the corresponding input text.
While this might be useful for tasks where de-
cisions are explicitly influenced by individual
tokens in the input, we suspect that such high-
lighting is not always suitable for tasks where
model decisions should be driven by more
complex reasoning. In this work, we inves-
tigate the use of influence functions for NLP,
providing an alternative approach to interpret-
ing neural text classifiers. Influence functions
explain the decisions of a model by identify-
ing influential training examples. Despite the
promise of this approach, influence functions
have not yet been extensively evaluated in the
context of NLP, a gap addressed by this work.
We conduct a comparison between influence
functions and common word-saliency methods
on representative tasks. As suspected, we find
that influence functions are particularly useful
for natural language inference, a task in which
‘saliency maps’ may not provide clear interpre-
tation. Furthermore, we develop a new quan-
titative measure based on influence functions
that can reveal artifacts in training data.'

1 Introduction

Deep learning models have become increasingly
complex, and unfortunately their inscrutability
has grown in tandem with their predictive power
(Doshi-Velez and Kim, 2017). This has motivated
efforts to design example-specific approaches to
interpreting black box NLP model predictions, i.e.,
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indicating specific input tokens as being particu-
larly influential for a given prediction. This in
turn facilitates the construction of saliency maps
over texts, in which words are highlighted with
intensity proportional to continuous ‘importance’
scores. Prominent examples of the latter include
gradient-based attribution (Simonyan et al., 2014;
Sundararajan et al., 2017; Smilkov et al., 2017),
LIME (Ribeiro et al., 2016), and attention-based
(Xu et al., 2015) heatmaps.

While widely used and potentially useful for
some lexicon-driven tasks (e.g., sentiment analy-
sis), we argue that by virtue of being constrained
to highlighting individual input tokens, saliency
maps will necessarily fail to explain predictions in
more complex semantic tasks involving reasoning,
such as natural language inference (NLI), where
fine-grained interactions between multiple words
or spans are key (Camburu et al., 2018). Moreover,
saliency maps are inherently limited as a model
debugging tool; they may tell us which inputs the
model found to be important, but not why.

To address these shortcomings, we investigate
the use of what Lipton (2018) referred to as ex-
planation by example. Instead of constructing im-
portance scores over the input texts on which the
model makes predictions, such methods rank train-
ing examples by their influence on the model’s pre-
diction for the test input (Caruana et al., 1999; Koh
and Liang, 2017; Card et al., 2019). Specifically,
we are interested in the use of influence functions
(Koh and Liang, 2017), which are in a sense in-
herently ‘faithful’ in that they reveal the training
examples most responsible for particular predic-
tions. These do not require any modifications to
the model structure.

This paper presents a series of experiments in-
tended to evaluate the potential utility of influence
functions for better understanding modern neural
NLP models. In this context, our contributions in-
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A sometimes tedious film.
l Classifier

Prediction: positive sentiment
Influence functions
Saliency maps

A sometimes tedious film
+0.07 +0.20 -0.45 -0.03

Salient tokens in the input

Credulous. positive +10.32
An admittedly middling film. positive +10.09
A simplistic narrative. positive +9.58
Tedious Norwegian offering which

somehow snagged an oscar nomination. negative  -9.64
Visually flashy but narratively opaque. negative  -11.01
Full of cheesy dialogue. negative  -12.78

Influential examples in the training corpus

Figure 1: A sentiment analysis example interpreted by gradient-based saliency maps (left) and influence functions
(right). Note that this example is classified incorrectly by the model. Positive saliency tokens and highly influential
examples may suggest why the model makes the wrong decision; tokens and examples with negative saliency or
influence scores may decrease the model’s confidence in making that decision.

clude answering the following research questions.

RQ1 We empirically assess whether the approxi-
mation to the influence functions (Koh and
Liang, 2017) can be reliably used to interpret
decisions of deep transformer-based models
such as BERT (Devlin et al., 2019).

RQ2 We investigate the degree to which results
from the influence function are consistent
with insights gleaned from gradient-based
saliency scores for representative NLP tasks.

RQ3 We explore the application of influence func-
tions as a mechanism to reveal artifacts (or
confounds) in training data that might be ex-
ploited by models.

To the best of our knowledge, this is the first work
in NLP to compare interpretation methods that con-
struct saliency maps over inputs with methods that
explain predictions via influential training exam-
ples. We also propose a new quantitative mea-
surement for the effect of hypothesized artifacts
(Gururangan et al., 2018; McCoy et al., 2019) on
the model’s prediction using influence functions.

2 Explaining Black-box Model
Predictions

Machine learning models in NLP depend on two
factors when making predictions: the input text
and the model parameters. Prior attempts to inter-
pret opaque NLP models have typically focused
on the input text. Our work investigates the com-
plementary approach of interpreting predictions
by analyzing the influence of examples in training
data. Saliency maps aim to provide interpretabil-
ity by highlighting parts of the input text, whereas

influence functions seek clues in the model param-
eters, eventually locating interpretations within the
training examples that influenced these estimates.
In this section we explain the two interpretation
methods in detail.?

2.1 Gradient-based saliency maps

As a standard, illustrative ‘explanation-by-input-
features’ method, we focus on gradient-based
saliency maps, in which the gradient of the loss L is
computed with respect to each token ¢ in the input
text, and the magnitude of the gradient serves as a
feature importance score (Simonyan et al., 2014;
Liet al., 2016a). Gradients have the advantage of
being locally ‘faithful’ by construction: they tell
us how much the loss would change, were we to
perturb a token by a small amount. Gradient-based
attributions are also agnostic with respect to the
model, as long as it is differentiable with respect
to inputs. Finally, calculating gradients is computa-
tionally efficient, especially compared to methods
that require post-hoc input perturbation and func-
tion fitting, like LIME (Ribeiro et al., 2016).

We are interested in why the model made a par-
ticular prediction. We therefore define a loss £
with respect to the prediction {); that the model ac-
tually made, rather than the ground truth y;. For
each token t € z;, we define a saliency score
~VewLy - e(t), where e(t) is the embedding of
t. This is also referred as the “gradient x input”
method in Shrikumar et al. (2017). The “gradi-
ent” V) Ly captures the sensitivity of the loss to
the change in the input embedding, and the “input”

2 Here we focus on interpretability approaches which are
faithful (Wiegreffe and Pinter, 2019; Jacovi and Goldberg,
2020; Jain et al., 2020) by construction; other approaches are
discussed in §6.
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e(t) leverages the sign and magnitude of the input.
The final saliency score of each token ¢ would be
L1-normalized across all tokens in z;.

Unlike Simonyan et al. (2014) and Li et al.
(2016a), when scoring features for importance, we
do not take the absolute value of the saliency score,
as this encodes whether a token is positively influ-
encing the prediction (i.e., providing support the
prediction) or negatively influencing the prediction
(highlighting counter-evidence). We show an ex-
ample in the left part of Figure 1.

2.2 Influence functions

In contrast to explanations in the form of token-
level heatmaps, the influence function provides a
method for tracing model predictions back to train-
ing examples. It first approximates how upweight-
ing a particular training example (x;,y;) in the
training set {(z1,y1),..., (Zn,yn)} by € would
change the learned model parameters 6:

df

1 — - 5
o= (> VL5, 0) 7 VoL, i )
1 ]:1

We can then use the chain rule to measure how
this change in the model parameters would in turn
affect the loss of the test input (as in saliency maps,
w.r.t. the model prediction):

Ly de

de; = V@ﬁ@ . deZ
More details (including proofs) can be found in
Koh and Liang (2017).

We define the influence score for each training

example (z;,y;) as —dfT?, and then z-normalize it
across all examples in the training set. Note that
since Ly is defined with respect to a particular test
input, influence scores of training examples are
also defined for individual test instances.

Intuitively, a positive influence score for a train-
ing example means: were we to remove this exam-
ple from the train set, we would expect a drop in
the model’s confidence when making the prediction
on the test input. A negative influence score means
that removing the training example would increase
the model’s confidence in this prediction. We show
an example in the right part of Figure 1.

3 Experimental Setup

We are interested in analyzing and comparing the
two interpretation approaches (gradient-based attri-
butions and influence functions) on relatively shal-
low, lexicon-driven tasks and on more complex,

reasoning-driven tasks. We focus on sentiment
analysis and natural language inference (NLI) as il-
lustrative examples of these properties, respectively.
Both models are implemented on top of BERT en-
coders (Devlin et al., 2019). In particular we use
BERT-Base, with the first 8 of the 12 layers frozen,
only fine-tuning the last 4 transformer layers and
the final projection layer.?

It is worth noting that influence functions are
guaranteed to be accurate only when the model is
strictly convex (i.e., its Hessian is positive definite
and thus invertible) and is trained to convergence.
However, deep neural models like BERT are not
convex, and one often performs early stopping dur-
ing training. We refer to Koh and Liang (2017)
for details on how influence functions can nonethe-
less provide good approximations. To summarize
briefly: for the non-convexity issue, we add an ap-
propriate ‘damping’ term to the model’s Hessian so
that it is positive definite and invertible. Concern-
ing non-convergence: the approximated influence
may still be interpretable as the true influence of
each training example plus a constant offset that
does not depend on the individual examples. Aside
from this theory, we also perform a sanity check
in §4 to show that influence functions can be ap-
plied to BERT in practice on the two tasks that we
consider.

Sentiment analysis We use a binarized version
of the Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013). Our BERT-based model is trained on
10k examples; this achieves 89.6% accuracy on
the SST-2 dev set of 872 examples. We randomly
sample 50 examples from the SST-2 dev set as the
set for which we extract explanations for model
predictions.

Natural language inference Our deeper ‘seman-
tic’ task is NLI, a classification problem that con-
cerns the relationship between a premise sentence
and a hypothesis sentence. NLI is a ternary task
with three types of premise—hypothesis relations:
entailment, neutral, and contradiction. We train
our BERT model on the Multi-Genre NLI (MNLI)
dataset (Williams et al., 2018), which contains 393k

3We used smaller BERT models because influence func-
tions are notoriously expensive to compute. We also resort
to the same stochastic estimation method, LiSSA (Agarwal
et al., 2017), as in Koh and Liang (2017), and we deliberately
reduce the size of our training sets. Even with these efforts,
computing the influence scores of 10k training examples w.r.t.
one typical test input would take approximately 10 minutes
on one NVIDIA GeForce RTX 2080 Ti GPU.
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premise and hypothesis pairs of three relations from
10 different genres. We collapse the neutral and
contradiction labels to a single non-entailment la-
bel and only use 10k randomly sampled examples
for training. On the MNLI dev set of 9815 exam-
ples, the model achieves an accuracy of 84.6%.

To evaluate model interpretations in a controlled
manner, we adopt a diagnostic dataset, HANS (Mc-
Coy et al., 2019). This contains a balanced num-
ber of examples where hypotheses may or may
not entail premises with certain artifacts that they
call ‘heuristics’ (e.g., lexical overlap, subsequence).
The original HANS dataset contains 30k examples
that span 30 different heuristic sub-categories. We
test our model and interpretation methods on 30
examples covering all the sub-categories.

4 Evaluating Influence Functions for
NLP

RQ1: Is influence function approximation reli-
able when used for deep architectures in NLP?
Influence functions are designed to be an approxi-
mation to leave-one-out training for each training
example. But the theory only proves that this works
on strictly convex models. While Koh and Liang
(2017) show that influence functions can be a good
approximation even when the convexity assump-
tion is not satisfied (in their case, a CNN for image
classification), it is still not obvious that the influ-
ence function would work for BERT.

Therefore, we conduct a sanity check: for each
instance in our test set, we by turns remove the most
positively influential 10%, the most negatively in-
fluential 10%, the least influential (where influence
scores are near zero) 10%, and a random 10% of
training examples. We are interested in how these
removals in retraining would affect the confidence
of model predictions. Table 1 and Table 2 show
the result of experiments on sentiment analysis and
NLI, repeated with 5 random initialization seeds.

Removal type Avg. A in prediction confidence

—6.00% (£1.12%)
+0.17% (£0.50%)
—1.30% (£0.54%)
—1.67% (£0.54%)

Positively influential
Negative influential
Least influential

Random

Table 1: Sanity check for influence function result on
BERT in sentiment analysis.

The results are largely in accordance with our

Removal type Avg. A in prediction confidence

—11.62% (+2.09%)
+2.01% (+1.44%)
+1.01% (£0.97%)
+0.13% (£1.07%)

Positively influential
Negative influential
Least influential
Random

Table 2: Sanity check for influence function result on
BERT in NLI.

expectation in both tasks: removing the most posi-
tively influential training examples would cause the
model to have a significantly lower prediction con-
fidence for each test example; removing the most
negatively influential examples makes the model
slightly more confident during prediction; and re-
moving the least influential examples leads to an
effect that is closest to removing a same amount of
random examples (although we note that deleting
the least influential features still yields a larger
A than choosing features at random to remove
in NLI). We therefore conclude that the influence
function behaves reasonably and reliably for BERT
in both sentiment analysis and NLI tasks.

RQ2. Are gradient-based saliency maps and
‘influential’ examples compatible? Comparing
saliency maps and outputs from application of the
influence function is not straightforward. Saliency
maps communicate the importance of individual
tokens in test instances, while influence functions
measure the importance of training examples. Still,
it is reasonable to ask if they seem to tell similar sto-
ries regarding specific predictions. We propose two
experiments that aim to estimate the consistency
between these two interpretation methods.

The first experiment addresses whether a token
with high saliency also appears more frequently
in the training examples that have relatively high
influence. For each example in the test set, we find
the tokens with the most positive, most negative,
and median saliency scores. We then find all the
influential training examples w.r.t. the test inputs
that contain one of these tokens. These training
examples could have any labels in the label set.
We further only consider examples whose label is
the same as the test prediction, because the token
saliency scores, whether positive or negative, are
directly w.r.t. the test prediction, and the effect of a
token in an oppositely labeled training example is
therefore indirect.

We compute the average influence score of these
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training examples and report the results on top 10%,
20%, 50%, and all training examples for both sen-
timent analysis and NLI tasks in Figure 2 and Fig-
ure 3 respectively. The reason we have results at
different granularity is that from empirical results
in Koh and Liang (2017), we see that the influence
function approximations tend to be less accurate
when going from the most influential to the less
influential examples down in the spectrum.

Top 10% influential examples Top 20% influential examples

1.50

g 1.45 0.90

% 1.40 0.88

§ 135 0.86

8130 0.84

2125 0.82

= 0.80
1.20

negative median positive negative median positive
Top 50% influential examples All examples

0.92

0.25

0 0.44

e

5 042 0.24
(7]

8 0.40 0.23
§ 0.38 0.22
& 036 0.21
€034 020

negative median positive negative median positive
token saliency token saliency

Figure 2: Average influence score of top sentiment
analysis training examples that contain a token in test
example with most positive, most negative, or median
saliency. Error bars depict standard errors.

Top 10% influential examples Top 20% influential examples

1.42 0.82
g 1.40 0.80

5 1.38 0.78

g 136 0.76

T 134 0.74

= 0.72

= 0.70
1.30

negative median positive negative median positive

Top 50% influential examples All examples

0.48

v 0.46 0.45

5 0.44 0.40

v 0.42

2 0.40 0.35

v 0.38

= 0.34 * 0.25 -

negative median positive negative median positive
token saliency token saliency

Figure 3: Average influence score of top NLI training
examples that contain a token in test example with most
positive, most negative, or median saliency. Standard
error is shown in error bars.

In the task of sentiment analysis, we observe that
training examples containing the most positively
salient token in the test example generally have a
higher influence to the test prediction. However,
we do not see this trend (in fact, it is the opposite)
in the task of natural language inference.

The second experiment answers the question of
whether the influence result would change signif-
icantly when a salient token is removed from the

Saliency of the @0.1% @0.2% @0.5% @1%
removed token

Most negative 75.6% 77.4% 80.0% 82.4%
Median 84.2% 86.7% 88.9% 89.1%
Most positive 65.2% 68.8% 71.4%  72.0%

Table 3: Average overlap rate of top influential sen-
timent analysis training examples before and after re-
moval of a token with the most positive, most negative,
or median saliency.

Saliency of the @0.1% @0.2% @0.5% @1%
removed token

Most negative 33.0% 33.5% 37.5% 40.9%
Median 79.3% 78.0% 80.5% 84.0%
Most positive 46.0% 48.3% 499%  54.9%

Table 4: Average overlap rate of top influential NLI
training examples before and after removal of a token
with the most positive, negative, or median saliency.

input. Again, for each of the test examples, we
identify the tokens with the most positive, most
negative, and median saliency score. We by turns
remove them from the input and compute the in-
fluence distribution over all training examples. We
compare these new influence results with the one
on the original input, and report an overlap rate of
the top 0.1%, 0.2%, 0.5%, and 1% influential train-
ing examples before and after the token removal.
Table 3 and Table 4 show results for sentiment anal-
ysis and NLI, respectively.

When removing a token with the most positive
saliency score, we expect the model to be less con-
fident about its current prediction; it could possibly
make a different prediction. Therefore, we expect
to see a most different influence distribution from
the original influence result compared to remov-
ing the token with median or the most negative
saliency score. This is exactly what we observe in
Table 3 for sentiment analysis. However, for NLI,
we again see a rather opposite trend: removing
the most negatively salient token (might make the
prediction more confident but should not change
the prediction itself) leads to the most different
influence distribution.

We conclude from the above two experiments
that gradient-based saliency maps and influential
examples are compatible and consistent with each
other in sentiment analysis. However, for NLI the
two approaches do not agree with each other and
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could potentially tell very different stories. To this
end, we take a closer look at the task of NLI.

5 Interpreting NLI Predictions with
Influence Functions

Are saliency-based explanations useful for
NLI? Gradient-based saliency maps are faithful
by construction, but this does not mean that they
will highlight input tokens that humans find plau-
sible or useful. We hypothesize that highlighting
individual input tokens as important is likely most
useful for ‘shallow’ classification tasks like senti-
ment analysis, and less so for more complex rea-
soning tasks such as NLI.

To contrast the types of explanations these meth-
ods offer in this context, we show explanations for a
prediction made for a typical example in HANS in
the form of a saliency map and influential examples
in Table 5. The tokens that get the most positive
and most negative saliency scores are marked in
cyan and red, respectively. The training examples
with the most positive and most negative influence
scores are presented as supporting and opposing
instances, respectively.

Test input

P: The manager was encouraged by the
secretary. H: The secretary encouraged
the manager.

{entail }

Most supporting training examples

P: Because you're having fun. H: Because
you’re having fun.

[entail]

P: 1don’t know if I was in heaven or hell,
said Lillian Carter, the president’s mother,
after a visit. H: The president’s mother
visited.

[entail]

P: Inverse price caps. H: Inward caps on
price.

P: Do it now, think ’bout it later. H: Don’t
think about it now, just do it.

[entail]

[entail]

Most opposing training examples

P: H'm, yes, that might be, said John. H:
Yes, that might be the case, said John.

[non-entail]

P: This coalition of public and private enti-
ties undertakes initiatives aimed at raising
public awareness about personal finance
and retirement planning. H: Personal fi-
nance and retirement planning are initia-
tives aimed at raising public awareness.

[non-entail ]

Table 5: A correctly predicted example in HANS inter-
preted by saliency map and influence function.

The relationship classification decision in NLI

is often made through an interaction between mul-
tiple words or spans. Therefore, an importance
measure on each individual token might not give us
much useful insight into model prediction. Though
influence functions also do not explicitly tell us
which latent interactions between words or spans
informed the model prediction, we can test whether
the model is relying on some hypothesized artifacts
in a post-hoc way by looking at patterns in the
influential training examples.

In Table 5, though the most influential examples
(both supporting and opposing) are ostensibly far
from the test input, they all exhibit lexical overlap
between the premise and hypothesis. Some of the
influential training examples (e.g., the 4th support-
ing example and 2nd opposing example) capture
a reverse ordering of spans in the premise and hy-
pothesis. We note that our test input also has a high
lexical overlap and similar reverse ordering. This
exposes a problem: the model might be relying on
the wrong artifacts like word overlap during the de-
cision process rather than learning the relationship
between the active and passive voice in our case.
This problem was surfaced by finding influential
examples.

5.1 Quantitatively measuring artifacts

McCoy et al. (2019) hypothesize that the main arti-
fact NLI models might learn is lexical overlap. In
fact, for all of the examples in HANS, every word
in the hypothesis would appear in the correspond-
ing premise (100% lexical overlap rate). Half of
the examples would have an entailment relationship
while the other half have an non-entailment rela-
tionship. McCoy et al. (2019) compare four models
with strong performance in MNLI, and all of them
predict far more entailments than non-entailments.
Because of this imbalance in prediction, they con-
clude that the models are perhaps exploiting arti-
facts in data when making decisions.

We see one potential problem out of the above
method: it can only be applied to a certain group
of examples and imply a general model behavior
by examining the prediction imbalance. However,
model behavior should depend on the actual ex-
ample it sees each time. The extent to which the
model exploits the artifact in each individual exam-
ple remains unclear.

To analyze the effect of artifacts on individual
examples, we propose a method using influence
functions. We hypothesize that if an artifact in-
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forms the model’s predictions for a test instance,
the most influential training examples for this test
example should contain occurrences of said artifact.
For instance, if our model exploits ‘lexical overlap’
when predicting the relation between a premise
and a hypothesis, we should expect the most in-
fluential training examples found by the influence
function to have a highly overlapping premise and
hypothesis.

In Figure 4a, we plot each training example’s
influence score and lexical overlap rate between its
premise and hypothesis for a typical example in
the HANS dataset. In linen with our expectation,
the most influential (both positively and negatively)
training examples tend to have a higher lexical
overlap rate. Note that we also expect this trend for
the most negatively influential examples, because
they influence the model’s prediction as much as
the positively influential examples do, only in a
different direction.

To quantify this bi-polarizing effect, we find it
natural to fit a quadratic regression to the influence-
artifact distribution. We would expect a high posi-
tive quadratic coefficient if the artifact feature ap-
pears more in the most influential examples. For an
irrelevant feature, we would expect this coefficient
to be zero. With this new quantitative measure,
we are ready to explore the below problems unan-
swered by the original diagnostic dataset.

For test examples predicted as non-entailment,
did the model fail to recognize that they have a
lexical overlap feature? Was the artifact not ex-
ploited in these cases? Figure 4a and Figure 4b
show two examples in HANS, one predicted as en-
tailment and the other predicted as non-entailment.
We observe that the example predicted as non-
entailment does not have a significantly different
influence-artifact pattern from the entailment ex-
ample. In fact, the average quadratic coefficients
for all examples predicted as entailment and non-
entailment are +3.28 x 1073 and +3.30 x 1073 re-
spectively. Therefore, for predicted non-entailment
examples, we still see that the most influential train-
ing examples tend to have a high rate of lexical
overlap, indicating that the model still recognizes
the artifact in these cases.

The model relies on training examples with
high lexical overlap when predicting in the ar-
tificial HANS dataset. Would it still exploit
the same artifact for natural examples? Apart

from finding the most influential training exam-
ples for each HANS example, we also apply in-
fluence functions on 50 natural MNLI examples,
not controlled to exhibit any specific artifacts. A
typical example is shown in Figure 4c. The average
quadratic coefficient over all 50 natural examples
is +0.65 x 1073, which is considerably smaller
than the above cases in HANS dataset. The model
therefore does not rely on as much lexical overlap
in natural examples as in the diagnostic dataset.

We have been analyzing scenarios focusing on
one data artifact. What if we have a second arti-
fact during prediction possibly indicating a con-
tradicting decision? How will the model recog-
nize the two artifacts in such a scenario? We
know that lexical overlap could be a data artifact
exploited by NLI models for making an entailment
prediction in HANS. On the other hand, as briefly
pointed out by McCoy et al. (2019), other artifacts
like negation might be indicative of non-entailment.
We are interested in how two contradicting arti-
facts might compete when they both appear in an
example. We take all examples in HANS labeled
as entailment and manually negate the hypothesis
so that the relationship becomes non-entailment.
For example, a hypothesis “the lawyers saw the
professor” would become “the lawyers did not see
the professor™.

Figure 5a and Figure 5b show the influence-
artifact distributions on both lexical overlap and
negation for an original HANS example. Figure 5¢
and Figure 5d show the distributions for the same
HANS example with negated hypothesis. The av-
erage quadratic coefficients on all examples are
shown in Table 6. We observe that in the original
HANS example, negation is actually a negative ar-
tifact: the training examples with negation tend to
be the least influential ones. In the negated HANS
example, we see the effect of negations becomes
positive, while the effect of lexical overlap is dras-
tically weakened. This confirms that the model
recognizes the new set of artifacts, and the two are
competing with each other.

Importantly, observing an artifact in the most
influential training examples is a necessary but not
sufficient condition to concluding that it was truly
exploited by the model. However, it can serve as
a first step towards identifying artifacts in black-
box neural models and may be complemented by
probing a larger set of hypothesized artifacts.
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(a) HANS example predicted as entail-
ment. (P: The athlete by the doctors
encouraged the senator. H: The athlete
encouraged the senator.) Quadratic coef-
ficient: +3.74 x 1077,

entailment.

influence score

(b) HANS example predicted as non-
(P: Since the author in-
troduced the actors, the senators called
the tourists. H: The senators called the
tourists.) Quadratic coef: +3.59 x 1073,
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(c) A typical MNLI example. (P: And
uh as a matter of fact he’s a draft dodger.
H: They dodged the draft, I'll have you
knogv.) Quadratic coefficient: +0.74 x
1077,

Figure 4: Influence-artifact distribution for different test examples.
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Figure 5: Influence-artifact distribution for an original and negated HANS example. (P: The lawyers saw the
professor behind the bankers. H: The lawyers saw / did not see the professor.)

Lexical overlap coef  Negation coef

Original +3.05 x 1073  —1.13 x 1073
Negated +0.53 x 1073 40.27 x 1073
Table 6: Average quadratic coefficients of the

influence-artifact distribution for all original HANS ex-
amples and all negated HANS examples.

6 Related Work

Interpreting NLP model predictions by construct-
ing importance scores over the input tokens is
a widely adopted approach (Belinkov and Glass,
2019). Since the appearance and rise of attention-
based models, many work naturally inspect atten-
tion scores and interpret with them. However, we
are aware of the recent discussion over whether
attention is a kind of faithful explanation (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019). Using
vanilla attention as interpretation could be more
problematic in now ubiquitous deep transformer-
based models, such as we use here.
Gradient-based saliency maps are locally ‘faith-
ful’ by construction. Other than the vanilla gra-
dients (Simonyan et al., 2014) and the “gradient

x input” method (Shrikumar et al., 2017) we use
in this work, there are some variants that aim to
make gradient-based attributions robust to poten-
tial noise in the input (Sundararajan et al., 2017;
Smilkov et al., 2017). We also note that Feng et al.
(2018) find that gradient-based methods sometimes
yield counter-intuitive results when iterative input
reductions are performed.

Other token-level interpretations include input
perturbation (Li et al., 2016b) which measure a
token’s importance by the effect of removing it, and
LIME (Ribeiro et al., 2016) which can explain any
model’s decision by fitting a sparse linear model to
the local region of the input example.

The main focus of this work is the applicabil-
ity of influence functions (Koh and Liang, 2017)
as an interpretation method in NLP tasks, and to
highlight the possibility of using this to surface an-
notation artifacts. Other methods that can trace the
model’s decision back into the training examples
include deep weighted averaging classifiers (Card
et al., 2019), which make decisions based on the
labels of training examples that are most similar
to the test input by some distance metrics. Croce
et al. (2019) use kernel-based deep architectures
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that project test inputs to a space determined by
a group of sampled training examples and make
explanations through the most activated training
instances. While these methods can similarly iden-
tify the ‘influential’ training examples, they require
special designs or modifications to the model and
could sacrifice the model’s performance and gener-
alizability.

Other general methods for model interpretabil-
ity include adversarial-attack approaches that iden-
tify that part of input texts can lead to drastically
different model decisions when minimally edited
(Ebrahimi et al., 2018; Ribeiro et al., 2018), prob-
ing approaches that test internal representations of
models for certain tasks and properties (Liu et al.,
2019b; Hewitt and Liang, 2019), and generative
approaches that make the model jointly extract or
generate natural language explanations to support
predictions (Lei et al., 2016; Camburu et al., 2018;
Liu et al., 2019a; Rajani et al., 2019).

Specific to the NLI task, Gururangan et al. (2018)
recognize and define some possible artifacts within
NLI annotations. McCoy et al. (2019) create a diag-
nostic dataset that we use in this work and suggest
that the model could be exploiting some artifacts
in training data based on its poor performance on
the diagnostic set. Beyond NLI, the negative influ-
ence of artifacts in data was explored in other text
classification tasks (Pryzant et al., 2018; Kumar
et al., 2019; Landeiro et al., 2019), focusing on
approaches to adversarial learning to demote the
artifacts.

7 Conclusion

We compared two complementary interpretation
methods—gradient-based saliency maps and influ-
ence functions—in two text classification tasks:
sentiment analysis and NLI. We first validated the
reliability of influence functions when used with
deep transformer-based models. We found that in
a lexicon-driven sentiment analysis task, saliency
maps and influence functions are largely consistent
with each other. They are not consistent, how-
ever, on the task of NLI. We posit that influence
functions may be a more suitable approach to inter-
preting models for such relatively complex natural
language ‘understanding‘ tasks (while simpler at-
tribution methods like gradients may be sufficient
for tasks like sentiment analysis).

We introduced a new potential use of influence
functions: revealing and quantifying the effect of

data artifacts on model predictions, which have
been shown to be very common in NLI. Future
work might explore how rankings induced over
training instances by influence functions can be
systematically analyzed in a stand-alone manner
(rather than in comparison with interpretations
from other methods), and how these might be used
to improve model performance. Finally, we are
interested in exploring how these types of explana-
tions are actually interpreted by users, and whether
providing them actually establishes trust in predic-
tive systems.
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A Implementation Details

The main model we used for experiments is a
BERT-Base model (Devlin et al., 2019), adapted
from Wolf et al. (2019). We “froze” the embedding
layer and the first 8 transformer layers and only
fine-tuned the last 4 transformer layers and the fi-
nal projection layer. We used the default BERT
optimizer with default hyperparameters: a learning
rate of 5e—>b, a total of 3 epochs, a max sequence
length of 128, and a training batch size of 32.

For gradient-based saliency maps, we used a
“vanilla” version implemented by Wallace et al.
(2019). For influence functions, we adapted code
from Koh and Liang (2017) to PyTorch and used
the same stochastic estimation trick, LiSSA (Agar-
wal et al., 2017). Since our model is not convex,
we used a “damping” term (as mentioned in §3)
of 3e—3. This value was picked so that the recur-
sive approximation to the inverse Hessian-vector
product can be finished (converged) in a reasonable
time. More specifically, we chose the recursion
depth to be 2500 (with a total of 10k training ex-
amples), the number of recursions to be 1, and a
scaling factor to be 1e4. In each step estimating the
Hessian-vector product, we took a batch of 8 train-
ing examples for stability. We empirically checked
that the inverse Hessian-vector product converges
after the recursive estimation for all test examples
on which we performed the analysis.
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