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Abstract

Algorithmic approaches to interpreting ma-
chine learning models have proliferated in re-
cent years. We carry out human subject tests
that are the first of their kind to isolate the ef-
fect of algorithmic explanations on a key as-
pect of model interpretability, simulatability,
while avoiding important confounding experi-
mental factors. A model is simulatable when
a person can predict its behavior on new in-
puts. Through two kinds of simulation tests in-
volving text and tabular data, we evaluate five
explanations methods: (1) LIME, (2) Anchor,
(3) Decision Boundary, (4) a Prototype model,
and (5) a Composite approach that combines
explanations from each method. Clear ev-
idence of method effectiveness is found in
very few cases: LIME improves simulatabil-
ity in tabular classification, and our Prototype
method is effective in counterfactual simula-
tion tests. We also collect subjective ratings
of explanations, but we do not find that rat-
ings are predictive of how helpful explanations
are. Our results provide the first reliable and
comprehensive estimates of how explanations
influence simulatability across a variety of ex-
planation methods and data domains. We show
that (1) we need to be careful about the metrics
we use to evaluate explanation methods, and
(2) there is significant room for improvement
in current methods.1

1 Introduction

Interpretable machine learning is now a widely
discussed topic (Rudin, 2019; Doshi-Velez and
Kim, 2017; Lipton, 2016; Gilpin et al., 2018).
While survey papers have not converged on def-
initions of “explainable” or “interpretable,” there
are some common threads in the discourse. Com-
mentators observe that interpretability is useful for

1We make all our supporting code, data, and mod-
els publicly available at: https://github.com/peterbhase/

InterpretableNLP-ACL2020

achieving other model desiderata, which may in-
clude building user trust, identifying the influence
of certain variables, understanding how a model
will behave on given inputs, and ensuring that
models are fair and unbiased.

In their review, Doshi-Velez and Kim (2017)
outline an approach to measuring interpretability.
They describe two human-subject tasks that test
for a particularly useful property: simulatability.
A model is simulatable when a person can predict
its behavior on new inputs. This property is espe-
cially useful since it indicates that a person under-
stands why a model produces the outputs it does.
The first of the two tasks is termed forward simu-
lation: given an input and an “explanation,” users
must predict what a model would output for the
given input. The second is counterfactual simula-
tion: users are given an input, a model’s output for
that input, and an “explanation” of that output, and
then they must predict what the model will out-
put when given a perturbation of the original in-
put. The explanation itself is algorithmically gen-
erated by a method for interpreting or explaining
a model. Simulation tests have been carried out
before, but no study to date has isolated the effect
of explanations on simulatability (Ribeiro et al.,
2018; Chandrasekaran et al., 2018; Nguyen, 2018;
Bang et al., 2019).

We carry out simulation tests that are the first to
incorporate all of the following design choices: (1)
separating explained instances from test instances,
so explanations do not give away the answers,
(2) evaluating the effect of explanations against a
baseline of unexplained examples, (3) balancing
data by model correctness, so users cannot suc-
ceed by guessing the true label, and (4) forcing
user predictions on all inputs, so performance is
not biased toward overly specific explanations. We
display our study design in Figure 1.

We provide results from high-quality human

https://github.com/peterbhase/InterpretableNLP-ACL2020
https://github.com/peterbhase/InterpretableNLP-ACL2020
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Figure 1: Forward and counterfactual simulation test procedures. We measure human users’ ability to predict
model behavior. We isolate the effect of explanations by first measuring baseline accuracy, then measuring accu-
racy after users are given access to explanations of model behavior. In the forward test, the explained examples are
distinct from the test instances. In the counterfactual test, each test instance is a counterfactual version of a model
input, and the explanations pertain to the original inputs.

user tests (with over 2100 responses) that include
both forward and counterfactual simulation tasks.
Through these tests, we measure explanation ef-
fectiveness for five methods across text and tabular
classification tasks. Our evaluation includes two
existing explanation techniques, LIME and An-
chor (Ribeiro et al., 2016, 2018), and we translate
two other explanation methods from image recog-
nition models to work with our textual and tabular
setups. The first of these is a latent space traver-
sal method, which we term the Decision Boundary
approach (Joshi et al., 2018; Samangouei et al.,
2018), and the second is a case-based reason-
ing method, which we term the Prototype method
(Chen et al., 2019). The final method is a novel
Composite approach that combines complemen-
tary explanations from each method. Lastly, we
also collect subjective, numerical user ratings of
explanation quality. Our key findings are:
1. LIME improves forward and counterfactual

simulatability in our tabular classification task.
2. Prototype improves counterfactual simulatabil-

ity across textual and tabular data domains.
3. No method definitively improves forward and

counterfactual simulatability together on the
text task, though our Prototype and Composite
methods perform the best on average.

4. It appears that users’ quality ratings of explana-
tions are not predictive of how helpful the ex-
planations are with counterfactual simulation.

5. While users rate Composite explanations as
among the best in quality, these combined ex-
planations do not overtly improve simulatabil-
ity in either data domain.

2 Background and Related Work

2.1 What Does “Interpretable” Mean?

Survey papers use key terms in varying ways.
Rudin (2019) draws a distinction between inter-
pretability and explainability, suggesting that a
model is interpretable if it performs computations
that are directly understandable. Post-hoc expla-
nations, on the other hand, are potentially mis-
leading approximations of the true computations.
Gilpin et al. (2018) also distinguish between the
two concepts, though they define them differently.

In this paper, we do not distinguish between
interpretability and explainability. Rather, we
adopt the conceptual framework of Doshi-Velez
and Kim (2017), who consider interpretability in
terms of downstream desiderata one can assess
models with respect to. Our terminology is as fol-
lows: we will say that explanation methods may
improve the interpretability of a model, in the
sense that an interpretable model is simulatable.

2.2 Explanation Methods

Several taxonomies have been proposed for cate-
gorizing methods for interpretability. We organize
methods below into the categories of: feature im-
portance estimation, case-based reasoning, and la-
tent space traversal.
Feature Importance Estimation. Feature im-
portance estimates provide information about how
the model uses certain features. Most prominent
among these methods are the gradient-based ap-
proaches first introduced for vision by Simonyan
et al. (2014), which Li et al. (2016) show may
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be translated for use with text data. These ap-
proaches have since been demonstrated to some-
times behave in counterintuitive ways (Adebayo
et al., 2018; Kim et al., 2018). A number of alter-
native methods have been proposed for quantify-
ing feature importance across data domains (Kim
et al., 2018; Lundberg and Lee, 2017; Sundarara-
jan et al., 2017). In our study, we choose to eval-
uate two domain-agnostic approaches, LIME and
Anchor (Ribeiro et al., 2016, 2018). These meth-
ods use simple models, i.e. sparse linear models
and rule lists, to approximate complex model be-
havior locally around inputs. They show the esti-
mated effects of directly interpretable features on
the model’s output. For these methods, what is
“local” to an input is defined in a domain-specific
manner via a perturbation distribution centered on
that input.
Case-based Reasoning. Prototype models clas-
sify new instances based on their similarity to
other known cases. Two works on prototype mod-
els for computer vision introduced neural models
that learn prototypes corresponding to parts of im-
ages (Chen et al., 2019; Hase et al., 2019). These
prototypes are used to produce classifier features
that are intended to be directly interpretable.
Latent Space Traversal. These methods traverse
the latent space of a model in order to show how
the model behaves as its input changes. In a clas-
sification setting, crossing the decision boundary
may reveal necessary conditions for a model’s pre-
diction for the original input. Several methods ex-
ist for vision models (Joshi et al., 2018; Saman-
gouei et al., 2018). To our knowledge no such ap-
proach exists for discriminative models of text and
tabular data, so we develop a simple method for
these kinds of models (described in Section 3.4).

2.3 Evaluating Interpretability

Here we discuss works involving automatic and
human evaluations of interpretability, as well as
how we improve on past simulation test design.
While human evaluations are useful for evaluat-
ing many aspects of interpretability, we restrict our
discussion to works measuring simulatability.
Improving Forward Test Design. Forward sim-
ulation tasks have been implemented in many dif-
ferent forms, and there is a serious need for con-
sensus on proper procedure here. Doshi-Velez and
Kim (2017) originally propose that users predict
model behavior, given an input and an explanation.

With many explanation methods, this is a triv-
ial task because the explanations directly reveal
the output. For example, LIME gives a predicted
probability that indicates the model behavior with
high likelihood. We make a number of experimen-
tal design choices that give us more reliable esti-
mates of method effectiveness than past studies.
(1) We separate the explained instances from the
test instances, to prevent explanations from giving
away the answers. In three studies, the same data
points were used as both explanation and predic-
tion items (Nguyen, 2018; Chandrasekaran et al.,
2018; Bang et al., 2019). (2) We evaluate the ef-
fect of explanations against a baseline where users
see the same example data points without expla-
nations. No prior evaluation includes this control.
(3) Two choices further distinguish our test from
that of Ribeiro et al. (2018). We balance data by
model correctness, so users cannot succeed sim-
ply by guessing the true label, and we force user
predictions on every input, so our metrics do not
favor overly niche explanations.

Counterfactual Simulatability. Counterfactual
simulatability has, to our knowledge, never been
measured for machine learning models. While
Doshi-Velez and Kim (2017) propose asking users
to edit inputs in order to change the model outputs,
we instead ask users to predict model behavior on
edited versions of data points, as this approach is
more scalable than soliciting creative responses.

Relation to Automatic Tests. Prior works have
proposed automatic metrics for feature importance
estimates (Nguyen, 2018; Hooker et al., 2019;
DeYoung et al., 2020). Typically these operate
by checking that model behavior follows reason-
able patterns on counterfactual inputs constructed
using the explanation, e.g., by masking “impor-
tant” features and checking that a class score
drops. Whereas automatic metrics define appro-
priate model behavior in advance for counterfac-
tual instances generated by a fixed schema, we
present a random counterfactual to a human and
elicit their prediction of model behavior for that in-
stance. This allows for human validation of model
behavior in a broader range of input scenarios than
an automatic procedure, where human expecta-
tions are given in response to diverse and concrete
examples rather than dictated in advance.

Subjective Ratings. Hutton et al. (2012) mea-
sure user judgments of whether word importance
measures explain model behavior in a text classi-
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Figure 2: Explanation methods applied to an input from the test set of movie reviews.

fication setting. Our rating task is thus similar to
theirs; our changes are that we evaluate with a Lik-
ert scale rather than forced ranking, using explana-
tion techniques for neural models rather than word
importance estimates from a naive Bayes classi-
fier. In another study, users judged image classifi-
cation explanations on a Likert scale ranging from
“no explanation” to “concise explanation” (Bang
et al., 2019). Whereas this scale focuses on con-
ciseness, we ask users to rate how explanations re-
veal reasons for model behavior.

3 Explanation Methods

In this section, we describe the explanation meth-
ods. Example explanations for a test movie re-
view are shown in Figure 2. We limit our discus-
sion of LIME and Anchor, since details for these
methods can be found in the original papers. Note
that LIME, Anchor, and our Decision Boundary
method can be used with arbitrary blackbox mod-
els. The Prototype method is itself a neural model
that also produces an explanation.

3.1 LIME

Ribeiro et al. (2016) present LIME as a local lin-
ear approximation of model behavior. With a user-
specified feature space, a linear model is fit to the
blackbox outputs on samples from a distribution
around an input. We set the number of features
to use to 5, and we take class probabilities as our
model output. When showing LIME explanations
to users, we give them the selected features with
estimated weights, the model intercept, the sum of
model weights, and the predicted model output.

3.2 Anchor

Ribeiro et al. (2018) introduce a method for learn-
ing rule lists that predict model behavior with
high confidence. With samples from a distribu-

tion around an input, they use a PAC learning ap-
proach to obtain a rule list. When the rules apply
to an input, there is a high probability it will re-
ceive the same prediction as the original. The fea-
ture space of the rule list is specified by the user.
As in the original work, we use individual tokens
for our text data, and we use the same learning pa-
rameters for each Anchor explanation.

3.3 Prototype Model
Prototype models have previously been used for
interpretable computer vision (Chen et al., 2019;
Hase et al., 2019). We develop a prototype model
for use with text and tabular classification tasks.
In our model, a neural network g maps inputs to a
latent space, and the score of class c is:

f(xi)c = max
pk∈Pc

a(g(xi),pk)

where a is a similarity function for vectors in the
latent space, and Pc is the set of protoype vectors
for class c. We choose the Gaussian kernel for
our similarity function: a(zi,pk) = e−||zi−pk||2 .
The model predicts inputs to belong to the same
class as the prototype they’re closest to in the la-
tent space. Unlike in Chen et al. (2019), we take
the max activation to obtain concise explanations.

In lieu of image heatmaps, we provide fea-
ture importance scores. What distinguishes these
scores from those of standard feature importance
estimates is that the scores are prototype-specific,
rather than class-specific. We choose a feature
omission approach for estimation. With text data,
omission is straightforward: for a given token, we
take the difference in function output between the
original input and the input with that token’s em-
bedding zeroed out. In the tabular domain, how-
ever, variables can never take on meaningless val-
ues. To circumvent this problem, we take the dif-
ference between the function value at the original
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input and the expected function value with a par-
ticular feature missing. The expectation is com-
puted with a distribution over possible values for
a missing feature, which is provided by a multi-
nomial logistic regression conditioned on the re-
maining covariates.

When presenting prototype explanations, we
provide users with the predicted class score, most
similar prototype, and top six feature importance
scores, provided that score magnitudes meet a
small threshold. In the explanation in Figure 2,
no scores meet this threshold. We set the size of
Pc to 40 for our text classification task and 20 for
our tabular classification task. For further training
and feature importance details, see the Appendix.

3.4 Decision Boundary
Joshi et al. (2018) and Samangouei et al. (2018) in-
troduce techniques for traversing the latent spaces
of generative image models. Their methods pro-
vide paths that start at input data points and cross
a classifier’s decision boundary. Such methods
may help users see the necessary conditions for
the model prediction.

We provide a simple method for traversing the
latent space of a discriminative classifier (see ex-
ample in Figure 2). Our algorithm first samples
around the original input to get instances that cross
the decision boundary. A counterfactual input
is chosen from these by taking the instance with
the fewest edited features (tokens or variables),
while breaking ties using the Euclidean distance
between latent representations. Lastly, we pro-
vide a path between inputs by greedily picking the
edit from the remaining edits that least changes the
model’s evidence margin, which is the difference
between positive and negative class scores. The
explanations we present to users include the in-
put, steps to the counterfactual input, and evidence
margin at each step. When the path is longer than
four steps, we show only the last four.

3.5 Composite Approach
We hypothesize that the above explanations pro-
vide complementary information, since they take
distinct approaches to explaining model behavior.
Hence, we test a Composite method that combines
LIME and Anchor with our decision boundary and
prototype explanations. We make two adjustments
to methods as we combine them. First, we show
only the last step of each decision boundary expla-
nation, i.e., the set of changes that flips the pre-

diction. Second, we train our prototype model
with its feature extraction layers initialized from
the neural task model and thereafter fixed. We do
so since we are interested in explaining the task
model behavior, and this tactic yields prototypes
that reflect characteristics of the task model.

4 Experimental Design

In this section, we describe our datasets, task mod-
els, user pool, and experimental design.

4.1 Data and Task Models

We perform experiments for classification tasks
with text and tabular data. The first dataset con-
sists of movie review excerpts (Pang et al., 2002).
The dataset includes 10,662 reviews with binary
sentiment labels, which we split into partitions of
70%, 10%, and 20% for the train, validation, and
test sets, respectively. We use the same neural
architecture as in Yang et al. (2016), limited to
use with single sentences. The second dataset is
the tabular Adult data from the UCI ML repos-
itory (Dua and Graff, 2017). This dataset con-
tains records of 15,682 individuals, and the label is
whether their annual income is more than $50,000.
We use the same data processing scheme and neu-
ral network architecture as Ribeiro et al. (2018).
Model accuracies are given in the Appendix.

4.2 User Pool

We gathered over 2100 responses via in-person
tests with 32 trained undergraduates who had
taken at least one course in computer science or
statistics.2 Each user was randomly assigned to
one of the ten conditions corresponding to our
dataset-method pairs. Once each condition had at
least 3 full tests collected, we allocated remaining
participants to the Composite method. In order to
ensure high quality data, we employed a screen-
ing test to check for user understanding of their
explanation method and test procedure. Two par-
ticipants were screened out due to low scores. We
also excluded data from a user whose task comple-
tion time was extremely low. We paid all users $15
USD per hour. Ten users were tested again with
a new dataset and explanation method, giving us
a total of 39 user tests. Some users had to exit
the experiment before finishing all of the tasks;

2We require this advanced background because expla-
nations rely on conditional probabilities, approximations of
probabilities, and other quantitative concepts.
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Text Tabular

Method n Pre Change CI p n Pre Change CI p

User Avg. 1144 62.67 - 7.07 - 1022 70.74 - 6.96 -

LIME 190 - 0.99 9.58 .834 179 - 11.25 8.83 .014
Anchor 181 - 1.71 9.43 .704 215 - 5.01 8.58 .234
Prototype 223 - 3.68 9.67 .421 192 - 1.68 10.07 .711
DB 230 - −1.93 13.25 .756 182 - 5.27 10.08 .271
Composite 320 - 3.80 11.09 .486 254 - 0.33 10.30 .952

Table 1: Change in user accuracies after being given explanations of model behavior, relative to the baseline
performance (Pre). Data is grouped by domain. CI gives the 95% confidence interval, calculated by bootstrap
using n user responses, and we bold results that are significant at a level of p < .05. LIME improves simulatability
with tabular data. Other methods do not definitively improve simulatability in either domain.

Forward Simulation Counterfactual Simulation

Method n Pre Change CI p n Pre Change CI p

User Avg. 1103 69.71 - 6.16 - 1063 63.13 - 7.87 -

LIME 190 - 5.70 9.05 .197 179 - 5.25 10.59 .309
Anchor 199 - 0.86 10.48 .869 197 - 5.66 7.91 .140
Prototype 223 - −2.64 9.59 .566 192 - 9.53 8.55 .032
DB 205 - −0.92 11.87 .876 207 - 2.48 11.62 .667
Composite 286 - −2.07 8.51 .618 288 - 7.36 9.38 .122

Table 2: Change in user accuracies after being given explanations of model behavior, relative to the baseline
performance (Pre). Data is grouped by simulation test type. CI gives the 95% confidence interval, calculated by
bootstrap using n user responses. We bold results that are significant at the p < .05 level. Prototype explanations
improve counterfactual simulatability, while other methods do not definitively improve simulatability for one test.

for data analysis purposes, we consider only task
items answered in both Pre and Post test phases.

4.3 Simulation Tests

We collect 1103 forward test and 1063 counterfac-
tual test responses in total.
Forward Simulation. This test is represented in
Figure 1. The test is split into four phases: a learn-
ing phase, a Pre prediction phase, a learning phase
with explanations, and a Post prediction phase.
To begin, users are given 16 examples from the
validation set with labels and model predictions
but no explanations. Then they must predict the
model output for either 16 or 32 new inputs, with
the number chosen based on user time constraints.
Users are not allowed to reference the learning
data while in prediction phases. Next, they return
to the same learning examples, now with expla-
nations included. Finally, they predict model be-
havior again on the same instances from the first
prediction round. By design, any improvement in
user performance in the Post prediction phase is
attributable only to the addition of explanations.
We show a screenshot of the user testing interface
in the Appendix.
Counterfactual Simulation. Represented in Fig-

ure 1, this test requires users to predict how a
model will behave on a perturbation of a given
data point. The test consists of Pre and Post
prediction rounds, where the only difference be-
tween them is the addition of explanations. In
both rounds, we provide users with the same 32
inputs from the test dataset (or 16 due to time
constraints), their ground truth labels, the model’s
prediction, and a perturbation of the input. See
the Appendix for a description of the perturbation
generation algorithm. Users then predict model
behavior on the perturbations. In the Post round,
users are given the same data, but they are also
equipped with explanations of the model predic-
tions for the original inputs. Therefore, any im-
provement in performance is attributable to the ad-
dition of explanations.

Data Balancing. One critical aspect of our exper-
imental design is our data balancing. We aim to
prevent users from succeeding on our tests simply
by guessing the true label for every instance. To
do so, we ensure that true positives, false positives,
true negatives, and false negatives are equally rep-
resented in the inputs. Likewise, for the counter-
factual test, we sample perturbations such that for
any instance, there is a 50% chance that the pertur-
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Text Ratings Tabular Ratings

Method n µ CI σ n µ CI σ

LIME 144 4.78 1.47 1.76 130 5.36 0.63 1.70
Anchor 133 3.86 0.59 1.79 175 4.99 0.71 1.38
Prototype 191 4.45 1.02 2.08 144 4.20 0.82 1.88
DB 224 3.85 0.60 1.81 144 4.61 1.14 1.86
Composite 240 4.47 0.58 1.70 192 5.10 1.04 1.42

Table 3: User simulatability ratings by data domain, on a scale of 1 to 7. The mean and standard deviation for
ratings are given by µ and σ. The 95% confidence interval for the mean is given by CI, as calculated by bootstrap.

bation receives the same prediction as the original
input. We confirm user understanding of the data
balancing in our screening test.
Data Matching. Within each data domain, all
users receive the same data points throughout the
experiment. This design controls for any dif-
ferences in the data across conditions and users,
though this does reduce the information added by
each test, making our confidence intervals rela-
tively wide given the same sample size. We also
match data across prediction rounds in order to
control for the influence of particular data points
on user accuracy between the Pre and Post phases.

4.4 Subjective Simulatability Ratings
Users see explanations in two phases of the tests:
the second learning phase in the forward test, and
the Post phase of the counterfactual test. In these
stages, we ask users to give subjective judgments
of the explanations. They rate each method on a
7 point Likert scale, in response to the question,
“Does this explanation show me why the system
thought what it did?” We explain that users should
give higher ratings when the explanation shows
the reasons for a model prediction, regardless of
whether or not the prediction is correct.

5 Results

We report data from a total of 2166 responses from
39 user tests. Each test is for a method and data
domain pair, and contains either 16 or 32 task
items, with some missingness due to users exit-
ing the study early. In the results to follow, we
use the term Change to refer to our estimate of
explanation effectiveness: the difference in user
accuracy across prediction phases in simulation
tests. We perform two-sided hypothesis tests for
this quantity by a block bootstrap, resampling both
users and unique task items within each condition
(Efron and Tibshirani, 1994). In addition, since
users complete the first prediction round in either
simulation test without access to explanations, we

estimate the mean Pre accuracy for each method
with a random effects model. This allows us to
share information across methods to yield more
precise estimates of test performance.

Below, we analyze our experimental results and
answer three questions: 1) Do explanations help
users? 2) How do users rate explanations? 3) Can
users predict explanation effectiveness?

5.1 Do explanations help users?

We show simulation test results in Tables 1 and 2.
In Table 1, we group results by data domain, and
in Table 2, we group results by test type.

Our principal findings are as follows:
1. LIME with tabular data is the only setting

where there is definitive improvement in for-
ward and counterfactual simulatability. With
no other method and data domain do we find
a definitive improvement across tests.

2. Even with combined explanations in the Com-
posite method, we do not observe definitive ef-
fects on model simulatability.

3. Interestingly, our prototype method does reli-
ably well on counterfactual simulation tests in
both data domains, though not forward tests. It
may be that the explanations are helpful only
when shown side by side with inputs.

These results suggest that: (1) many explanation
methods may not noticeably help users understand
how models will behave, (2) methods that are suc-
cessful in one domain might not work equally well
in another, (3) combining information from ex-
planations does not result in overt improvements
in simulatability. Yet, given our wide confidence
intervals, these results should be considered cau-
tiously. It may also be that other methods do in
fact improve simulatability, but we have not pre-
cisely estimated this. For example, our Prototype
and Composite methods do the best on average
with text data, though we cannot be confident that
they improve simulatability.

Note that estimates of explanation effectiveness
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could be influenced by users simply regressing to
the mean accuracy between prediction rounds. We
find that our primary results are not skewed by this
phenomenon: the highest estimates of Change in
each data domain and test type come from condi-
tions where mean Pre test performance was either
above the overall mean or, in one case, within 1.15
percentage points. This potential problem is fur-
ther mitigated by our random effects model of Pre
test performance, which pulls low Pre test means
toward the overall mean.

5.2 How do users rate explanations?
It seems that, as intended, users rated explanations
based on quality rather than model correctness,
as we observe no significant difference in ratings
grouped by model correctness (table in Appendix).
In Table 3, we show user ratings for each method
and data domain.

We observe that: 1) ratings are generally higher
for tabular data, relative to text data, 2) the Com-
posite and LIME methods receive the highest rat-
ings in both domains, and 3) variance in explana-
tion ratings is quite high, relative to their scale.

5.3 Can users predict explanation
effectiveness?

We answer this question by measuring how expla-
nation ratings relate to user correctness in the Post
phase of the counterfactual simulation test. In this
phase, users rate explanations of model predic-
tions for an original input and predict model be-
havior for a perturbation of that input. If ratings
of explanation quality are a good indicator of their
effectiveness, we would expect to see that higher
ratings are associated with user correctness.

We do not find evidence that explanation ratings
are predictive of user correctness. We estimate the
relationship via logistic regression with user cor-
rectness and ratings. We test models with both ab-
solute ratings and ratings normalized within users,
since ratings lack an absolute scale between users.
With 640 text data points, we estimate with 95%
confidence that moving from a rating of 4 to 5 is
associated with between a −2.9 and 5.2 percentage
point change in expected user correctness. Using
normalized ratings, we find that moving from the
mean explanation rating to the first standard devi-
ation is associated with between a −3.9 and 12.2
percentage point change. With 515 tabular data
points, we estimate that a change in rating from 4
to 5 is associated with between a −2.6 and 5.3 per-

centage point change in expected user correctness.
Of course, we have not shown that there is no as-
sociation. Yet it’s important to note that if there is
no relationship between user ratings and simulata-
bility, then simply querying humans about expla-
nation quality will not provide a good indication
of true explanation effectiveness.

6 Qualitative Analysis

When do explanations succeed at improving user
accuracy, and when do they fail at doing so? Be-
low, we present example counterfactual test items,
and we analyze how the explanations may have
pointed to the reasons for model behavior.

6.1 Explanation Success Example

For the example below, 5 of 6 Post test responses
for Prototype and LIME were correct that the
model output did not change for the counterfac-
tual, up from 3 of 6 in the Pre test.

Original (ŷ = pos): “Pretty much sucks, but has a
funny moment or two.”

Counterfactual (ŷc = pos): “Mostly just bothers,
but looks a funny moment or two.”

LIME identifies “funny” and “moment” as posi-
tive words, with weights adding to 1.04 after in-
cluding the baseline. The notable negative word
is “sucks” (w = −.23), which changes to a simi-
lar word (“bothers”). All together, LIME suggests
the prediction would stay the same since the pos-
itive words are unaffected and the only important
negative word has a similar substitute.

The Prototype model gives the most activated
prototype: “Murders by Numbers isn’t a great
movie, but it’s a perfectly acceptable widget.” It
identifies “but” and “funny” as important words
for the prototype’s activation. The counterfactual
is still similar to the prototype in key ways, sug-
gesting the prediction would not change.

6.2 Explanation Failure Example

For the item below, only 7 of 13 responses were
correct after seeing explanations, with no method
improving correctness relative to the Pre test accu-
racy. Users needed to predict that the model pre-
diction changed to negative for the counterfactual.

Original (ŷ = pos): “A bittersweet film, simple in
form but rich with human events.”

Counterfactual (ŷc = neg): “A teary film, simple
in form but vibrant with devoid events.”
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Anchor gives one word as a condition for the orig-
inal positive prediction: “bittersweet.” But what
happens when “bittersweet” changes to “teary”?
The Anchor explanation does not actually apply
to this counterfactual scenario, as its probabilistic
description of model behavior is conditioned on
the word bittersweet being present.

LIME gives five words, each with small
weights (|w| < .04), while the baseline is .91.
This suggests that LIME has failed to identify fea-
tures of the input that are necessary to the model
output. Among these five words are the three that
changed between sentences, but we would not sus-
pect from their weights that the changes made in
the counterfactual would flip the model output.

Decision Boundary gives a counterfactual in-
put with a negative prediction: “A sappy film, sim-
ple in link but unique with human events.” How-
ever, it is difficult to tell whether this counterfac-
tual sentence is similar in decision-relevant ways
to the proposed counterfactual sentence.

The Prototype model gives the activated proto-
type for the original prediction: “Watstein hand-
ily directs and edits around his screenplay’s sap-
pier elements...and sustains Off the Hook’s buildup
with remarkable assuredness for a first-timer.” No
important words are selected. We are left without
a clear sense of why this was the most similar pro-
totype and what circumstances would lead to the
model output changing.

These examples reveal areas for improvement
in explanations. Better methods will need to dis-
tinguish between sufficient and necessary factors
in model behavior and clearly point to the ways
in which examples share decision-relevant charac-
teristics with new inputs. Further, they must do so
in the appropriate feature space for the problem at
hand, especially for models of complex data.

7 Discussion

Forward Tests Stretch User Memory. We show
users 16 examples during learning phases but do
not allow them to reference the learning data dur-
ing prediction phases. Reasonably, some users re-
ported that it was difficult to retain insights from
the learning phase during later prediction rounds.
Generating Counterfactual Inputs. It may be
difficult to algorithmically construct counterfac-
tual inputs that match the true data distribution,
especially when seeking to change the model pre-
diction. Our text counterfactuals are regularly out

of the data distribution, in the sense that no real
movie review would exhibit the word choice they
do. We still consider these inputs to be of interest,
for the reason that a model will handle such inputs
in some manner, and we aim to assess all possible
model behaviors in our analysis.
Fair Comparison of Explanation Methods. In
our forward simulation treatment phases, we pro-
vide users with 16 explained instances and allow
them to read at their own pace. We control for
the number of data points between methods, but
one could instead control for user exposure time or
computation time of explanation generation. Fur-
ther, for LIME and Anchor, there are approaches
for efficiently covering the space of inputs with a
limited budget of examples (Ribeiro et al., 2018).
We opt not to use them since 1) they are not ap-
plicable to the Decision Boundary and Prototype
methods, which lack a similar notion of coverage,
and 2) it is not clear whether these approaches are
useful for text data. It may be that when using such
approaches, LIME and Anchor perform better on
forward simulation tasks.

8 Conclusion

Simulatability metrics give a quantitative measure
of interpretability, capturing the intuition that ex-
planations should improve a person’s understand-
ing of why a model produces its outputs. In
this paper, we evaluated five explanation methods
through simulation tests with text and tabular data.
These are the first experiments to fully isolate the
effect of algorithmic explanations on simulatabil-
ity. We find clear improvements in simulatability
only with LIME for tabular data and our Prototype
method in counterfactual tests. It also appears that
subjective user ratings of explanation quality are
not predictive of explanation effectiveness in sim-
ulation tests. These results suggest that we must be
careful about the metrics we use to evaluate expla-
nation methods, and that there is significant room
for improvement in current methods.
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A Appendix

A.1 Method Implementations
Explanation methods. For our tabular data, we
use the implementations of Anchor and LIME pro-
vided in the code for Ribeiro et al. (2018). We
implement our prototype and decision boundary
methods. With text data, we use the implementa-
tion of Anchor provided by Ribeiro et al. (2018),
and for LIME we use the code provided with
Ribeiro et al. (2016). As before, we implement
our prototype and decision boundary methods.

Text and Tabular Models. We train neural net-
works for both tasks as follows: for our tabular
task model, we use a neural network with two
hidden layers, each of width 50, as Ribeiro et al.
(2018) do. For our text task model, we use a BiL-
STM of the kind introduced by Yang et al. (2016),
who reported state of the art results on a num-
ber of sentiment analysis tasks. Since their net-
work is designed for classification of documents,
we limit our network components to those relevant
to classification of single sentences. We build our
prototype models on top of the feature extractor
layers of each of these models, meaning that we
only replace the final classifier layer of the neural
task model with a prototype layer. Accuracies for
each model are shown in Table 4. The task models
are trained with stochastic gradient descent and a
cross-entropy loss function, using early stopping
on a validation dataset and l2 regularization with

Model Accuracies

Data & Model Test Acc

Text
Task Model 80.93
Prototype 80.64

Tabular
Task Model 83.49
Prototype 81.90

Table 4: Model accuracies on each data domain. Text
data is split into partitions of 70%, 10%, and 20% for
the train, validation, and test sets, respectively. We
use the same data processing scheme as Ribeiro et al.
(2018) for tabular data.

User Ratings

Model Correctness n µ CI σ

Text
Correct 464 4.44 .49 1.89
Incorrect 468 4.12 .67 1.81

Tabular
Correct 391 5.09 .27 1.64
Incorrect 394 4.64 .27 1.69

Table 5: User simulatability ratings grouped by model
correctness and data domain. Users do not seem to be
rating explanations simply based on model correctness,
as the differences in group means based on model cor-
rectness are not significant at a level of p < .05.

a coefficient of 1e−4. See training details for the
prototype models below.

Prototype Model Training. Here we describe
our prototype training algorithm, beginning with
weight initialization. We initialize 1) feature ex-
traction layers using the pretrained weights of
our neural task model, 2) prototype vectors via
k-means clustering on the latent representations
of the entire training set, and 3) final classifier
weights as 1 where the corresponding prototype’s
class matches the weight vector’s class, and −.5
elsewhere. The objective function for our proto-
type models contains three terms: 1) a cross en-
tropy loss, 2) l1 regularization on off-class weights
in the classifier, and 3) a separation cost term,
which is the minimum distance between a latent
representation and any prototype not belonging to
the input’s class.

Importance Scores in Protoype Model. For a
given feature, we compute an importance score by
taking the difference in function output with that
feature present in the input, relative to when that
feature is omitted. With text data, there are a num-
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Prediction Period

Learning Period Rounds = {1,3}

Rounds = {2,4}

Round = 3

InputLabel Model Output

Figure 3: Forward simulation test procedure. We mea-
sure human users’ ability to predict model behavior.
We isolate the effect of explanations by first measuring
baseline performance after users are shown examples
of model behavior (Rounds 1, 2), and then measuring
performance after they are shown explained examples
of model behavior (Rounds 3, 4).

ber of mechanisms by which one can omit a word
from an input; we opt for setting that word’s em-
bedding to the zero vector. For tabular data, to
estimate a variable value’s importance we com-
pute a measure of evidence gain from knowing
the value, relative to not knowing it. Formally,
our importance function is the difference between
the function value at the original input and the ex-
pected function value for the input with variable
j removed. The expectation is taken over a dis-
tribution generated by an imputation model condi-
tioned on the remaining covariates.

Importance(xi,j) =

f(xi)− Ep(xi,j |xi,−j)f(xi,−j ∪ xi,j)

where p(xi,j |xi,−j) is given by a multinomial lo-
gistic regression fit to the training data, and xi,−j
is the data point without feature j, and f(xi,−j ∪
xi,j) is the data point xi,−j with feature value xi,j

imputed at index j. We choose to use logistic
regressions with no feature engineering in order
to 1) generate calibrated probability distributions,
and 2) scale straightforwardly with dataset size.

Decision Boundary Algorithm. In detail, the
algorithm takes as input a data point x∗, the clas-
sifier f , a perturbation distribution D(·|x∗), and a
measure of distance between inputs d(x1, x2). We
first sample {x̃}10,000i=1 from the perturbation dis-
tribution around x∗. The eligible perturbations to

Rounds = {1,2}Prediction Period

Round = 2

InputLabel

Counterfactual
Output
Counterfactual

Input

Figure 4: Counterfactual simulation test procedure.
Users see model behavior for an input, then they pre-
dict model behavior on an edited version of the input.
We isolate the effect of explanations by measuring user
accuracy with and without explanations.

choose from are those with the opposite predic-
tion from the original: E = {x̃i|f(x̃i) 6= f(x∗)}.
Then using a distance function d, we select a coun-
terfactual input as

x(c) = min
x̃i∈E

d(x∗, x̃i)

We provide a path from x∗ to x(c) by greedily
picking the single edit from the remaining edits
that least changes the model’s evidence margin,
which is the difference between positive and neg-
ative class scores. Our distance function is the
count of different features between inputs, plus the
squared Euclidean distance between latent repre-
sentations. The Euclidean distance is on a scale
such that it serves as a tie-breaker:

d(x1, x2) =
∑
j

1(x1j 6= x2j)

+ ||f(x1)− f(x2)||22.

A.2 Perturbation Distributions
We design perturbation distributions for two
points in our experiments: 1) selecting counter-
factual inputs in simulation tests, and 2) gener-
ating decision boundary explanations. First, we
describe our approaches for selecting counterfac-
tual inputs, which are conditioned on the need for
a certain prediction type: either the same predic-
tion as the original input or the alternative class.
In both data domains, we sample 10, 000 local
perturbations around the input and then randomly
pick a sample that the model predicts to be of the
needed prediction type. While working with tabu-
lar data, we sample perturbations as follows: we
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Figure 5: A screenshot of our user testing interface. This example is of the counterfactual Post test with LIME for
text data.

randomly choose to make between 1 and 3 ed-
its, then choose the features to edit uniformly at
random, and finally pick new feature values uni-
formly at random. The only sampling constraint is
that a variable cannot be set as its original value.

For text data, we use a strategy that is similar
to sampling from the perturbation distribution in
Ribeiro et al. (2018), which is to randomly sub-
stitute words with their neighbors in GloVe word
embedding space, sampling neighbors with prob-
ability proportional to their similarity. We make
a few changes: we 1) decrease probability of to-
ken change with the length of sentence, 2) cap the
number of edited words at 5 in the chosen pertur-
bation if possible, and 3) limit edited tokens to be
nouns, verbs, adjectives, adverbs, and adpositions.
Example perturbations are shown in the example
of the user testing interface in Figure 5, which is
given for a counterfactual test with text data.

A.3 Simulation Test Design
In Figures 3 and 4, we include additional represen-
tations of our experimental design, showing each
test separately and in slightly greater detail than in
Figure 1.

A.4 Testing Environment
We show a screenshot of our user testing interface
in Figure 5. This example is of the counterfac-
tual Post test with LIME for text data. Tests are
administered through spreadsheets, wherein users
read test material and place responses. Users are
guided from file to file by the experimenter.


