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Abstract

Natural disasters (e.g., hurricanes) affect mil-
lions of people each year, causing widespread
destruction in their wake. People have recently
taken to social media websites (e.g., Twitter)
to share their sentiments and feelings with
the larger community. Consequently, these
platforms have become instrumental in under-
standing and perceiving emotions at scale. In
this paper, we introduce HURRICANEEMO,
an emotion dataset of 15,000 English tweets
spanning three hurricanes: Harvey, Irma, and
Maria. We present a comprehensive study
of fine-grained emotions and propose classi-
fication tasks to discriminate between coarse-
grained emotion groups. Our best BERT (De-
vlin et al., 2019) model, even after task-guided
pre-training which leverages unlabeled Twitter
data, achieves only 68% accuracy (averaged
across all groups). HURRICANEEMO serves
not only as a challenging benchmark for mod-
els but also as a valuable resource for analyz-
ing emotions in disaster-centric domains.

1 Introduction

Natural disasters cause thousands of deaths and dis-
place hundreds of millions each year (Ritchie and
Roser, 2020). These catastrophic events not only
induce material destruction but also stir an integral
part of being human: our emotions. Disasters ad-
versely affect individuals’ mental states (Fritz and
Marks, 1954, Kinston and Rosser, 1974), and there-
fore it is no surprise that many take to social media
(e.g., Twitter) to share their feelings. Social me-
dia websites, as a result, have become an essential
platform for understanding the expression and per-
ception of emotions at a significantly larger scale
(Mohammad, 2012; Wang et al., 2012; Moham-
mad and Kiritchenko, 2015; Volkova and Bachrach,
2016; Abdul-Mageed and Ungar, 2017), with far
reaching potential influences from academic re-
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search to public policy (Dennis et al., 2006; Fritze
et al., 2008; Fraustino et al., 2012).

While natural language processing methods have
been effective for emotion detection (Strapparava
and Mihalcea, 2007), existing resources struggle
in disaster-centric domains, in part due to distribu-
tional shifts. Emotion detection in natural disasters
(e.g., hurricanes) requires implicit reasoning not
available as surface-level lexical information. For
example, in “of course, [we]; still have the [storm
surge]o coming,” given the context, we can rea-
sonably infer discontent towards the “storm surge”
despite the absence of polarizing words. There-
fore, distantly supervised techniques largely based
on lexical units (Mohammad and Turney, 2013;
Abdul-Mageed and Ungar, 2017) fail to capture
this type of deeper semantic phenomena.

Our paper presents a comprehensive investiga-
tion into perceived emotions in hurricane disas-
ters. To this end, we introduce HURRICANEEMO,
a dataset of 15,000 disaster-related tweets (in En-
glish) streamed during Hurricanes Harvey, Irma,
and Maria, which were devastating tropical storms
occurring in the 2017 Atlantic hurricane season
(Belles, 2017). Our samples are annotated with
fine-grained emotions derived from the Plutchik
Wheel of Emotions (Plutchik, 2001), a well-defined
ontology of emotion classes commonly used in
computational social science (Abdul-Mageed and
Ungar, 2017)." To measure inter-annotator agree-
ment on fine-grained emotion labels, we concep-
tualize the Plutchik Emotion Agreement (PEA)
metric (§3). PEA is intuitively grounded; our hu-
man evaluation shows workers agree with PEA’s
rankings 88% of the time. Furthermore, we per-
form insightful analyses on implicit and explicit
emotions in hurricane tweets (§4). Quite surpris-

!Specifically, we use Plutchik-8 and Plutchik-24 emotions.
We refer readers to Plutchik (2001) for an in-depth discussion
on their conception.
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ingly, we find consistencies in Plutchik-24 emotion
distributions across Hurricanes Harvey, Irma, and
Maria.

HURRICANEEMO also serves as a challenging
new benchmark for large-scale, pre-trained lan-
guage models. We establish baselines for a coarser
Plutchik-8 emotion detection task using BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019)
(§5). Our experiments reveal: (1) BERT only
achieves 64% (averaged) accuracy; and (2) using
“better” pre-trained models (e.g., RoOBERTa) does
not help, which is a strikingly different trend than
most leaderboards (Wang et al., 2018). To better
understand their pitfalls, in particular BERT, we
conduct a comprehensive error analysis of 200 in-
correctly predicted samples. In addition, we incor-
porate stronger inductive biases into BERT via pre-
training on related tasks, which culminates in (av-
eraged, absolute) +4% accuracy (§6). Finally, we
propose unsupervised domain adaptation to bridge
the domain gap between existing large-scale emo-
tion datasets (e.g., EMONET (Abdul-Mageed and
Ungar, 2017)) and HURRICANEEMO (§7). Our
code and datasets are made publicly available.?

2 Related Work

Emotion detection has been extensively studied in
news headlines (Strapparava and Mihalcea, 2007;
Katz et al., 2007), blog posts (Aman and Szpakow-
icz, 2007), health-related posts (Khanpour and
Caragea, 2018), and song lyrics (Strapparava et al.,
2012), but only recently, in social media websites
(e.g., Twitter, Facebook) (Mohammad, 2012; Wang
et al., 2012; Mohammad and Kiritchenko, 2015;
Volkova and Bachrach, 2016; Abdul-Mageed and
Ungar, 2017). However, emotion detection in
disaster-centric domains, despite its practical im-
portance, is limited. Schulz et al. (2013) (single-
handedly) annotate 2,200 Hurricane Sandy tweets
using Ekman-6 emotions (Ekman, 1992). In con-
trast, we introduce 15,000 annotated tweets from
multiple hurricanes with (much more fine-grained)
Plutchik-24 emotions. Unlike Abdul-Mageed and
Ungar (2017), we focus on readers’ perceived emo-
tions rather than writers’ intended emotions.
Furthermore, in disaster-centric domains, the
lack of labeled data required to train reliable mod-
els precludes the use of supervised learning tech-
niques. Several works propose to use labeled data

https://github.com/shreydesai/
hurricane

from prior (source) disasters to learn classifiers for
new (target) disasters (Verma et al., 2011; Nguyen
et al., 2017; Imran et al., 2013, 2016; Caragea
et al., 2016). However, due to the unique nature
of each disaster (e.g., type, geographical location,
season, cultural differences among the affected pop-
ulation), the source disaster may not accurately re-
flect the characteristics of the target disaster (Palen
and Anderson, 2016; Imran et al., 2015). Domain
adaptation techniques address these challenges by
efficiently using large amounts of unlabeled tar-
get domain data, consequently outperforming the
aforementioned supervised techniques (Alam et al.,
2018; Li et al., 2017). Our work contributes to
disaster-centric emotion detection in three ways by:
(1) introducing a dataset large enough to train su-
pervised classifiers; (2) exploring various forms of
pre-training to instill strong inductive biases; and
(3) establishing domain adaptation baselines by
leveraging emotive samples obtainable via distant
supervision.

3 Dataset Construction

In this section, we present HURRICANEEMO, an
annotated dataset of 15,000 English tweets from
Hurricanes Harvey, Irma, and Maria. We detail
each component, including the initial preprocessing
(§3.1), annotation procedures (§3.2), and the formu-
lation and calculation of inter-annotator agreement

(83.3).

3.1 Preprocessing

Ray Chowdhury et al. (2019) release a repository
of large-scale Twitter datasets consisting of tweets
streamed during the Harvey, Irma, and Maria hurri-
canes, which we will refer to as HURRICANEEXT
(i.e., extended). We use their tweets as a starting
point for the construction of our dataset. We per-
form two types of preprocessing. First, we replace
usernames and links with <USER> and <URL>, re-
spectively, then eliminate duplicate tweets. Second,
we use filtering techniques to ensure the resulting
tweets contain emotive content.

We assume a lexical prior over emotion tweets,
that is, requiring that an emotive tweet consist of
at least one word derived from EMOLEX (Mo-
hammad and Turney, 2013). EMOLEX consists of
14,182 crowdsourced words associated with several
emotion categories. Critically, these words appear
in emotional contexts, but are not necessarily emo-
tion words themselves. For example, “payback” is
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related to the emotion “anger,” but is also used ex-
tensively in finance. Significant past work (Bravo-
Marquez et al., 2014; Majumder et al., 2017; Giat-
soglou et al., 2017) has used this lexicon to boot-
strap their emotion datasets, since the alternatives
are (1) using unlabeled tweets as-is or (2) using a
model to classify emotional tweets. Initially, we
started with (1) and did no emotion-related prepro-
cessing. However, the dataset contained many spu-
rious tweets, such as snippets of news articles, that
had little to do with emotions. The level of noise
rendered the data prohibitively costly to annotate.
For (2), there is simply no such large-scale data
to train on, and existing resources like EMONET
manifest an even stronger prior where tweets are
only included if they explicitly contain an emotion
hashtag (e.g., #sad, #angry, #happy).

3.2 Annotation

We randomly sample 5,000 tweets each for anno-
tation from the filtered datasets for Harvey, Irma,
and Maria; in total, this yields 15,000 annotations.
We request workers on Amazon Mechanical Turk
to label tweets with a list of Plutchik-24 emotions.
Furthermore, to enable fine-grained emotion anal-
ysis, we do not crowdsource Plutchik-8 emotions
directly. We require that workers reside in the US
and have completed 500+ HITs with an acceptance
rate > 95%. Each HIT is completed by 5 workers.

3.3 Inter-Annotator Agreement

In this section, we elaborate on our PEA metric
for computing inter-annotator agreement with fine-
grained emotion labels.

Challenges. Fine-grained emotion annotation
presents several challenges for evaluating inter-
annotator agreement. First, because a tweet can
convey multiple emotions, we allow workers to
select more than one Plutchik-24 emotion. This
implies an agreement metric must support scoring
sets of categorical values. Passonneau (2004) use
set distance metrics for capturing agreement be-
tween coreference cluster annotations. Similarly,
Wood et al. (2018) incorporate Jaccard’s similar-
ity in Krippendorff’s alpha. However, these meth-
ods would penalize fine-grained emotions equally,
which is not ideal. For the Plutchik wheel, the prox-
imity of any two emotions represents their related-
ness. For example, TRUST and ADMIRATION be-
long to the same emotion group while LOATHING

and | ADMIRATION are orthogonal to each other.

Figure 1: Visualization of the PEA metric. The unit
circle is superimposed on the Plutchik wheel, and each
Plutchik-8 emotion is assigned a radian value. In this
example, the (normalized) distance between the emo-
tions corresponding to 37” and 7 is 0.25.

PEA Scores. We introduce the Plutchik Emotion
Agreement—hereafter referred to as PEA—to ad-
dress these challenges. We superimpose a unit
circle onto the Plutchik wheel, representing each
Plutchik-8 emotion as a polar coordinate (e.g.,
DISAPPROVAL = (4, %ﬁ)). Intuitively, the an-
gles between Plutchik-8 emotions represent how
similar or dissimilar they are. If two Plutchik-24 an-
notations belong to the same Plutchik-8 group, we
do not penalize them (e.g., JOY and ECSTASY
incur no penalty). Otherwise, we enforce a linear
penalty based on how radially separate the anno-
tations are (e.g., ECSTASY and GRIEF incur the
highest penalty). Higher PEA scores imply more
agreement.

Example. Figure 1 visualizes our metric. In this
example, two annotators select emotions with radi-
ans 3T and Z, respectively. The \f(egf)) —f( (]))\
term evaluates to %”. Then, it is normalized us-
ing %, yielding % = 1.25. Finally, we subtract to
obtain the agreement score: |1 — 1.25| = 0.25. In-
tuitively, this makes sense as the decisions are only
slightly better than being in complete disagreement
(i.e., orthogonal).

Formulation. For clarity, we introduce notation.
Let w, and w, denote workers with (categorical)

annotation sets {eg(cZ )}?:1 and {e?(f )};-”:1, respec-

tively. The pairwise agreement d(w,, w,) between
the workers is computed as:

1 ¢ Lo :
oo max (|1 = —|7(ef?) — F(ef)])
i=1
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Vocabulary Features (%)

Hurricane Orig. Filt. # @ 1
Harvey 206K 144K 481 274 853
Irma 146K 88K 414 225 817
Maria 216K 158K 365 303 783

Table 1: Per-hurricane dataset statistics. In the vocabu-
lary section, Orig. shows vocabulary counts (obtained
through whitespace tokenization) and Filt. shows
counts after <USER> and <URL> preprocessing. In the
features section, we show the percentage of tweets with
hashtags (#), user mentions (@), and links (//).

where % is a normalizing constant and f : 2 — R
is a map from Plutchik-8 emotions to radians.
Given a collection of workers that annotated a
tweet, we obtain per-worker PEA scores by averag-
ing over all possible pairwise agreements. For ex-
ample, if workers w;_3 annotated the same tweet,
PEA(w1) = 3(d(w1,w2) + d(w1, ws)). For qual-
ity control, we filter annotations from workers with
PEA < 0.55. This threshold is determined through
manual inspection of 50 workers and their annota-
tions. The (averaged, per-worker) PEA scores for
each hurricane are: Harvey (65.7), Maria (67.3),
and Irma (70.3).

Human Evaluation. We perform a human eval-
uation with our proposed metric, which is absent in
previous work for measuring inter-annotator agree-
ment for emotion annotations (Wood et al., 2018;
Ohman et al., 2018). Crowdsourced workers are
asked to determine the agreement between two an-
notation pairs constructed from three annotators,
that is, A: (e1,e2) and B: (e1, e3). They choose
between three options: (1) A has higher agree-
ment than B; (2) A and B have (roughly) the same
agreement; and (3) B has higher agreement than A.
88.2% of the worker rankings match with PEA’s
rankings, pointing towards strong human agree-
ment. The workers themselves in this study also
show good agreement according to Krippendorff’s
alpha (a = 74.0) (Artstein and Poesio, 2008).4

4 Qualitative Analysis

4.1 Dataset Overview

Table 1 presents several statistics of HURRICA-
NEEMO. We make three observations. First, the

3A reasonable interpretation of PEA scores may be as
follows: 0—25 (no agreement), 25—50 (poor agreement),
50—75 (moderate agreement), 75—100 (high agreement).
*See Appendix B for details on our procedures.

Mexico helped us during Houston, lets
return the favor!

joy, admiration,
pensiveness

Hurricane Irma is hitting Florida. Ev-
eryone evacuated Here I am, still in
Florida bring it on Irma, bring it on.

puerto rico should be the ONLY
THING in American News. <URL>

acceptance, an-
ticipation, vigi-
lance

anger, annoy-
ance, interest

Table 2: Samples from HURRICANEEMO. Each sam-
ple is annotated with multiple Plutchik-24 emotions.

vocabularies across all datasets are large consid-
ering there are only 5,000 tweets per hurricane.
The vocabularies do decrease by about 30% af-
ter preprocessing, although the resulting sizes still
suggest users use a myriad of words to express
their emotions. Second, only about 50% of Har-
vey tweets and 40% of Irma/Maria tweets contain
hashtags. Hashtags are a unique marker of Twitter
discourse (Ritter et al., 2011), but in our dataset
specifically, hashtags are used to tag particular en-
tities, spread disaster-relief awareness, and create
trending content. This phenomena alone makes our
tweets different from those collected through dis-
tant supervision (Abdul-Mageed and Ungar, 2017).
Third, roughly 80-85% of tweets contain links to
third-party content. Users commonly use links to
share news articles, resources for humanitarian aid,
and other miscellaneous multimedia.

Table 2 shows three samples from HURRICA-
NEEMoO. Unlike EMONET (Abdul-Mageed and
Ungar, 2017), our dataset does not have the strong
assumption that only one emotion can be expressed
in a tweet. For example, the first tweet lexically
points towards the expression of more than one
emotion. The predicate “helped us” implies the
user admires Mexico for providing aid, and the
exclamation mark is indicative of JOY . In addi-
tion, our samples contain a mix of implicit and
explicit emotions, which lexical information alone
cannot resolve. In the third tweet, there are no
particular words that point towards ANGER and
ANNOYANCE , but we can infer the user is upset
that the media is not prioritizing Hurricane Maria.

Finally, our emotion prediction tasks cannot be
solved by simply retrofitting pre-trained word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014) or contextualized representations (Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2019),
which we also empirically show in our experiments
(§5). These methods work best for explicit emo-
tion detection as they largely overfit to sparse lex-
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Plutchik-8 Plutchik-24

Emotion Abbrv. Emotion Abbrv.
rage rage
aggressiveness  agrsv anger anger
annoyance anyce
vigilance vglnc
optimism optsm anticipation antcp
interest inrst
ecstasy ecsty
love love joy Jjoy
serenity srnty
admiration admrn
submission sbmsn  trust trust
acceptance acptn
terror trror
awe awe fear fear
apprehension  aprhn
amazement amzmt
disapproval dspvl surprise srpse
distraction dstrn
grief grief
remorse rmrse sadness sadns
pensiveness psvne
loathing lthng
contempt cntmp  disgust dsgst
boredom brdom

Table 3: Plutchik-8 (left) and Plutchik-24 (right) abbre-
viations used throughout this paper.

ical features. Rather, in order to capture implicit
emotions, models must carry an inductive bias that
appropriately reasons over the context (e.g., what
event(s) occurred?) and semantic roles (e.g., what
happened to whom?) while balancing the afore-
mentioned features.

4.2 Fine-Grained Emotions

We begin to analyze the fine-grained emotions
present in our datasets. We ask the following ques-
tions: What is the general distribution of emotions?
Are certain emotion groups highlighted more than
others? How does the distribution change across
hurricanes?

Figure 2 shows Plutchik-24 emotion distribu-
tions for Hurricanes Harvey, Irma, and Maria.
From these plots, a couple of trends emerge. First,
the Plutchik-24 emotion counts are within the ball-
park of each other with the notable exceptions of

ADMIRATION and FEAR . This suggests that, on
average, hurricane disasters evoke a similar spread
of implicit and explicit emotions among most emo-
tion categories. Second, users tend to post more op-
timistic content during hurricane disasters. We hy-

aggressiveness optimism love

II I Harvey
1 ] Ml Irma
WL g | =

_inrst antcp vglinc

5000 -
2500 1

0_ i
anyce anger rage srnty joy ecsty

submission awe disapproval

5000 -

2500

0

acptn trust admrn  aprhn fear trror dstrn srpseamzmt

remorse contempt

5000 -

2500 1 4

ol 1
psvne sadns grief  brdomdsgst Ithng

Figure 2: Per-hurricane emotion counts where each
box’s Plutchik-8 emotion is broken down into its re-
spective Plutchik-24 emotions. Plutchik-24 emotions
are abbreviated using the codes in Table 3.

pothesize that users use Twitter as a social platform
to spread awareness of the hurricanes themselves or
post-disaster relief efforts, commonly using hash-
tags like #prayfortexas, #floridaevacuation, and
#donationdrive. It is encouraging to see that al-
though users do express natural emotions such as
fear, sadness, and anger, many seek to help others
in the face of adversity. Third, sharp changes in
emotion counts between Harvey and Irma may be
tied to their history. In the 2017 Atlantic hurricane
season, Harvey materialized as a Cat-4 hurricane,
and Irma followed around two weeks later as a
Cat-5 hurricane.’ Through side-by-side compar-
isons of both hurricanes’ tweets, we found the Irma
tweets had more descriptions of destruction and its
aftermath. These changes in discourse potentially
explain shifts between the emotion distributions.

4.3 Emotion Co-Occurrence

Thus far, we have analyzed each Plutchik-24 emo-
tion in isolation. In this section, we ask the follow-
ing questions: How do Plutchik-8 emotion groups
co-occur with one another? Do co-occurrence pat-
terns change across hurricanes?

Figure 3 shows co-occurrence heatmaps for
each hurricane. Intuitively, we see strong corre-
lations between polarized emotions, that is, emo-

3 Abbreviations for Category-z. This refers to the Saffir-
Simpson scale for classifying hurricanes based on sustained
wind speed, which ranges from 1-5 in order of severity.
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Harvey Irma Maria
agrsv 1
optsm 1
love B 1
sbmsn 1
awe 1 .
dspvl
rmrse 1 |
cntmp BN HER CEEm §
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[
0 1000 2000 3000 4000 5000
Figure 3: Per-hurricane Plutchik-8 emotion co-

occurrences. The matrices are symmetric across the
diagonal, so we mask the upper diagonal of the matrix
for clarity. Plutchik-8 emotions are abbreviated using
the codes in Table 3.

tions categorized as positive and negative. For
example, (LOVE , AGGRESSIVENESS ) does not
appear as frequently as (LOVE, OPTIMISM ) or
( CONTEMPT , AGGRESSIVENESS ). However,
this premise does not always hold; the pairs
({ DISAPPROVAL , REMORSE }, OPTIMISM )
also co-occur across all hurricanes. Representa-
tive of this phenomenon is the tweet: “I'm rais-
ing money for Hurricane Maria Destroyed Every-
thing. Click to Donate: <URL> via <USER>.” The
user indicates disapproval towards the hurricane by
evoking pathos, but also shows optimism by do-
nating money to a relief effort. Finally, similar to
our previous observations (§4.2), we notice an in-
crease in co-occurrence frequencies from Harvey
— Irma. This increase is, somewhat surprisingly,
most apparent with (AWE , OPTIMISM ), although
({ DISAPPROVAL , REMORSE }, /AWE ) frequen-
cies also exhibit a noticeable gain. Once again, we
posit that users may be expressing their sadness
regarding the Cat-4 — Cat-5 jump, but at the same
time, offering solidarity to those affected by the
hurricanes.

S Baseline Modeling

We now turn to modeling the emotions in HURRI-
CANEEMO. Because Plutchik-24 emotion counts
are heavily imbalanced, we group them into
Plutchik-8 emotions and consequently create 8 bi-
nary classification tasks.

The tweets are assorted into their respective label
buckets; because tweets may be labeled with more
than one emotion, each belongs to one or more
buckets. These buckets represent positive samples
(i.e., tweets labeled with that emotion). To create
negative samples, we sample an equal amount from

Plutchik-8 Emotion Train  Valid Test
Aggressiveness 4,209 526 527
Optimism 11,902 1,488 1,488
Love 2,569 321 322
Submission 6,092 762 762
Awe 7,324 916 916
Disapproval 5,931 741 742
Remorse 7,732 967 967
Contempt 3,763 470 471

Table 4: Train, validation, and test splits for each
Plutchik-8 emotion.

other buckets. From here, we shuffle the positive
and negative samples and perform an 80/10/10 split
to create the train, validation, and test sets.® Table
4 enumerates the splits.

5.1 Experimental Setup

We consider both traditional neural models and pre-
trained language models. We implement our mod-
els in PyTorch (Paszke et al., 2019) and perform all
experiments on an NVIDIA Titan V GPU. Training
and optimization hyperparameters are detailed in
Appendix C. We report mean performance across
10 runs, each with a different random initialization.
Below, we elaborate on our models:

Traditional Neural Models. Each is equipped
with 200D GloVe embeddings pre-trained on 2B
tweets (Pennington et al., 2014): (1) Logistic Re-
gression: We average the word embeddings of
each token in the sequence (Iyyer et al., 2015); (2)
CNN: A word-level CNN (Kim, 2014) with 100
filters of size [3, 4, 5] obtains representations. They
are max-pooled and concatenated row-wise. We
also experiment with a character-level CNN with
filter sizes [5, 6, 7]; (3) GRU: A one-layer, uni-
directional GRU (Cho et al., 2014) with a hidden
dimension of 100 obtains features, which are mean
pooled. For all models, penultimate representations
are projected with a weight matrix W € R%*2,

Pre-trained Language Models. We fine-tune
base versions of BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) using the Hugging-
Face Transformers library (Wolf et al., 2019). We

%We also experimented with keeping all negative samples
as opposed to sampling an equal amount. Each binary task
had around 5-7x more negative samples; this significantly hurt
model performance. Even with a class imbalance penalty, the
models almost never predicted positive samples. Note that
although, in aggregate, the number of positive and negative
samples match, they do not necessarily match in the train,
validation, and test splits.
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AGR OPT LOV SBM AWE DSP RMR CNT AVG

LogisticReg. 498 747 509 506 489 497 483 468 525
Char CNN  50.2 743 43.0 472 447 471 474 488 503
Word CNN  43.6 745 447 454 442 470 469 439 488
GRU 484 747 540 509 501 499 489 492 533

BERT 676 750 540 674 683 557 585 668 64.1
RoBERTa 59.7 747 540 623 560 509 497 564 580

Table 5: Plutchik-8 binary task accuracies, including aggressiveness (agr), optimism (opt), love (lov), submission
(sbm), awe (awe), disapproval (dsp), remorse (rmr), contempt (cnt). We also report an average (avg) across all

binary tasks. Best results are bolded.

use the sentence representations embedded in the
[CLS] token, then project it with a weight matrix
W € R%*2, The language model and classification
parameters are jointly fine-tuned.

5.2 Results

Table 5 presents our classification results. We make
the following observations:

BERT consistently outperforms other models
on most emotion tasks. BERT shows strong per-
formance across all 8 binary tasks in comparison
to traditional neural models and RoBERTa. Unlike
most traditional neural models, its accuracy never
falls below random chance, showing it captures at
least some of the complex phenomena present in
our dataset. However, our tasks remain challeng-
ing for both types of models alike. For traditional
models, word embeddings alone do not provide
enough representational power to model our emo-
tional contexts. Although GRUs perform well on
EMONET (Abdul-Mageed and Ungar, 2017), we
suspect that they simply memorize emotion lex-
icons (§4.1), which is not a notable strategy for
capturing implicit emotions. Nevertheless, BERT
only obtains an average accuracy of about 64%.
This leaves plenty of room for future work; we
perform a comprehensive error analysis as a step
towards this goal (§5.3).

“Better” pre-trained models (e.g., RoBERTa)
do not necessarily help performance. Unlike
popular benchmarks such as GLUE (Wang et al.,
2018) where more pre-training monotonically in-
creases performance, rather encouragingly, we do
not observe the same trend. ROBERTa’s average
performance is around 5% better than GRU’s, but
still around 6% worse than BERT’s. We hypothe-
size that this drop in performance is attributed to
pre-training — fine-tuning domain discrepancies.
That is, ROBERTa’s (additional) pre-training data
(e.g., CC-News) may be too distant from Twitter

data, which is known for its short contexts and
unique vernacular (Ritter et al., 2011). We encour-
age practitioners to avoid applying state-of-the-art
models without augmenting them with task-guided
pre-training objectives, as we explore later (§6).

5.3 Error Analysis

Using our BERT model, we sample 25 test errors
from each of the 8 emotion tasks, yielding a total
of 200 errors. We group the errors into the follow-
ing categories: lexical and syntactic cues (45%),
insufficient context (24%), entity mentions (15%),
subjective labeling (10%), and unknown reasons
(6%). The top three categories are discussed below:

Lexical and Syntactic Cues. BERT often relies
on surface-level lexical features to make predic-
tions, as do most emotion prediction models. This
bias also extends to certain syntactic features, such
as punctuation. In “pls be safe everyone!!!!”,
BERT associates the exclamation mark with a pos-
itive emotion, but here, the speaker is more con-
cerned.

Insufficient Context. Users often comment on
events, public policies, or linked content that,
by themselves, do not carry features for super-
vised learning. This type of error is not nec-
essarily a shortcoming of BERT, but rather our
dataset. For example, in “for [tracy mcgrady],
[hall induction]o muted by effects of [hurricane
harvey]s at home”, one use external knowledge to
reason between the noun phrases and discern the
latent emotions.

Entity Mentions. BERT also makes erroneous
predictions in the presence of certain entity men-
tions. For example, BERT classifies this tweet
as AGGRESSIVENESS : “nytimesworld: mexico
offered aid to texas after harvey. but after an earth-
quake and hurricane, it says all help is needed
at home.” Here, the user is merely quoting a
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AGR OPT LOV SBM AWE DSP RMR CNT AVG
NO-PRETRAIN 67.6 750 540 674 683 557 585 668 64.1
Supervised Transfer
EMONET 735 752 552 688 675 531 600 717 65.6
SENTIMENT 72.8 758 | 627 710 656 534 570 673 657
Unsupervised Transfer
EMONET 72.1 751 540 [ 61.0 651 542 607 694 639
SENTIMENT 69.1 749 536 662 673 543 579 644 635
HURRICANEEXT | 73.6 754 [J69BN 689 69.7 579 602 702 682

Table 6: Task-guided pre-training accuracies (abbreviations defined in Table 5). Displayed in order of supervised
(middle) and unsupervised (bottom) pre-training. Results are highlighted with [blue (1) and [red| ({) with respect

to NO-PRETRAIN. Best viewed in color.

news statement as opposed to formulating opin-
ions regarding NY Times’ discourse. Because
the sentiment towards NY Times is negative in
our datasets overall (due to public backlash on its
stories), BERT likely capitalizes on this mention-
emotion bias.

6 Task-Guided Pre-training

To improve upon our baselines, we explore pre-
training as a means of implicitly incorporating an in-
ductive bias into our BERT model. Our hope is that
these pre-training tasks will not only make BERT
more robust in the Twitter domain, but also provide
useful (albeit abstract) knowledge for the end emo-
tion prediction tasks. For brevity, we chiefly focus
on BERT, although our methods can be generalized
to other pre-trained models.

Setup. We explore, in isolation, supervised and
unsupervised pre-training tasks. For the supervised
setting, we pre-train on a multi-class emotion task
(EMONET) (Abdul-Mageed and Ungar, 2017) and
binary sentiment analysis task (SENTIMENT) (Go
et al., 2009). For the unsupervised setting, we pre-
train on dynamic masked language modeling (Liu
etal.,2019) on (unlabeled) samples from EMONET,
SENTIMENT, and HURRICANEEXT (§3.1). For
both types of tasks, we further pre-train BERT for
a fixed number of epochs, then fine-tune it on a
HURRICANEEMO task. We compare these results
to NO-PRETRAIN, namely the BERT results ver-
batim from Table 5. We report mean performance
across 10 pre-training — fine-tuning runs. Further
training details, including samples sizes for the
pre-training tasks, are available in Appendix D.

Results. Table 6 shows the pre-training results.
Supervised pre-training significantly helps with 3-

4 emotions, but degrades overall performance on
2-4 emotions. We posit SENTIMENT aids emotions
with highly predictive features. For example, “wtf”
in “it’s literally the size of texas. wtf” is correlated
with AGGRESSIVENESS , but no such lexical cues
exist in “not all heros wear capes <3 thank you
stanley - homeless #hurricane evacuee grooms lost
pets,” which is an AWE sample.
The unsupervised pre-training results also show
a couple trends. First, EMONET largely hurts
downstream performance, especially reducing
SUBMISSION accuracy by -6%. Second, SENTI-
MENT (in its unlabeled form) yields no noticeable
benefits. This implies sentiment information is
much more valuable, but of course, subject to the
fact that the emotion task is heavily aligned with the
original sentiment task. Third, we obtain encourag-
ing results with HURRICANEEXT pre-training. The
gains are most noticeable on AGGRESSIVENESS
and LOVE , but this objective adds +1-2% accuracy
for tasks on which supervised pre-training suffered.

7 Fine-Grained Unsupervised Domain
Adaptation

When new disasters emerge, it is likely we may not
have emotion annotations, as alluded to previously
(§2). Nevertheless, these annotations would be
valuable for organizations trying to understand the
emotional profile of users during a crisis (Fraustino
et al., 2012). In this section, we explore ways
to leverage supervision from large-scale emotion
datasets (e.g., EMONET (Abdul-Mageed and Un-
gar, 2017)) in providing labels for our hurricane
emotion datasets. We frame this problem as un-
supervised domain adaptation; EMONET is the /a-
beled source domain and our hurricane datasets are
the unlabeled target domain. Below, we elaborate
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AGR OPT LOV SBM AWE DSP RMR CNT AVG

SRC-ONLY 533 422 434 471 547 498 625 565 512
PRETRAIN-SRC 54.8 432 451 478 544 504 633 57.1 52.0
PRETRAIN-TRG 550 442 462 480 555 499 637 60.5 529
PRETRAIN-JOINT 527 442 455 478 548 499 616 563 516
TRG-ONLY 67.6 750 540 674 683 557 585 668 64.1

Table 7: Unsupervised domain adaptation accuracies (abbreviations defined in Table 5). Results are highlighted
with |blue (1) and [red (|) with respect to SRC-ONLY. Best viewed in color.

on our methods.

Framework. EMONET was conceived as a multi-
class classification task for Plutchik-8 emotions
(Abdul-Mageed and Ungar, 2017). In contrast, we
introduce binary classification tasks, one for each
Plutchik-8 emotion. We split the EMONET multi-
class task into 8 binary tasks; this creates a one-
to-one alignment between each source and target
domain task. We separately perform unsupervised
domain adaptation for each binary task.

Methods. We use our BERT model (without task-
guided pre-training) as the underlying classifier.
Following Han and Eisenstein (2019), we chiefly
focus on using strategic pre-training techniques
that enable effective transfer between disparate do-
mains. The systems for comparison are: (1) SRC-
ONLY: BERT is trained in the source domain and
evaluated in the target domain; (2) TRG-ONLY:
BERT is trained and evaluated in the target do-
main. These results are borrowed verbatim from
Table 5; (3) PRETRAIN-*: BERT undergoes dy-
namic masked language modeling pre-training us-
ing data from domain *, is trained in the source
domain, and finally evaluated in the target domain
(Han and Eisenstein, 2019). PRETRAIN-SRC only
uses pre-training samples from the source domain,
PRETRAIN-TRG only uses samples from the tar-
get domain, and PRETRAIN-JOINT uses samples
from both the source and target domains.” We re-
port mean performance across 10 pre-training —
fine-tuning runs.

Results. Table 7 shows the unsupervised domain
adaptation results. Overall, we do not find a sig-
nificant increase in performance over the SRC-
ONLY baseline. Pre-training consistently adds +1%
in average accuracy, but still leaves a large gap
between PRETRAIN-SRC and TRG-ONLY. Re-

"PRETRAIN-JOINT is conceptually similar to ADAPT-

ABERT in Han and Eisenstein (2019), however, we dynami-
cally generate pre-training data (Liu et al., 2019).

gardless, we have a few observations. First, we
do not see a (relatively) large increase in perfor-
mance for SUBMISSION , AWE , DISAPPROVAL ,
and REMORSE . These emotions may need more
explicit strategies to enable domain adaptation.
This is also supported by our previous results (§6),
where we also do not see a (relatively) large benefit
from task-guided pre-training. Second, PRETRAIN-
JOINT performs worse than both PRETRAIN-SRC
and PRETRAIN-TRG. We posit that, for our emo-
tion tasks, pre-training with a mixture of domains
yields a noisier training signal compared to a pa-
rameter bias towards the target domain.

8 Conclusion

We present HURRICANEEMO, an annotated dataset
of perceived emotions spanning 15,000 tweets from
multiple hurricanes. Tweets are annotated with fine-
grained Plutchik-24 emotions, from which we an-
alyze implicit and explicit emotions and construct
Plutchik-8 binary classification tasks. Comprehen-
sive experiments demonstrate our dataset is a chal-
lenging benchmark, even for large-scale pre-trained
language models. We release our code and datasets
as a step towards facilitating research in disaster-
centric domains.
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EmoNet Hurricane

Wordpieces

Wordpieces

Figure 4: Top 1000 (common) wordpiece densities for
EMONET (left) and HURRICANEEMO (right). Densi-
ties are calculated by counting wordpiece occurrences
and normalizing by the total number of occurrences.

A Domain Shifts

Following the methodology outlined in Desai et al.
(2019), we use the Jenson-Shannon Divergence
(JSD) between the vocabulary distributions in
EMONET and HURRICANEEMO to quantify the
domain divergence. The JSD is 0.199, approxi-
mately 1e5 larger than those reported in Desai et al.
(2019). Figure 4 shows the densities of the top
1000 common wordpieces between both domains.
The striking visual differences, even among com-
mon wordpieces, indicates a large discrepancy in
the input distributions.

B Plutchik Emotion Agreement

Interpretable Scale. To assign PEA scores an
interpretable scale, we compare randomly gener-
ated annotations against our obtained annotations.
We detail the process to create random annotations.
First, we compute the average number of emotions
a worker assigns to a tweet, which evaluates to 3
for all hurricanes. Second, we sample 3 random
emotions from the Plutchik-8 wheel for 5000 to-
tal annotations. Figure 5 compares the two types
of annotations. The per-worker PEA scores for
the random annotations collect around the mean
(0.5), which is expected due to the law of large
numbers. In contrast, the per-worker PEA scores
for our annotations are shifted towards the right, in-
dicating better agreement than the random baseline.
Therefore, we interpret our annotations as showing
“moderate agreement” under the PEA metric.

Human Evaluation. Using our worker annota-
tions across all three hurricanes, we create two an-
notation pairs for three workers, that is, A: (w1, w2)
and B: (wy,ws), where A and B have a shared
worker w;. This format lends a total of 73,418 A/B
total pairs. We sample 500 A/B pairs from this

pool, initialize each HIT with 10 pairs, and assign
5 total workers per HIT.

C Baseline Modeling

Table 8 shows the hyperparameters. For our pre-
trained models (e.g., BERT and RoBERTa), we use
the default dropout rate (0.1) on the self-attention
layers, but do not use additional dropout on the top
linear layer. Furthermore, we use gradient accumu-
lation to enable training with larger mini-batches.

D Task-Guided Pre-training

Masked Language Modeling. Following De-
vlin et al. (2019), we select 15% of inputs uni-
formly at random (except for [CLS] and [SEP])
as prediction targets for the masked language mod-
eling task. From the corresponding inputs, 80% are
set to [MASK], 10% are set to random tokens, and
10% are set to the original tokens. However, we fol-
low Liu et al. (2019) in creating pre-training data
dynamically, rather than statically. This merely
leads to slower convergence times as it becomes
more difficult to fit the data. We fine-tune on the
pre-training data for 10 epochs using a batch size
of 16 and learning rate of 2e-5. Once pre-training
concludes, we initialize a BERT model with these
weights and fine-tune it on our emotion tasks using
the hyperparameters in Table 8 with a learning rate
of 3e-5.

Pre-training Corpus. Our pre-training corpus is
created by concatenating a collection of (shuffled)
tweets z1, T2, - - - , Ty together, each separated by
[SEP]. The corpus is split into segments of size
512 with [CLS] prepended to each one. For clar-
ity, each batch consisting of tokens z;, - - -, x; is
constructed as [CLS] x; [SEP] --- [SEP] x;
[SEP]. We elaborate on two design decisions.
First, prepending [CLS] to each batch, as op-
posed to each tweet, leads to better results. Second,
largely due to computational reasons, we pack dis-
parate tweets together in the same batch.

E Extended Pre-training Experiments

E.1 EmoNet Binary Task Pre-training

In Section 6, we pre-trained on a EMONET multi-
class classification task. In this section, we ex-
plore a fine-grained pre-training scheme. We cre-
ate Plutchik-8 binary tasks from EMONET, then
fine-tune each emotion model separately on their
respective HURRICANEEMO tasks. Table 9 shows
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Figure 5: Histograms corresponding to PEA score distributions for random annotations (top) and our annotations

(bottom).
Logistic Reg.  Word CNN Char CNN GRU BERT RoBERTa
Epochs 5 5 5 5 3 3
Batch Size 64 64 64 64 16 16
Learning Rate le-4 le-3 Se-5 le-4 2e-5 2e-5
Weight Decay 0 0 0 0 0 le-3
Dropout 0 0.5 0.7 0.7 - -

Table 8: Hyperparameters for the baseline modeling experiments (§5).

the results. EMONET-BINARY performs markedly
worse than EMONET-MULTI and leads to a -2%
reduction in averaged accuracy. Therefore, multi-
class pre-training creates better representations for
downstream evaluation, although they are still not
as effective as other pre-training methods (e.g.,
masked language modeling).

E.2 Varying Amounts of Pre-training Data

The SENTIMENT and HURRICANEEXT datasets
contain significantly more samples than currently
used. In this section, we study the effects of us-
ing varying amounts of pre-training data on down-
stream HURRICANEEMO performance. For both
pre-training datasets, we use 1.6M samples. Table
10 shows the supervised SENTIMENT results. Ta-
bles 11 and 12 show the unsupervised SENTIMENT
and HURRICANEEXT results, respectively. For
both types of pre-training tasks, there is no notice-
able benefit to using more pre-training data. The su-
pervised SENTIMENT and unsupervised HURRICA-
NEEXT results both saturate around 200K samples,
which is what we report in our paper. The results
for unsupervised HURRICANEEXT pre-training are
especially compelling because they show that, with-
out any labeled data, we can achieve strong down-

stream results. Finally, the unsupervised SENTI-
MENT task yields almost no gains for most emo-
tions, showing that the type of data used for masked
language modeling matters. Through side-by-side
comparisons, we notice that the SENTIMENT sam-
ples are shorter in length and the HURRICANEEXT
samples contain more relevant content, such as
hurricane-specific hashtags.
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AGR OPT LOV SBM AWE DSP RMR CNT AVG
NO-PRETRAIN 67.6 750 540 674 683 557 585 668 64.1

Multi | 735 752 552 688 675 53.1 60.0 717 65.6
Binary 67.7 749 537 647 675 545 558 63.6 628

Table 9: Pre-training using multi-class and binary EMONET tasks. See Table 6 for styling considerations.

AGR OPT LOV SBM AWE DSP RMR CNT AVG
NO-PRETRAIN 67.6 750 540 674 683 557 585 668 64.1

50K 735 753  60.7 697 67.1 513 552 663 649
100K 728 758 | 62.7 710 656 534 570 673 657
200K 734 75.6 69.8 665 533 571 698 668
400K 73.1 754 70.1 657 532 572 674 662
800K 735 753 562 694 651 544 571 682 649

1600K 712 752 |64 688 647 551 561 707 65.8

Table 10: Pre-training using 50-1600K labeled samples from SENTIMENT. See Table 6 for styling considerations.

AGR OPT LOV SBM AWE DSP RMR CNT AVG
NO-PRETRAIN 676 750 540 674 683 557 585 668 64.1

50K 707 749 546 663 670 539 593 658 64.0
100K 716 750 540 663 68.6 551 574 623 638
200K  69.1 749 53.6 662 673 543 579 644 635
400K 70.0 749 538 69.0 688 545 601 645 645
800K 705 749 551 662 690 533 594 634 64.0

1600K 69.1 749 553 665 672 546 593 650 640

Table 11: Pre-training using 50-1600K unlabeled samples from SENTIMENT. See Table 6 for styling considera-
tions.

AGR OPT LOV SBM AWE DSP RMR CNT AVG
NO-PRETRAIN 676 750 540 674 683 557 585 668 64.1

50K 727 750 600 672 69.0 564 604 722 66.6
100K 71.8 751 574 69.1 703 552 624 653 658
200K | 736 754 69BN 689 69.7 579 602 702 682
400K 714 752 597 69.7 688 552 607 63.6 655
800K 714 753 589 694 69.6 540 603 713 663

1600K = 733 757 50.7 683 655 558 610 64.1 643

Table 12: Pre-training using 50-1600K unlabeled samples from HURRICANEEXT. See Table 6 for styling consid-
erations.
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Figure 6: Visualization of BERT’s self-attention on a Hurricane Irma sample. In particular, this head captures the
entities “hurricane irma,” “florida,” “everyone” and the verb phrase “crane collapses.”
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