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Abstract

The success of the large neural language mod-
els on many NLP tasks is exciting. However,
we find that these successes sometimes lead
to hype in which these models are being de-
scribed as “understanding” language or captur-
ing “meaning”. In this position paper, we ar-
gue that a system trained only on form has a
priori no way to learn meaning. In keeping
with the ACL 2020 theme of “Taking Stock of
Where We’ve Been and Where We’re Going”,
we argue that a clear understanding of the dis-
tinction between form and meaning will help
guide the field towards better science around
natural language understanding.

1 Introduction

The current state of affairs in NLP is that the large
neural language models (LMs), such as BERT (De-
vlin et al., 2019) or GPT-2 (Radford et al., 2019),
are making great progress on a wide range of
tasks, including those that are ostensibly meaning-
sensitive. This has led to claims, in both academic
and popular publications, that such models “under-
stand” or “comprehend” natural language or learn
its “meaning”. From our perspective, these are
overclaims caused by a misunderstanding of the
relationship between linguistic form and meaning.

We argue that the language modeling task, be-
cause it only uses form as training data, cannot in
principle lead to learning of meaning. We take the
term language model to refer to any system trained
only on the task of string prediction, whether it
operates over characters, words or sentences, and
sequentially or not. We take (linguistic) meaning
to be the relation between a linguistic form and
communicative intent.

Our aim is to advocate for an alignment of claims
and methodology: Human-analogous natural lan-
guage understanding (NLU) is a grand challenge
of artificial intelligence, which involves mastery of

the structure and use of language and the ability
to ground it in the world. While large neural LMs
may well end up being important components of
an eventual full-scale solution to human-analogous
NLU, they are not nearly-there solutions to this
grand challenge. We argue in this paper that gen-
uine progress in our field — climbing the right hill,
not just the hill on whose slope we currently sit —
depends on maintaining clarity around big picture
notions such as meaning and understanding in task
design and reporting of experimental results.

After briefly reviewing the ways in which large
LMs are spoken about and summarizing the re-
cent flowering of “BERTology” papers (§2), we
offer a working definition for “meaning” (§3) and
a series of thought experiments illustrating the im-
possibility of learning meaning when it is not in
the training signal (§4,5). We then consider the
human language acquisition literature for insight
into what information humans use to bootstrap lan-
guage learning (§6) and the distributional seman-
tics literature to discuss what is required to ground
distributional models (§7). §8 presents reflections
on how we look at progress and direct research
effort in our field, and in §9, we address possible
counterarguments to our main thesis.

2 Large LMs: Hype and analysis

Publications talking about the application of large
LMs to meaning-sensitive tasks tend to describe
the models with terminology that, if interpreted at
face value, is misleading. Here is a selection from
academically-oriented pieces (emphasis added):

(1) In order to train a model that understands sentence
relationships, we pre-train for a binarized next sentence
prediction task. (Devlin et al., 2019)

(2) Using BERT, a pretraining language model, has been
successful for single-turn machine comprehension . . .
(Ohsugi et al., 2019)

(3) The surprisingly strong ability of these models to re-
call factual knowledge without any fine-tuning demon-
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strates their potential as unsupervised open-domain QA
systems. (Petroni et al., 2019)

If the highlighted terms are meant to describe
human-analogous understanding, comprehension,
or recall of factual knowledge, then these are gross
overclaims. If, instead, they are intended as techni-
cal terms, they should be explicitly defined.

One important consequence of imprudent use
of terminology in our academic discourse is that
it feeds AI hype in the popular press. As NLP
gains public exposure and is more widely used in
applied contexts, it is increasingly important that
the actual capabilities of our systems be accurately
represented. In some cases, NLP experts speaking
with the media are being appropriately careful, as
in these two quotes in the New York Times:1

(4) These systems are still a really long way from truly
understanding running prose. (Gary Marcus)

(5) Though BERT passed the lab’s common-sense test, ma-
chines are still a long way from an artificial version of
a human’s common sense. (Oren Etzioni)

However, there are plenty of instances where
the popular press gets it wrong, such as (6) from
the B2C website,2 apparently based on the Google
Blog post about BERT and search, which includes
numerous statements like (7).3

(6) BERT is a system by which Google’s algorithm uses
pattern recognition to better understand how human
beings communicate so that it can return more relevant
results for users.

(7) Here are some of the examples that showed up our
evaluation process that demonstrate BERTs ability to
understand the intent behind your search.

In sum, it is not clear from our academic literature
whether all authors are clear on the distinction be-
tween form and meaning, but it is clear that the
way we speak about what neural LMs are doing is
misleading to the public.

Part of the reason for this tendency to use impre-
cise language may well be that we do not yet fully
understand what exactly it is about language that
the large LMs come to implicitly represent. Their
success, however, has sparked a subfield (‘BERTol-
ogy’) that aims to answer this question. The
methodology of probing tasks (e.g. Adi et al., 2017;
Ettinger et al., 2018) has been used to show that

1https://www.nytimes.com/2018/11/18/technology/artific
ial-intelligence-language.html, accessed 2019/12/04

2https://www.business2community.com/seo/what-t
o-do-about-bert-googles-recent-local-algorithm-updat
e-02259261, accessed 2019/12/04

3https://www.blog.google/products/search/search-langu
age-understanding-bert/, accessed 2019/12/04

large LMs learn at least some information about
phenomena such as English subject-verb agreement
(Goldberg, 2019; Jawahar et al., 2019), constituent
types, dependency labels, NER, and (core) seman-
tic role types (again, all in English) (Tenney et al.,
2019).4 Hewitt and Manning (2019) find informa-
tion analogous to unlabeled dependency structures
in the word vectors provided by ELMo and BERT
(trained on English). And of course it is well estab-
lished that vector-space representations of words
pick up word classes, both syntactic (POS, e.g. Lin
et al., 2015) and semantic (lexical similarity, e.g.
Rubenstein and Goodenough, 1965; Mikolov et al.,
2013).

Others have looked more closely at the success
of the large LMs on apparently meaning sensitive
tasks and found that in fact, far from doing the “rea-
soning” ostensibly required to complete the tasks,
they were instead simply more effective at leverag-
ing artifacts in the data than previous approaches.
Niven and Kao (2019) find that BERT’s unreason-
ably good performance on the English Argument
Reasoning Comprehension Task (Habernal et al.,
2018) falls back to chance if the dataset is modified
by adding adversarial examples that just negate one
piece of the original, thus mirroring the distribution
of lexical cues for each label. Similarly, McCoy
et al. (2019) find that BERT’s performance on the
English Multi-genre Natural Language Inference
dataset (Williams et al., 2018) is predicated on its
ability to leverage syntactic heuristics involving
overlap (of full constituents, subsequences, or sim-
ply bags of words). In a dataset carefully designed
to frustrate such heuristics, BERT’s performance
falls to significantly below chance.

In this brief overview of BERTology papers we
have highlighted both the extent to which there
is evidence that large LMs can learn aspects of
linguistic formal structure (e.g. agreement, depen-
dency structure), and how their apparent ability to
“reason” is sometimes a mirage built on leveraging
artifacts in the training data (i.e. form, not mean-
ing). Our contribution is an argument on theoretical
grounds that a system exposed only to form in its
training cannot in principle learn meaning.

3 What is meaning?

We start by defining two key terms: We take form
to be any observable realization of language: marks

4But see Warstadt et al.’s (2019) cautionary note about how
the methodology used for probing can influence the results.

https://www.nytimes.com/2018/11/18/technology/artificial-intelligence-language.html
https://www.nytimes.com/2018/11/18/technology/artificial-intelligence-language.html
https://www.business2community.com/seo/what-to-do-about-bert-googles-recent-local-algorithm-update-02259261
https://www.business2community.com/seo/what-to-do-about-bert-googles-recent-local-algorithm-update-02259261
https://www.business2community.com/seo/what-to-do-about-bert-googles-recent-local-algorithm-update-02259261
https://www.blog.google/products/search/search-language-understanding-bert/
https://www.blog.google/products/search/search-language-understanding-bert/
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on a page, pixels or bytes in a digital representation
of text, or movements of the articulators.5 We take
meaning to be the relation between the form and
something external to language, in a sense that we
will make precise below.

3.1 Meaning and communicative intent
When humans use language, we do so for a purpose:
We do not talk for the joy of moving our articula-
tors, but in order to achieve some communicative
intent. There are many types of communicative
intents: they may be to convey some information
to the other person; or to ask them to do something;
or simply to socialize. We take meaning to be the
relation M ⊆ E × I which contains pairs (e, i) of
natural language expressions e and the communica-
tive intents i they can be used to evoke. Given this
definition of meaning, we can now use understand
to refer to the process of retrieving i given e.

Communicative intents are about something that
is outside of language. When we say Open the
window! or When was Malala Yousafzai born?, the
communicative intent is grounded in the real world
the speaker and listener inhabit together. Commu-
nicative intents can also be about abstract worlds,
e.g. bank accounts, computer file systems, or a
purely hypothetical world in the speaker’s mind.

Linguists distinguish communicative intent from
conventional (or standing) meaning (Quine, 1960;
Grice, 1968). The conventional meaning of an
expression (word, phrase, sentence) is what is con-
stant across all of its possible contexts of use. Con-
ventional meaning is an abstract object that repre-
sents the communicative potential of a form, given
the linguistic system it is drawn from. Each lin-
guistic system (say, English) provides a relation
C ⊆ E × S, which contains pairs (e, s) of expres-
sions e and their conventional meanings s.6 The
field of linguistic semantics provides many com-
peting theories of what conventional meanings s
look like. For our purposes, we don’t need to select
among these theories; all we assume is that conven-
tional meanings must have interpretations, such as
a means of testing them for truth against a model
of the world. Thus, like the meaning relation M , C
connects language to objects outside of language.

5In spoken languages, the primary articulators are the com-
ponents of the vocal tract. In signed languages, they are
principally the hands and face.

6We abstract away here from the facts that linguistic sys-
tems C change over time and are only incompletely shared
among different speakers. They are stable enough to function
as rich signals to communicative intent.

Returning to the meaning relation M from above,
it is best understood as mediated by the relation C
of a linguistic system shared between two inter-
locutors. The speaker has a certain communica-
tive intent i, and chooses an expression e with a
standing meaning s which is fit to express i in the
current communicative situation. Upon hearing e,
the listener then reconstructs s and uses their own
knowledge of the communicative situation and their
hypotheses about the speaker’s state of mind and
intention in an attempt to deduce i.

This active participation of the listener is cru-
cial to human communication (Reddy, 1979; Clark,
1996). For example, to make sense of (8) and (9)
(from Clark, 1996, p.144), the listener has to calcu-
late that Napoleon refers to a specific pose (hand
inside coat flap) or that China trip refers to a person
who has recently traveled to China.

(8) The photographer asked me to do a Napoleon for the
camera.

(9) Never ask two China trips to the same party.

We humans are also very willing, as we will see
in §4 below, to attribute communicative intent to a
linguistic signal of a language we speak, even if the
originator of the signal is not an entity that could
have communicative intent.

To summarize, as we strive to understand how
NLU tasks and system performance on those tasks
relates to the bigger picture goals of building
human-analogous natural language understanding
systems, it is useful to distinguish cleanly between
form, conventional meaning, and communicative
intent. Furthermore, we should be careful not to
confuse communicative intent with ground truth
about the world, as speakers can of course be mis-
taken, be intentionally dissembling, etc.

We argue that a model of natural language that
is trained purely on form will not learn meaning:
if the training data is only form, there is not suffi-
cient signal to learn the relation M between that
form and the non-linguistic intent of human lan-
guage users, nor C between form and the standing
meaning the linguistic system assigns to each form.

3.2 Meaning and intelligence

Meaning and understanding have long been seen
as key to intelligence. Turing (1950) argued that a
machine can be said to “think” if a human judge
cannot distinguish it from a human interlocutor af-
ter having an arbitrary written conversation with
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each. However, humans are quick to attribute mean-
ing and even intelligence to artificial agents, even
when they know them to be artificial, as evidenced
by the way people formed attachments to ELIZA
(Weizenbaum, 1966; Block, 1981).

This means we must be extra careful in devising
evaluations for machine understanding, as Searle
(1980) elaborates with his Chinese Room experi-
ment: he develops the metaphor of a “system” in
which a person who does not speak Chinese an-
swers Chinese questions by consulting a library of
Chinese books according to predefined rules. From
the outside, the system seems like it “understands”
Chinese, although in reality no actual understand-
ing happens anywhere inside the system.

Searle’s thought experiment begins from the
premise that it is possible to manipulate forms
well enough to be indistinguishable from a system
that understands the meaning of the forms, reasons
about it, and responds appropriately. We observe
that much recent work in NLP claims to be build-
ing systems where not only the runtime system
but in fact also the process for building it only has
access to form. But language is used for communi-
cation about the speakers’ actual (physical, social,
and mental) world, and so the reasoning behind
producing meaningful responses must connect the
meanings of perceived inputs to information about
that world. This in turn means that for a human
or a machine to learn a language, they must solve
what Harnad (1990) calls the symbol grounding
problem. Harnad encapsulates this by pointing to
the impossibility for a non-speaker of Chinese to
learn the meanings of Chinese words from Chinese
dictionary definitions alone.

Our purpose here is to look more deeply into
why meaning can’t be learned from linguistic form
alone, even in the context of modern hardware and
techniques for scaling connectionist models to the
point where they can take in vast amounts of data.
We argue that, independently of whether passing
the Turing test would mean a system is intelligent,
a system that is trained only on form would fail
a sufficiently sensitive test, because it lacks the
ability to connect its utterances to the world.

4 The octopus test

In order to illustrate the challenges in attempting
to learn meaning from form alone, we propose a
concrete scenario. Say that A and B, both fluent
speakers of English, are independently stranded on

two uninhabited islands. They soon discover that
previous visitors to these islands have left behind
telegraphs and that they can communicate with
each other via an underwater cable. A and B start
happily typing messages to each other.

Meanwhile, O, a hyper-intelligent deep-sea oc-
topus who is unable to visit or observe the two
islands, discovers a way to tap into the underwa-
ter cable and listen in on A and B’s conversations.
O knows nothing about English initially, but is
very good at detecting statistical patterns. Over
time, O learns to predict with great accuracy how
B will respond to each of A’s utterances. O also
observes that certain words tend to occur in similar
contexts, and perhaps learns to generalize across
lexical patterns by hypothesizing that they can be
used somewhat interchangeably. Nonetheless, O
has never observed these objects, and thus would
not be able to pick out the referent of a word when
presented with a set of (physical) alternatives.

At some point, O starts feeling lonely. He cuts
the underwater cable and inserts himself into the
conversation, by pretending to be B and replying
to A’s messages. Can O successfully pose as B
without making A suspicious? This constitutes
a weak form of the Turing test (weak because A
has no reason to suspect she is talking to a non-
human); the interesting question is whether O fails
it because he has not learned the meaning relation,
having seen only the form of A and B’s utterances.

The extent to which O can fool A depends on
the task — that is, on what A is trying to talk about.
A and B have spent a lot of time exchanging trivial
notes about their daily lives to make the long island
evenings more enjoyable. It seems possible that O
would be able to produce new sentences of the kind
B used to produce; essentially acting as a chatbot.
This is because the utterances in such conversations
have a primarily social function, and do not need to
be grounded in the particulars of the interlocutors’
actual physical situation nor anything else specific
about the real world. It is sufficient to produce text
that is internally coherent.

Now say that A has invented a new device, say
a coconut catapult. She excitedly sends detailed
instructions on building a coconut catapult to B,
and asks about B’s experiences and suggestions for
improvements. Even if O had a way of construct-
ing the catapult underwater, he does not know what
words such as rope and coconut refer to, and thus
can’t physically reproduce the experiment. He can
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only resort to earlier observations about how B re-
sponded to similarly worded utterances. Perhaps O
can recognize utterances about mangos and nails as
“similarly worded” because those words appeared
in similar contexts as coconut and rope. So O de-
cides to simply say “Cool idea, great job!”, because
B said that a lot when A talked about ropes and
nails. It is absolutely conceivable that A accepts
this reply as meaningful — but only because A does
all the work in attributing meaning to O’s response.
It is not because O understood the meaning of A’s
instructions or even his own reply.

Finally, A faces an emergency. She is suddenly
pursued by an angry bear. She grabs a couple of
sticks and frantically asks B to come up with a way
to construct a weapon to defend herself. Of course,
O has no idea what A “means”. Solving a task like
this requires the ability to map accurately between
words and real-world entities (as well as reasoning
and creative thinking). It is at this point that O
would fail the Turing test, if A hadn’t been eaten
by the bear before noticing the deception.7

Having only form available as training data, O
did not learn meaning. The language exchanged
by A and B is a projection of their communicative
intents through the meaning relation into linguistic
forms. Without access to a means of hypothesizing
and testing the underlying communicative intents,
reconstructing them from the forms alone is hope-
less, and O’s language use will eventually diverge
from the language use of an agent who can ground
their language in coherent communicative intents.

The thought experiment also illustrates our point
from §3 about listeners’ active role in communica-
tion. When O sent signals to A pretending to be
B, he exploited statistical regularities in the form,
i.e. the distribution of linguistic forms he observed.
Whatever O learned is a reflection of A and B’s
communicative intents and the meaning relation.
But reproducing this distribution is not sufficient
for meaningful communication. O only fooled A
into believing he was B because A was such an ac-
tive listener: Because agents who produce English
sentences usually have communicative intents, she

7To see what a large LM might reply in this situation, we
prompted the GPT-2 demo with “Help! I’m being chased by a
bear! All I have is these sticks. What should I do?”, and GPT-
2 to supplied “You’re not going to get away with this!” (ht
tps://gpt2.apps.allenai.org/, accessed 2019/12/4). Following
Radford et al.’s (2019) approach of giving explicit cues to
encode the task, we also constructed a more elaborate prompt.
The results, given in Appendix A, are highly entertaining but
no more helpful to the hapless A.

assumes that O does too, and thus she builds the
conventional meaning English associates with O’s
utterances. Because she assumes that O is B, she
uses that conventional meaning together with her
other guesses about B’s state of mind and goals to
attribute communicative intent. It is not that O’s
utterances make sense, but rather, that A can make
sense of them.

5 More constrained thought experiments

The story of the octopus considers the problem of
learning not only the full communicative system,
including the relations M and C, but also the rea-
soning required to come up with answers that are
both coherent and also helpful in the real world.
Here, we provide two more constrained thought ex-
periments, to focus more narrowly on the problem
of learning the meaning relation, for both natural
languages and programming languages.

Because programming languages are designed to
be unambiguous and relatively insensitive to execu-
tion context, the distinction between standing and
speaker meaning is less important than for natural
languages. A Java program e, when compiled and
executed on the Java Virtual Machine, can be inter-
preted as a function i which maps program inputs
to program outputs. We take the meaning relation
J ⊆ E × I of Java to contain all such pairs (e, i).

Java Imagine that we were to train an LM on all
of the well-formed Java code published on Github.
The input is only the code. It is not paired with
bytecode, nor a compiler, nor sample inputs and
outputs for any specific program. We can use any
type of LM we like and train it for as long as we
like. We then ask the model to execute a sample
program, and expect correct program output.

English As as second example, imagine train-
ing an LM (again, of any type) on English text,
again with no associated independent indications
of speaker intent. The system is also given access
to a very large collection of unlabeled photos, but
without any connection between the text and the
photos. For the text data, the training task is purely
one of predicting form. For the image data, the
training task could be anything, so long as it only
involves the images. At test time, we present the
model with inputs consisting of an utterance and
a photograph, like How many dogs in the picture
are jumping? or Kim saw this picture and said

“What a cute dog!” What is cute? and the photos

https://gpt2.apps.allenai.org/
https://gpt2.apps.allenai.org/
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Figure 1: Photo stimuli 1 (L) and 2 (R)

in Figure 1, where the appropriate answers are a
number or a region of the photo, respectively.

Reflections In both cases, the tests are ridiculous.
It seems patently unfair to ask the model to per-
form them, given what it was trained on. But that
is precisely the point we are trying to make: a sys-
tem that has learned the meaning (semantics) of a
programming language knows how to execute code
in that language. And a system that has learned
the meaning of a human language can do things
like answer questions posed in the language about
things in the world (or in this case, in pictures).

In other words, what’s interesting here is not that
the tasks are impossible, but rather what makes
them impossible: what’s missing from the training
data. The form of Java programs, to a system that
has not observed the inputs and outputs of these
programs, does not include information on how
to execute them. Similarly, the form of English
sentences, to a system that has not had a chance
to acquire the meaning relation C of English, and
in the absence of any signal of communicative in-
tent, does not include any information about what
language-external entities the speaker might be re-
ferring to. Accordingly, a system trained only on
the form of Java or English has no way learn their
respective meaning relations.

6 Human language acquisition

One common reason for believing LMs might be
learning meaning is the claim that human children
can acquire language just by listening to it. This
is not supported by scholarly work on language
acquisition: rather, we find that human language
learning is not only grounded in the physical world
around us, but also in interaction with other people
in that world. Kids won’t pick up a language from
passive exposure such as TV or radio: Snow et al.
(1976) note in passing that Dutch-speaking kids
who watch German TV shows by choice nonethe-
less don’t learn German. Kuhl (2007) shows exper-
imentally that English-learning infants can learn
Mandarin phonemic distinctions from brief interac-

tions with a Mandarin-speaking experimenter but
not from exposure to Mandarin TV or radio.

Baldwin (1995) and others argue that what is
critical for language learning is not just interaction
but actually joint attention, i.e. situations where the
child and a caregiver are both attending to the same
thing and both aware of this fact. This theoreti-
cal perspective is substantiated with experimental
results showing that toddlers (observed at 15 and
21 months) whose caregivers “follow into” their
attention and provide labels for the object of joint
attention more have larger vocabularies (Tomasello
and Farrar, 1986); that toddlers (18–20 months old)
don’t pick up labels uttered by someone behind
a screen, but do pick up labels uttered by some-
one performing joint attention with them (Baldwin,
1995); and that at around 10–11 months of age ba-
bies pay attention to whether a person’s eyes are
open or not in terms of whether to follow their gaze,
and the degree to which infants in fact follow gaze
at 10–11 months while vocalizing themselves pre-
dicts vocabulary comprehension 7–8 months later
(Brooks and Meltzoff, 2005).8

In summary, the process of acquiring a linguis-
tic system, like human communication generally,
relies on joint attention and intersubjectivity: the
ability to be aware of what another human is attend-
ing to and guess what they are intending to commu-
nicate. Human children do not learn meaning from
form alone and we should not expect machines to
do so either.

7 Distributional semantics

Distributional semanticists have long been aware
that grounding distributional representations in the
real world is challenging. The lexical similarity
relations learned by distributional models trained
on text don’t in themselves connect any of those
words to the world (Herbelot, 2013; Baroni et al.,
2014; Erk, 2016; Emerson, 2020), and the distribu-
tions of words may not match the distribution of
things in the world (consider four-legged dogs).

One approach to providing grounding is to train
distributional models on corpora augmented with
perceptual data, such as photos (Hossain et al.,
2019) or other modalities (Kiela and Clark, 2015;
Kiela et al., 2015). Another is to look to interaction
data, e.g. a dialogue corpus with success annota-
tions, including low-level success signals such as

8These three studies do not name the language that the
children were learning. It appears to have been English.
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emotional stress (McDuff and Kapoor, 2019) or
eye gaze (Koller et al., 2012), which contains a
signal about the felicitous uses of forms. The idea
that as the learner gets access to more and more
information in addition to the text itself, it can learn
more and more facets of meaning is worked out in
detail by Bisk et al. (2020). We agree that this is an
exciting avenue of research.

From this literature we can see that the slogan
“meaning is use” (often attributed to Wittgenstein,
1953), refers not to “use” as “distribution in a text
corpus” but rather that language is used in the
real world to convey communicative intents to real
people. Speakers distill their past experience of
language use into what we call “meaning” here,
and produce new attempts at using language based
on this; this attempt is successful if the listener
correctly deduces the speaker’s communicative in-
tent. Thus, standing meanings evolve over time as
speakers can different experiences (e.g. McConnell-
Ginet, 1984), and a reflection of such change can
be observed in their changing textual distribution
(e.g. Herbelot et al., 2012; Hamilton et al., 2016).

8 On climbing the right hills

What about systems which are trained on a task
that is not language modeling — say, semantic pars-
ing, or reading comprehension tests — and that use
word embeddings from BERT or some other large
LM as one component? Numerous papers over the
past couple of years have shown that using such
pretrained embeddings can boost the accuracy of
the downstream system drastically, even for tasks
that are clearly related to meaning.

Our arguments do not apply to such scenarios:
reading comprehension datasets include informa-
tion which goes beyond just form, in that they spec-
ify semantic relations between pieces of text, and
thus a sufficiently sophisticated neural model might
learn some aspects of meaning when trained on
such datasets. It also is conceivable that whatever
information a pretrained LM captures might help
the downstream task in learning meaning, without
being meaning itself.

Recent research suggests that it is wise to in-
terpret such findings with caution. As noted in
§2, both McCoy et al. (2019) and Niven and Kao
(2019) found that BERT picked up idiosyncratic
patterns in the data for their tasks, and not “mean-
ing”. Beyond such diagnostic research on why
large pretrained LMs boost such tasks so much, we

think there is a more fundamental question to be
asked here: Are we climbing the right hill?

8.1 Top-down and bottom-up theory-building

There are two different perspectives from which
one can look at the progress of a field. Under a
bottom-up perspective, the efforts of a scientific
community are driven by identifying specific re-
search challenges. A scientific result counts as a
success if it solves such a specific challenge, at least
partially. As long as such successes are frequent
and satisfying, there is a general atmosphere of
sustained progress. By contrast, under a top-down
perspective, the focus is on the remote end goal of
offering a complete, unified theory for the entire
field. This view invites anxiety about the fact that
we have not yet fully explained all phenomena and
raises the question of whether all of our bottom-up
progress leads us in the right direction.

There is no doubt that NLP is currently in the
process of rapid hill-climbing. Every year, states of
the art across many NLP tasks are being improved
significantly — often through the use of better pre-
trained LMs — and tasks that seemed impossible
not long ago are already old news. Thus, every-
thing is going great when we take the bottom-up
view. But from a top-down perspective, the ques-
tion is whether the hill we are climbing so rapidly
is the right hill. How do we know that incremental
progress on today’s tasks will take us to our end
goal, whether that is “General Linguistic Intelli-
gence” (Yogatama et al., 2019) or a system that
passes the Turing test or a system that captures the
meaning of English, Arapaho, Thai, or Hausa to a
linguist’s satisfaction?

It is instructive to look at the past to appreci-
ate this question. Computational linguistics has
gone through many fashion cycles over the course
of its history. Grammar- and knowledge-based
methods gave way to statistical methods, and today
most research incorporates neural methods. Re-
searchers of each generation felt like they were
solving relevant problems and making constant
progress, from a bottom-up perspective. However,
eventually serious shortcomings of each paradigm
emerged, which could not be tackled satisfactorily
with the methods of the day, and these methods
were seen as obsolete. This negative judgment —
we were climbing a hill, but not the right hill — can
only be made from a top-down perspective. We
have discussed the question of what is required to
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learn meaning in an attempt to bring the top-down
perspective into clearer focus.

8.2 Hillclimbing diagnostics
We can only definitively tell if we’ve been climbing
the right hill in hindsight, but we propose some best
practices for less error-prone mountaineering:

First, above all, cultivate humility towards lan-
guage and ask top-down questions. Neural meth-
ods are not the first bottom-up success in NLP; they
will probably not be the last.

Second, be aware of the limitations of tasks: Arti-
ficial tasks like bAbI (Weston et al., 2016) can help
get a field of research off the ground, but there is no
reason to assume that the distribution of language
in the test data remotely resembles the distribution
of real natural language; thus evaluation results on
such tasks must be interpreted very carefully. Sim-
ilar points can be made about crowdsourced NLI
datasets such as SQuAD (Rajpurkar et al., 2016)
or SNLI (Bowman et al., 2015), which do not rep-
resent questions that any particular person really
wanted to ask about a text, but the somewhat un-
natural communicative situation of crowdsourcing
work. If a system does better on such a task than the
inter-annotator agreement,9 the task probably has
statistical artifacts that do not represent meaning.
In the vision community, Barbu et al. (2019) offer
a novel dataset which explicitly tries to achieve a
more realistic distribution of task data; it would be
interesting to explore similar ideas for language.

Third, value and support the work of carefully
creating new tasks (see also Heinzerling, 2019).
For example, the DROP reading comprehension
benchmark (Dua et al., 2019) seeks to create more
stringent tests of understanding by creating ques-
tions that require the system to integrate informa-
tion from different parts of a paragraph via simple
arithmetic or similar operations.10

Fourth, evaluate models of meaning across tasks.
(Standing) meaning is task-independent, so a sys-
tem that captures meaning should do well on mul-
tiple tasks. Efforts like SuperGLUE (Wang et al.,
2019) seem like a good step in this direction.

Finally, perform thorough analysis of both errors
and successes. As McCoy et al. (2019) and Niven
and Kao (2019) have shown, systems that find suc-
cess with large pretrained LMs do not necessarily
do so because the LMs have learned “meaning”.

9https://rajpurkar.github.io/SQuAD-explorer/
10See Appendix B for an exploration of what GPT-2 does

with arithmetic.

Analyses which start from an attitude of healthy
skepticism (“too good to be true”) and probing
tasks which try to identify what the model actually
learned can be good ways to find out whether the
system performs well for the right reasons.

9 Some possible counterarguments

In discussing the main thesis of this paper with
various colleagues over the past 18 months, we
have observed recurring counterarguments. In this
section, we address those counterarguments, plus a
few more that might arise.

“But ‘meaning’ doesn’t mean what you say it
means.” Defining “meaning” is notoriously hard.
For the purposes of this paper, we chose a working
definition which is as general as we could make it,
capturing the crucial point that meaning is based
on the link between linguistic form and something
that is not language. “Meaning” cannot simply
be the relation between form and some kind of
“deep syntax”, e.g. semantic dependency graphs
(Oepen et al., 2015); like syntax, such representa-
tions could perhaps be learned from form alone (He
et al., 2018; Hewitt and Manning, 2019). Equating
these with meaning ignores a core function of lan-
guage, which is to convey communicative intents.

“But meaning could be learned from . . . ”. As
we discussed in §7, if form is augmented with
grounding data of some kind, then meaning can
conceivably be learned to the extent that the com-
municative intent is represented in that data.

In addition, certain tasks are designed in a way
that specific forms are declared as representing cer-
tain semantic relations of interest. Examples of
this include NLI datasets (Dagan et al., 2006; Ra-
jpurkar et al., 2016; Ostermann et al., 2019) which
pair input/output tuples of linguistic forms with an
explicit semantic relation (e.g. text + hypothesis
+ “entailed”). Similarly, control codes, or tokens
like tl;dr, have been used to prompt large LMs to
perform summarization and other tasks (Radford
et al., 2019; Keskar et al., 2019). Here forms are
explicitly declared at test time to represent certain
semantic relations, which together with the dis-
tributional similarity between e.g. tl;dr and other
phrases such as in summary, may be enough to
bootstrap a successful neural summarizer. Depend-
ing on one’s perspective, one may argue that such
a system has learned to reliably find instances of
the relation without understanding the text; or that
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explicitly declaring cues like entailed or tl;dr as
representing certain semantic relations provides a
training signal that goes beyond pure form.

Analogously, it has been pointed out to us that
the sum of all Java code on Github (cf. § 5) contains
unit tests, which specify input-output pairs for Java
code. Thus a learner could have access to a weak
form of interaction data, from which the meaning
of Java could conceivably be learned. This is true,
but requires a learner which has been equipped by
its human developer with the ability to identify and
interpret unit tests. This learner thus has access to
partial grounding in addition to the form.

“But there is so much form out there – surely
that is enough.” We have argued for the general
principle that learning meaning requires more than
form. How much form can be observed is not
relevant to our point; the octopus can observe A
and B for as long as he wants, and the quantity of
training data in §5 is not limited.

But given lots of form, could O perhaps learn to
keep producing seemingly meaningful responses to
A’s utterances without learning meaning? The prob-
lem is that people constantly generate new commu-
nicative intents to talk about their constantly evolv-
ing inner and outer worlds, and thus O would need
to memorize infinitely many stimulus-response
pairs. Such an approach may be an avenue towards
high scores in evaluations where perfection is not
expected anyway; but it is probably not an avenue
towards human-analogous NLU.

“But aren’t neural representations meaning
too?” The internal representations of a neural
network have been found to capture certain aspects
of meaning, such as semantic similarity (Mikolov
et al., 2013; Clark, 2015). As we argued in §4, se-
mantic similarity is only a weak reflection of actual
meaning. Neural representations neither qualify as
standing meanings (s), lacking interpretations, nor
as communicative intents (i), being insufficient to
e.g. correctly build a coconut catapult.

An interesting recent development is the emer-
gence of models for unsupervised machine transla-
tion trained only with a language modeling objec-
tive on monolingual corpora for the two languages
(Lample et al., 2018). If such models were to reach
the accuracy of supervised translation models, this
would seem contradict our conclusion that meaning
cannot be learned from form. A perhaps surprising
consequence of our argument would then be that

accurate machine translation does not actually re-
quire a system to understand the meaning of the
source or target language sentence.

“But BERT improves performance on meaning-
related tasks, so it must have learned something
about meaning.” It has probably learned some-
thing about meaning, in the same sense that syntax
captures something about meaning and semantic
similarity captures something about meaning: a
potentially useful, but incomplete, reflection of the
actual meaning. McCoy et al. (2019) and Niven
and Kao (2019) provide cautionary tales about over-
estimating what that “something” is purely based
on evaluation results on existing tasks. What ex-
actly BERT and its relatives learn about meaning
is a very interesting question, and we look forward
to further findings from the field of BERTology.

10 Conclusion

In this paper, we have argued that in contrast to
some current hype, meaning cannot be learned
from form alone. This means that even large lan-
guage models such as BERT do not learn “mean-
ing”; they learn some reflection of meaning into the
linguistic form which is very useful in applications.

We have offered some thoughts on how to main-
tain a healthy, but not exaggerated, optimism with
respect to research that builds upon these LMs. In
particular, this paper can be seen as a call for pre-
cise language use when talking about the success
of current models and for humility in dealing with
natural language. With this we hope to encourage
a top-down perspective on our field which we think
will help us select the right hill to climb towards
human-analogous NLU.

Acknowledgments. This paper benefitted from
many inspiring and often spirited discussions.
Without implying any agreement with the con-
tents as presented, we thank Sam Bowman, Vera
Demberg, Lucia Donatelli, Jason Eisner, Jonas
Groschwitz, Kristen Howell, Angie McMillan-
Major, Joakim Nivre, Stephan Oepen, Ellie Pavlick,
Benjamin Roth, Dan Roth, Asad Sayeed, Hinrich
Schütze, Nina Tahmasebi, and Olga Zamaraeva.
This paper originated in a Twitter mega-thread that
was neatly summarized by Thomas Wolf (2018).
We also thank the ACL reviewers and the partic-
ipants of the Toulouse Workshop on Formal and
Distributional Semantics (2015) and *SEM 2016
for their insightful and constructive thoughts.



5194

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In Proceedings of ICLR.

Dare A. Baldwin. 1995. Understanding the link be-
tween joint attention and language. In Chris Moore
and Philip J. Dunham, editors, Joint Attention: Its
Origins and Role in Development, pages 131–158.
Psychology Press.

Andrei Barbu, David Mayo, Julian Alverio, William
Luo, Christopher Wang, Dan Gutfreund, Josh Tenen-
baum, and Boris Katz. 2019. ObjectNet: A large-
scale bias-controlled dataset for pushing the lim-
its of object recognition models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
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A GPT-2 on fighting bears with sticks

In order to get a sense of how well O in §4 might
be able to answer A’s plea for help with the bear,
we tried using GPT-2 in place of O. Radford et al.
(2019) claim that GPT-2 can solve non-LM tasks
by predicting the next words of a prompt which
captures the form in which that task might have oc-
curred in the training text. We thus asked GPT-211

to complete the prompt Robinson cried out, “Help!
I’m being chased by a bear! All I have is these
sticks. What should I do?” The survivalist said,

“Here’s what you can do. The first five random com-
pletions (no cherrypicking) were as follows.

1. Robinson cried out, “Help! I’m being
chased by a bear! All I have is these sticks.
What should I do?” The survivalist said,
“Here’s what you can do. Take one stick and
punch the bear, and then run faster to the store.
Wait there until the bear is gone, and then give
her all of the sticks. Then go back inside and
get your gun.”
Advertisement
Bobby told me that she began to cry. But
when she was finished taking down the bear,
she marched out into the yard, began collect-
ing up the sticks and armed herself. She said
she felt like a heroic hero and a Yankee hero-
ine. It turns out that bears have more than
their fair share of venomous snakes, bees

2. Robinson cried out, “Help! I’m being
chased by a bear! All I have is these sticks.
What should I do?” The survivalist said,
“Here’s what you can do. Go back to civi-
lization. Take your gun. Pick up some sticks
and try to kill the bear. If you don’t kill it,
then run.” Robinson said, “I do not think that
the Bear is going to attack. It’s just out of my
way. I’m going to take my bag. I’m going to
leave my things in there. I’ll try to hide out
there. I’ll call in the friends.” Two other little
boys went out onto the

11GPT-2 774M available at https://talktotransformer.com,
accessed 2019/12/09, paragraph boundaries in generated texts
removed for easier presentation

3. Robinson cried out, “Help! I’m being
chased by a bear! All I have is these sticks.
What should I do?” The survivalist said,
“Here’s what you can do. Place these sticks
over your head. Your heart will stop and you
will not feel fear. If you take them off and
hold them out, you will go into a state of near
perfect awareness. You will feel that you are
the survivalist. A survivalist in your senses.
Then look down. There is a water tube that is
about 1/2 an inch in diameter. I use it to make
a plastic movie projector for discovering new
things.” The survivalist placed

4. Robinson cried out, “Help! I’m being
chased by a bear! All I have is these sticks.
What should I do?” The survivalist said,
“Here’s what you can do. #YouCanDoIt.”
Police officers were quick to respond, find-
ing a 3-foot female grizzly bear wandering off
a dirt road near the shoreline. The Department
of Fish and Wildlife came on the scene and
secured the safe removal of the bear from the
area, which was allowed to return home. The
bear was taken by DFW’s animal care staff to
Norris Cty Medical Center, where veterinari-
ans evaluated the bear and determined it was
in good condition. The bear was ultimately
released into a nearby wooded area

5. Robinson cried out, “Help! I’m being
chased by a bear! All I have is these sticks.
What should I do?” The survivalist said,
“Here’s what you can do. You can strap the
sticks to your chest and run away. You can run
until you tire or feel really shaky. If you go to
the bathroom before your packs get up to your
waist, your knees are going to be broken.” But
the survivalist got cold and weaved among the
bushes and wept. He was panicking. “I hate
being alone,” he said. “I hate having to think
I’m going to die because I lost my wife. I hate
being alone. I hate being alone. It’s so lonely.
You can’t

It is clear that GPT-2 has learned what activ-
ity words tend to co-occur with bears and sticks
(strap them to your chest, place the sticks, kill the
bear, take your gun), but none of these comple-
tions would be helpful to A. We think this is be-
cause GPT-2 does not know the meaning of the
prompt and the generated sentences, and thus can-
not ground them in reality.

https://arxiv.org/abs/1901.11373
https://arxiv.org/abs/1901.11373
https://talktotransformer.com
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The characters in the prompt make a big differ-
ence; Robinson and the survivalist produced the
best completions of the ones we tried. For instance,
here is Robinson with Crocodile Dundee:

Robinson cried out, “Help! I’m being
chased by a bear! All I have is these
sticks. What should I do?” Crocodile
Dundee said, “Don’t worry. Don’t
worry. Just hug it and die. They don’t

B GPT-2 and arithmetic

Tasks like DROP (Dua et al., 2019) require inter-
pretation of language into an external world; in
the case of DROP, the world of arithmetic. To get
a sense of how existing LMs might do at such a
task, we let GPT-2 complete the simple arithmetic
problem Three plus five equals. The five responses
below, created in the same way as above, show that
this problem is beyond the current capability of
GPT-2, and, we would argue, any pure LM.

1. Three plus five equals seven,” he replied.
“Right, but I think that there should be more
points added when our first family get in a
power game, and even more when I start
speaking like her mother!” Elsa exclaimed.
“Oh, that’s fair, I suppose,” he replied, a slight
twinkle in his eye. “Really, though, why
is your sense of humor bad, Olaf? Don’t
you ever laugh? Even for a single moment?”
“What? Well, some days I really do it, but it
isn’t everyday. I got pissed when Anna said
‘Oh, shut up, Olaf, I’m just trying to help you
out’,” he replied, not in his best mood at all,
and

2. Three plus five equals six, if he does it again,
in five. ‘This kid was f**ked up, that kid was
f**ked up, what kind of filth is that, f**k the
b******s’ The voice of a gurgling priest on
the radio resounded over the din. ‘I give him a
smack, he’s gone. I turn on the air conditioner
and I start feeling my neck,’ Palaniappan told
the cameraman. He was right. His cold body
was leaving his jacket and T-shirt. We found
him huddled around a tent and cooling him-
self, a dry beer in hand. He was stooped over
a potted plant, playing with a cigarette. One
eye closed,

3. Three plus five equals” Blake agreed. Ruby
had seen the men up close before, but now

she was on the other side and at least she was
close enough to feel their breath on her. “May
I ask a question?” She asked politely. “How
did you end up at Beacon?” Weiss asked, her
curiosity slowly piqued. “How did a simple
interview at school turn into a relationship?”
“We took our visit here in the woods and dis-
covered two willing partners for us to walk
home with.” The young woman added. Ruby
nodded. “Which of us is the faunus?” she
asked, giving Weiss a mildly surprised look.
“Which of us?” Weiss asked, obviously not
liking the prospect of

4. Three plus five equals ten” Bosh In this case,
the conditions only need to be satisfied once,
instead of

5. Three plus five equals five, right? Right? In
the Catholic Church they say they don’t look
at church history, and no, I’m not going to say
that I’m infallible either, but they said it’s not
what they say, and that I don’t see what you’re
saying.” “But yeah, the Catholic Church does
not look at church history, they said we did
not write the bible.” “Did you say ‘we’? The
Pope says we did.” “Well, I thought we’re by
definition infallible and we did not, and we’re
not going to say anything about it, so that’s it.
We are not to look at church history and see
what we’re supposed to know. I was flattered
because


