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Abstract

Generating a readable summary that describes
the functionality of a program is known as
source code summarization. In this task,
learning code representation by modeling the
pairwise relationship between code tokens to
capture their long-range dependencies is cru-
cial. To learn code representation for sum-
marization, we explore the Transformer model
that uses a self-attention mechanism and has
shown to be effective in capturing long-range
dependencies. In this work, we show that de-
spite the approach is simple, it outperforms
the state-of-the-art techniques by a significant
margin. We perform extensive analysis and
ablation studies that reveal several important
findings, e.g., the absolute encoding of source
code tokens’ position hinders, while relative
encoding significantly improves the summa-
rization performance. We have made our code
publicly available1 to facilitate future research.

1 Introduction

Program comprehension is an indispensable ingre-
dient of software development and maintenance
(Xia et al., 2018). A natural language summary
of source code facilitates program comprehension
by reducing developers’ efforts significantly (Srid-
hara et al., 2010). Source code summarization
refers to the task of creating readable summaries
that describe the functionality of a program.

With the advancement of deep learning and the
availability of large-scale data through a vast num-
ber of open-source repositories, automatic source
code summarizing has drawn attention from re-
searchers. Most of the neural approaches generate
source code summaries in a sequence-to-sequence
fashion. One of the initial works Iyer et al. (2016)
trained an embedding matrix to represent the indi-
vidual code tokens and combine them with a Re-

1https://github.com/wasiahmad/NeuralCodeSum

current Neural Network (RNN) via an attention
mechanism to generate a natural language sum-
mary. Subsequent works (Liang and Zhu, 2018;
Hu et al., 2018a,b) adopted the traditional RNN-
based sequence-to-sequence network (Sutskever
et al., 2014) with attention mechanism (Luong
et al., 2015) on different abstractions of code.

The RNN-based sequence models have two lim-
itations in learning source code representations.
First, they do not model the non-sequential struc-
ture of source code as they process the code tokens
sequentially. Second, source code can be very
long, and thus RNN-based models may fail to cap-
ture the long-range dependencies between code to-
kens. In contrast to the RNN-based models, Trans-
former (Vaswani et al., 2017), which leverages
self-attention mechanism, can capture long-range
dependencies. Transformers have been shown to
perform well on many natural language genera-
tion tasks such as machine translation (Wang et al.,
2019), text summarization (You et al., 2019), story
generation (Fan et al., 2018), etc.

To learn the order of tokens in a sequence or
to model the relationship between tokens, Trans-
former requires to be injected with positional en-
codings (Vaswani et al., 2017; Shaw et al., 2018;
Shiv and Quirk, 2019). In this work, we show
that, by modeling the pairwise relationship be-
tween source code tokens using relative position
representation (Shaw et al., 2018), we can achieve
significant improvements over learning sequence
information of code tokens using absolute position
representation (Vaswani et al., 2017).

We want to emphasize that our proposed ap-
proach is simple but effective as it outperforms
the fancy and sophisticated state-of-the-art source
code summarization techniques by a significant
margin. We perform experiments on two well-
studied datasets collected from GitHub, and the
results endorse the effectiveness of our approach
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over the state-of-the-art solutions. In addition, we
provide a detailed ablation study to quantify the
effect of several design choices in the Transformer
to deliver a strong baseline for future research.

2 Proposed Approach

We propose to use Transformer (Vaswani et al.,
2017) to generate a natural language summary
given a piece of source code. Both the code and
summary is a sequence of tokens that are repre-
sented by a sequence of vectors, x = (x1, . . . , xn)
where xi ∈ Rdmodel . In this section, we briefly
describe the Transformer architecture (§ 2.1) and
how to model the order of source code tokens or
their pairwise relationship (§ 2.2) in Transformer.

2.1 Architecture

The Transformer consists of stacked multi-head
attention and parameterized linear transformation
layers for both the encoder and decoder. At each
layer, the multi-head attention employs h attention
heads and performs the self-attention mechanism.

Self-Attention. We describe the self-attention
mechanism based on Shaw et al. (2018). In
each attention head, the sequence of input vec-
tors, x = (x1, . . . , xn) where xi ∈ Rdmodel are
transformed into the sequence of output vectors,
o = (o1, . . . , on) where oi ∈ Rdk as:

oi =
n∑

j=1

αij(xjW
V ),

eij =
xiW

Q(xjW
K)T√

dk
,

where αij =
exp eij∑n

k=1 exp eik
and WQ,WK ∈

Rdmodel×dk ,W V ∈ Rdmodel×dv are the parameters
that are unique per layer and attention head.

Copy Attention. We incorporate the copying
mechanism (See et al., 2017) in the Transformer to
allow both generating words from vocabulary and
copying from the input source code. We use an
additional attention layer to learn the copy distri-
bution on top of the decoder stack (Nishida et al.,
2019). The copy attention enables the Transformer
to copy rare tokens (e.g., function names, variable
names) from source code and thus improves the
summarization performance significantly (§ 3.2).

2.2 Position Representations

Now, we discuss how to learn the order of source
code tokens or model their pairwise relationship.

Dataset Java Python
Train 69,708 55,538
Validation 8,714 18,505
Test 8,714 18,502
Unique tokens in code 66,650 307,596
Unique tokens in summary 46,895 56,189
Avg. tokens in code 120.16 47.98
Avg. tokens in summary 17.73 9.48

Table 1: Statistics of the experiment datasets. We thank
the authors of Wei et al. (2019) for kindly sharing the
Python dataset splits. The Java dataset splits are pub-
licly available.

Encoding absolute position. To allow the Trans-
former to utilize the order information of source
code tokens, we train an embedding matrix WPe

that learns to encode tokens’ absolute positions
into vectors of dimension dmodel. However, we
show that capturing the order of code tokens is not
helpful to learn source code representations and
leads to poor summarization performance (§ 3.2).

It is important to note that we train another em-
bedding matrix WPd that learns to encode the ab-
solute positions of summary tokens.2

Encoding pairwise relationship. The semantic
representation of a code does not rely on the abso-
lute positions of its tokens. Instead, their mutual
interactions influence the meaning of the source
code. For instance, semantic meaning of the ex-
pressions a+b and b+a are the same.

To encode the pairwise relationships between
input elements, Shaw et al. (2018) extended the
self-attention mechanism as follows.

oi =
n∑

j=1

αij(xjW
V + aVij),

eij =
xiW

Q(xjW
K + aKij )

T

√
dk

,

where, aVij and aKij are relative positional represen-
tations for the two position i and j. Shaw et al.
(2018) suggested clipping the maximum relative
position to a maximum absolute value of k as they
hypothesize that precise relative position informa-
tion is not useful beyond a certain distance.

aKij = wK
clip(j−i,k), a

V
ij = wV

clip(j−i,k),

clip(x, k) = max(−k,min(k, x)).

Hence, we learn 2k + 1 relative position repre-
sentations: (wK

−k, . . . , w
K
k ), and (wV

−k, . . . , w
V
k ).

2In this work, we do not study alternative ways of learning
position representation for the summary tokens.
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Methods Java Python
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

CODE-NN (Iyer et al., 2016) 27.60 12.61 41.10 17.36 09.29 37.81
Tree2Seq (Eriguchi et al., 2016) 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq (Wan et al., 2018) 38.22 22.75 51.91 19.28 09.75 39.34
DeepCom (Hu et al., 2018a) 39.75 23.06 52.67 20.78 09.98 37.35
API+CODE (Hu et al., 2018b) 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model (Wei et al., 2019) 42.39 25.77 53.61 21.80 11.14 39.45
Our models and ablation study
Base Model 43.41 25.91 52.71 31.08 18.57 44.31
Full Model 44.58 26.43 54.76 32.52 19.77 46.73
Full Model w/o Relative Position 44.26 26.23 53.58 31.38 18.69 44.68
Full Model w/o Copy Attention 44.14 26.34 53.95 31.64 19.17 45.42

Table 2: Comparison of our proposed approach with the baseline methods. The results of the baseline methods
are directly reported from (Wei et al., 2019). The “Base Model” refers to the vanilla Transformer (uses absolute
position representations) and the “Full Model” uses relative position representations and includes copy attention.

In this work, we study an alternative of the rela-
tive position representations that ignores the direc-
tional information (Ahmad et al., 2019). In other
words, the information whether the j’th token is
on the left or right of the i’th token is ignored.

aKij = wK
clip(|j−i|,k), a

V
ij = wV

clip(|j−i|,k),

clip(x, k) = min(|x|, k).

3 Experiment

3.1 Setup

Datasets and Pre-processing. We conduct our
experiments on a Java dataset (Hu et al., 2018b)
and a Python dataset (Wan et al., 2018). The statis-
tics of the two datasets are shown in Table 1. In
addition to the pre-processing steps followed by
Wei et al. (2019), we split source code tokens of
the form CamelCase and snake case to respective
sub-tokens3. We show that such a split of code
tokens improves the summarization performance.
Metrics. We evaluate the source code summariza-
tion performance using three metrics, BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and ROUGE-L (Lin, 2004).
Baselines. We compare our Transformer-based
source code summarization approach with five
baseline methods reported in Wei et al. (2019) and
their proposed Dual model. We refer the readers
to (Wei et al., 2019) for the details about the hy-
perparameter of all the baseline methods.
Hyper-parameters. We follow Wei et al. (2019)
to set the maximum lengths and vocabulary sizes

3The CamelCase and snake case tokenization reduces the
vocabulary significantly. For example, the number of unique
tokens in Java source code reduced from 292,626 to 66,650.

for code and summaries in both the datasets. We
train the Transformer models using Adam opti-
mizer (Kingma and Ba, 2015) with an initial learn-
ing rate of 10−4. We set the mini-batch size and
dropout rate to 32 and 0.2, respectively. We train
the Transformer models for a maximum of 200
epochs and perform early stop if the validation
performance does not improve for 20 consecutive
iterations. We use a beam search during infer-
ence and set the beam size to 4. Detailed hyper-
parameter settings can be found in Appendix A.

3.2 Results and Analysis

Overall results. The overall results of our pro-
posed model and baselines are presented in Ta-
ble 2. The result shows that the Base model out-
performs the baselines (except for ROUGE-L in
java), while the Full model improves the perfor-
mance further.4 We ran the Base model on the
original datasets (without splitting the CamelCase
and snake case code tokens) and observed that the
performance drops by 0.60, 0.72 BLEU and 1.66,
2.09 ROUGE-L points for the Java and Python
datasets respectively. We provide a few qualitative
examples in Appendix C showing the usefulness
of the Full model over the Base model.

Unlike the baseline approaches, our proposed
model employs the copy attention mechanism. As
shown in Table 2, the copy attention improves the
performance 0.44 and 0.88 BLEU points for the
Java and Python datasets respectively.

Impact of position representation. We per-
form an ablation study to investigate the benefits

4We observe a more significant gain on the Python dataset
and a detailed discussion on it is provided in Appendix B.
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Source Target BLEU METEOR ROUGE-L
3 3 43.41 25.91 52.71
3 7 42.34 24.74 50.96
7 3 43.59 26.00 52.88
7 7 41.85 24.32 50.87

Table 3: Ablation study on absolute positional repre-
sentations using the “Base Model” on the Java dataset.

k Directional BLEU METEOR ROUGE-L

8
3 44.22 26.35 53.86
7 42.61 24.67 51.10

16
3 44.14 26.34 53.95
7 44.06 26.31 53.51

32
3 44.55 26.66 54.30
7 43.95 26.28 53.24

2i
3 44.37 26.58 53.96
7 43.58 25.95 52.73

Table 4: Ablation study on relative positional represen-
tations (in encoding) for Transformer. While 8, 16, and
32 represents a fixed relative distance for all the layers,
2i (where i = 1, . . . , L; L = 6) represents a layer-wise
relative distance for Transformer.

of encoding the absolute position of code tokens or
modeling their pairwise relationship for the source
code summarization task, and the results are pre-
sented in Table 3 and 4. Table 3 demonstrates that
learning the absolute position of code tokens are
not effective as we can see it slightly hurts the per-
formance compared to when it is excluded. This
empirical finding corroborates the design choice
of Iyer et al. (2016), where they did not use the
sequence information of the source code tokens.

On the other hand, we observe that learning the
pairwise relationship between source code tokens
via relative position representations helps as Table
4 demonstrates higher performance. We vary the
clipping distance, k, and consider ignoring the di-
rectional information while modeling the pairwise
relationship. The empirical results suggest that the
directional information is indeed important while
16, 32, and 2i relative distances result in similar
performance (in both experimental datasets).

Varying model size and number of layers. We
perform ablation study by varying dmodel and l and
the results are presented in Table 5.5 In our ex-
periments, we observe that a deeper model (more
layers) performs better than a wider model (larger
dmodel). Intuitively, the source code summariza-

5Considering the model complexity, we do not increase
the model size or number of layers further.

#Param. BLEU METEOR ROUGE-L
Varying the model size (dmodel)
256 15.8 38.21 21.54 48.63
384 28.4 41.71 24.51 51.42
512 44.1 43.41 25.91 52.71
768 85.1 45.29 27.56 54.39
Varying the number of layers (l)

3 22.1 41.26 23.54 51.37
6 44.1 43.41 25.91 52.71
9 66.2 45.03 27.21 54.02

12 88.3 45.56 27.64 54.89

Table 5: Ablation study on the hidden size and number
of layers for the “Base Model” on the Java dataset. We
use dmodel = H , dff = 4H , h = 8, and dk = dv = 64
in all settings. We set l = 6 and dmodel = 512 while
varying dmodel and l respectively. #Param. represents
the number of trainable parameters in millions (only
includes Transformer parameters).

tion task depends on more semantic information
than syntactic, and thus deeper model helps.

Use of Abstract Syntax Tree (AST). We perform
additional experiments to employ the abstract syn-
tax tree (AST) structure of source code in the
Transformer. We follow Hu et al. (2018a) and
use the Structure-based Traversal (SBT) technique
to transform the AST structure into a linear se-
quence. We keep our proposed Transformer archi-
tecture intact, except in the copy attention mech-
anism, we use a mask to block copying the non-
terminal tokens from the input sequence. It is im-
portant to note that, with and without AST, the av-
erage length of the input code sequences is 172
and 120, respectively. Since the complexity of the
Transformer is O(n2 × d) where n is the input se-
quence length, hence, the use of AST comes with
an additional cost. Our experimental findings sug-
gest that the incorporation of AST information in
the Transformer does not result in an improvement
in source code summarization. We hypothesize
that the exploitation of the code structure informa-
tion in summarization has limited advantage, and
it diminishes as the Transformer learns it implic-
itly with relative position representation.

Qualitative analysis. We provide a couple of ex-
amples in Table 6 to demonstrate the usefulness
of our proposed approach qualitatively (more ex-
amples are provided in Table 9 and 10 in the Ap-
pendix). The qualitative analysis reveals that, in
comparison to the Vanilla Transformer model, the
copy enabled model generates shorter summaries
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public static String selectText(XPathExpression expr, Node context) {
try {

return (String)expr.evaluate(context, XPathConstants.STRING );
} catch (XPathExpressionException e) {

throw new XmlException(e);
}

}

Base Model: evaluates the xpath expression to a xpath expression .
Full Model w/o Relative Position: evaluates the xpath expression .
Full Model w/o Copy Attention Attention: evaluates the xpath expression as a single element .
Full Model: evaluates the xpath expression as a text string .
Human Written: evaluates the xpath expression as text .
def get_hosting_service(name):

try:
return hosting_service_registry.get(u'hosting service id', name)

except ItemLookupError:
return None

Base Model: returns the color limits from the current service name .
Full Model w/o Relative Position: return the hosting service .
Full Model w/o Copy Attention: return the name of the service .
Full Model : return the hosting service name .
Human Written: return the hosting service with the given name .

Table 6: Qualitative example of different models’ performance on Java and Python datasets.

with more accurate keywords. Besides, we ob-
serve that in a copy enabled model, frequent to-
kens in the code snippet get a higher copy prob-
ability when relative position representations are
used, in comparison to absolute position represen-
tations. We suspect this is due to the flexibility of
learning the relation between code tokens without
relying on their absolute position.

4 Related Work

Most of the neural source code summarization ap-
proaches frame the problem as a sequence genera-
tion task and use recurrent encoder-decoder net-
works with attention mechanisms as the funda-
mental building blocks (Iyer et al., 2016; Liang
and Zhu, 2018; Hu et al., 2018a,b). Different from
these works, Allamanis et al. (2016) proposed a
convolutional attention model to summarize the
source codes into short, name-like summaries.

Recent works in code summarization utilize
structural information of a program in the form of
Abstract Syntax Tree (AST) that can be encoded
using tree structure encoders such as Tree-LSTM
(Shido et al., 2019), Tree-Transformer (Harer
et al., 2019), and Graph Neural Network (LeClair
et al., 2020). In contrast, Hu et al. (2018a) pro-
posed a structure based traversal (SBT) method to
flatten the AST into a sequence and showed im-
provement over the AST based methods. Later,
LeClair et al. (2019) used the SBT method and de-

coupled the code structure from the code tokens to
learn better structure representation.

Among other noteworthy works, API usage in-
formation (Hu et al., 2018b), reinforcement learn-
ing (Wan et al., 2018), dual learning (Wei et al.,
2019), retrieval-based techniques (Zhang et al.,
2020) are leveraged to further enhance the code
summarization models. We can enhance a Trans-
former with previously proposed techniques; how-
ever, in this work, we limit ourselves to study dif-
ferent design choices for a Transformer without
breaking its’ core architectural design philosophy.

5 Conclusion

This paper empirically investigates the advantage
of using the Transformer model for the source
code summarization task. We demonstrate that the
Transformer with relative position representations
and copy attention outperforms state-of-the-art ap-
proaches by a large margin. In our future work,
we want to study the effective incorporation of
code structure into the Transformer and apply the
techniques in other software engineering sequence
generation tasks (e.g., commit message generation
for source code changes).
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A Hyper-Parameters

Table 7 summarizes the hyper-parameters that we
used in our experiments.

Hyper-parameter Value
Embedding k 16

Model

l 6
h 8

dmodel 512
dk, dv 64
dff 2048

Training

dropout 0.2
optimizer Adam

learning rate 0.0001
batch size 32

Testing beam size 4

Table 7: Hyper-parameters in our experiments. l and
h indicates the number of layers and heads in Trans-
former respectively. k refers to the clipping distance in
relative position representations in Transformer.

B Recurrent Encoder-Decoder vs.
Transformer on Python Dataset

Models BLEU METEOR ROUGE-L
Seq2seq 30.57 17.86 43.64
Seq2seq∗ 29.08 17.12 42.97
Transformer 31.08 18.57 44.31
Transformer∗ 31.38 18.69 44.68

Table 8: Comparison between recurrent sequence-to-
sequence (Seq2seq) model and Transformer on the
Python dataset. ∗ indicates models are equipped with
the copy attention mechanism.

While conducting our study using the Trans-
former on the Python dataset, we observed a sig-
nificant gain over the state-of-the-art methods as
reported in Wei et al. (2019). However, our ini-
tial experiments on this dataset using recurrent
sequence-to-sequence models also demonstrated
higher performance compared to the results re-
port in Wei et al. (2019). We suspect that such
lower performance is due to not tuning the hyper-
parameters correctly. So for the sake of fairness
and to investigate the true advantages of Trans-
former, we present a comparison on recurrent
Seq2seq model and Transformer in Table 8 using
our implementation.6

6Our implementation is based on Open-NMT (Klein et al.,
2017) and PyTorch 1.3.

We can see from Table 8, the performance of the
recurrent Seq2seq model is much better than the
results reported in prior works. However, to our
surprise, the copy attention mechanism does not
result in improvement for the recurrent Seq2seq
model. When we looked into the training per-
plexity and the validation performance, we also
observed lower performance in comparison to the
base recurrent Seq2seq model. In comparison,
our proposed Transformer-based approach outper-
forms the recurrent Seq2seq models by a large
margin showing its effectiveness for source code
summarization.
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C Qualitative Examples

public static terminal find(String with_name) {
if(with_name == null)

return null;
else

return (terminal)all.get(with_name);
}

Base Model: lookup a non terminal by name string
Full Model w/o Relative Position: lookup a terminal terminal by name string
Full Model w/o Copy Attention: lookup a non terminal by name string
Full Model: lookup a terminal by name
Human Written: lookup a terminal by name string .
public static String selectText(XPathExpression expr, Node context) {

try {
return (String)expr.evaluate(context, XPathConstants.STRING );

} catch (XPathExpressionException e) {
throw new XmlException(e);

}
}

Base Model: evaluates the xpath expression to a xpath expression .
Full Model w/o Relative Position: evaluates the xpath expression .
Full Model w/o Copy Attention Attention: evaluates the xpath expression as a single element .
Full Model: evaluates the xpath expression as a text string .
Human Written: evaluates the xpath expression as text .
public CTaggingPanel(

final JFrame parent, final ZyGraph graph, final ITagManager manager) {
super(new BorderLayout());
mtagsTree = new CTagsTree(parent, graph, manager);
final JScrollPane pane = new JScrollPane(mtagsTree);
pane.setVerticalScrollBarPolicy(

ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED);
pane.setHorizontalScrollBarPolicy(

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
add(pane);
setBorder(new TitledBorder(new LineBorder(Color.LIGHT_GRAY, NUM, BOOL), STRING));
setDoubleBuffered(BOOL);

}

Base Model: creates a new dnetscapesslservername dialog .
Full Model w/o Relative Position: creates a new settings dialog .
Full Model w/o Copy Attention: creates a new toolbar panel .
Full Model: creates a new api panel object .
Human Written: creates a new panel object .
public DSignCsr(JFrameparent, PKCS10CertificationRequest pkcs10Csr, File csrFile,

PrivateKey signPrivateKey, KeyPairType signKeyPairType,
X509Certificate verificationCertificate, Provider provider)
throws CryptoException{

super(parent, Dialog.ModalityType.DOCUMENT_MODAL);
this.pkcs10Csr = pkcs10Csr;
this.csrFile = csrFile;
this.signPrivateKey = signPrivateKey;
this.signKeyPairType = signKeyPairType;
this.verificationCertificate = verificationCertificate;
this.provider = provider;
setTitle(res.getString(STRING));
initComponents();

}

Base Model: creates a new dsigncsr dialog for a spkac formatted csr .
Full Model w/o Relative Position: creates a new signer dialog for a pkcs # 10 formatted .
Full Model w/o Copy Attention: creates a new dsigncsr dialog for a spkac formatted csr .
Full Model: creates a new dsigncsr dialog for a pkcs # 10 formatted csr .
Human Written: creates a new dsigncsr dialog for a pkcs # 10 formatted csr .

Table 9: Qualitative example of different models’ performance in Java dataset.
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def get_hosting_service(name):
try:

return hosting_service_registry.get(u'hosting service id', name)
except ItemLookupError:

return None

Base Model: returns the color limits from the current service name .
Full Model w/o Relative Position: return the hosting service .
Full Model w/o Copy Attention: return the name of the service .
Full Model : return the hosting service name .
Human Written: return the hosting service with the given name .
def save_pickle(obj, fname):

with get_file_obj(fname, 'wb') as fout:
cPickle.dump(obj, fout, protocol=-1)

Base Model: pickle object obj to file fname .
Full Model w/o Relative Position: save object to file .
Full Model w/o Copy Attention: raw data: object obj to file fname .
Full Model : save object to file fname .
Human Written: save the object to file via pickling .
def get_temp_dir:

temp = get_environ_variable('TMP')
if temp is None:

temp = get_environ_variable('TEMP')
if temp is None or '' in temp and os.name == 'nt':

temp = 'C \\temp'
if temp None or '' in temp and os.name == 'posix':

temp = '/tmp'
return temp

Base Model: returns the name of the sample environment variable .
Full Model w/o Relative Position: returns the next temporary directory of a file .
Full Model w/o Copy Attention: get the directory related to store the stubbed .
Full Model : return a temporary filename .
Human Written: returns a temporary directory .
def get_exploration_memcache_key(exploration_id, version=None):

if version:
return 'exploration-version %s %s' % exploration_id, version

else:
return 'exploration %s' % exploration_id

Base Model: returns the key for an instance for the project .
Full Model w/o Relative Position: returns a memcache key for the given version .
Full Model w/o Copy Attention: returns a memcache for the exploration id .
Full Model : returns a memcache key for the specified exploration .
Human Written: returns a memcache key for an exploration .
def get_svc_avail_path():

return AVAIL_SVR_DIRS

Base Model: get the actual path .
Full Model w/o Relative Position: returns a list of services .
Full Model w/o Copy Attention: return a list of services that are available .
Full Model : returns a list of available services .
Human Written: return list of paths that may contain available services .
def volume_attach(provider, names, **kwargs):

client.get_client_info()
client.extra_action(provider=provider, names=names, action='volume attach',

**kwargs)
return info

Base Model: attempt to attach volume .
Full Model w/o Relative Position: attach volume cli example: .
Full Model w/o Copy Attention: attach volume cli example: .
Full Model : attach volume information cli example: .
Human Written: attach volume to a server cli example: .

Table 10: Qualitative example of different models’ performance in Python dataset.


