A Recipe for Creating Multimodal
Aligned Datasets for Sequential Tasks

Angela S. Lin ** Sudha Rao® Asli Celikyilmaz®
Debadeepta Dey® Bill Dolan®

Chris Brockett®

Elnaz Nouri®

*Salesforce Research, Palo Alto, CA, USA
®Microsoft Research, Redmond, WA, USA
angela.lin@salesforce.com {sudhra, aslicel, elnouri } @microsoft.com
{chrisbkt, dedey, billdol } @ microsoft.com

Abstract

Many high-level procedural tasks can be de-
composed into sequences of instructions that
vary in their order and choice of tools. In
the cooking domain, the web offers many
partially-overlapping text and video recipes
(i.e. procedures) that describe how to make
the same dish (i.e. high-level task). Aligning
instructions for the same dish across different
sources can yield descriptive visual explana-
tions that are far richer semantically than con-
ventional textual instructions, providing com-
monsense insight into how real-world proce-
dures are structured. Learning to align these
different instruction sets is challenging be-
cause: a) different recipes vary in their or-
der of instructions and use of ingredients; and
b) video instructions can be noisy and tend
to contain far more information than text in-
structions. To address these challenges, we
first use an unsupervised alignment algorithm
that learns pairwise alignments between in-
structions of different recipes for the same
dish. We then use a graph algorithm to de-
rive a joint alignment between multiple text
and multiple video recipes for the same dish.
We release the MICROSOFT RESEARCH MUL-
TIMODAL ALIGNED RECIPE CORPUS' con-
taining ~ 150K pairwise alignments between
recipes across 4,262 dishes with rich common-
sense information.

1 Introduction

Although machine learning has seen tremendous
recent success in challenging game environments
such as Go (Schrittwieser et al., 2019), DOTA (Ope-
nAl, 2019), and StarCraft (DeepMind, 2019), we
have not seen similar progress toward algorithms
that might one day help humans perform everyday
tasks like assembling furniture, applying makeup,

*Work done when the author was an intern at Microsoft.

'https://github.com/microsoft/
multimodal-aligned-recipe-corpus

1. In a pot add 1 cup of rice and 2
cups of water cook for 15 min.

1. Hi everyone. Today we’re making
shrimp fried rice, a family favorite.

= n - I 2. In a small bowl beat together 4 eggs. ‘
2. Heatcooking fatin a large skillet on

medium heat.

3. Place a large nonstick pan or wok
over medium high heat and when a

T
3. Add|onion, garlic, peas and carrotsj N bead of water sizzles and evaporates,
\
\

add 2 tablespoons of{sesame oil

\
‘ 4, Stir fry until tender. ‘ \

4. Transfer shrimp to the hot skillet and
5. Crack an egg and scramble it in the ‘ \ 7| cook them one minute per side.
same pan and mix it throughout

vegetables.

‘ 4/ | |5.1n the same pan cook the beaten
eggs breaking them up with your
2
% \ spatula and cooking just until they are
\

6. Add rice and shrimp stir well and

no longer running.
remove from heat and add soy sauce.

\
“3‘ 6. Now add 5 cups of cold leftover rice. ‘

7. Add the| chopped green onion
before serving.

\
Y 7. Add 12 ounces of{thawed peasjand
bean sprouts.

Figure 1: Text recipe (left) and transcript of video
recipe (right) for shrimp fried rice. Aligned instruc-
tions are highlighted in the same color. Ingredients that
can be substituted are encircled in the same color.

repairing an electrical problem, or cooking a par-
ticular dish. In part this is because the relevant
large-scale multimodal (language, video, audio)
datasets are difficult to acquire, even with exten-
sive crowdsourcing (Salvador et al., 2017; Sanabria
et al., 2018). Unimodal data, though, is abundant
on the web (e.g. instructional videos or textual
instructions of tasks). Using language as the link
between these modalities, we present an approach
for learning large-scale alignment between multi-
modal procedural data. We hope our work, and the
resulting released dataset, will help spur research
on real-world procedural tasks.

Recipes in the cooking domain provide proce-
dural instruction sets that are captured — in large
volume — both in video and text-only forms. In-
struction sets in these two modalities overlap suf-
ficiently to allow for an alignment that reveals in-
terestingly different information in the linguistic
and visual realms. In Figure 1, for instance, the
text recipe (left) and the transcribed video recipe
(right) for shrimp fried rice vary in word usage,
order of instructions and use of ingredients. Know-
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Text Recipe 1

Text Recipe 2

1. Heat 1/2 tablespoon of better in a
large sauté pan over medium-high heat
until melted.

1. In a large skillet or wok, heat 3

of olive oil over medium-
high heat.

2. Add whisked eggs, and cook until
scrambled, stirring occasionally.

S

large eggs in a small bowl.

5. Add carrots, onion, peas and garlic
and season with a pinch of salt and
pepper.

4. To the hot pan of oil, add 1/2 cup of
chopped carrots and stir-fry for 2 to 3
minutes.

8. Immediately add in the rice, green

5. Add 4 chopped green onions and
2 minced garlic cloves & continue to
stir-fry for a min.

[&~<
“=~.y| 1.Putltbsofsesameocilina
wok and heat on medium heat S
2. While the oil is heating, lightly beat 2 [
1S
I

’ \'“
\ //
& | 4.scramble 2 eggs in same 2 4
pans

onions, and soy sauce and stir until r‘:’
5 N,
combined.

6. Pour in the beaten eggs and scramble
for 30 to 45 seconds

10. Then add in the eggs and stir to
combine.

.| 7. Add 3 cups of well-chilled, previously

Y cooked, long-grain brown rice and stir-

. fry for several minutes.
N

11. Remove from heat and stir in the
sesame oil until combined.

~.,| 9-Season the rice with the soy sauce,
salt, and pepper and continue heating
until the rice is hot.

/

6. Add in rest of sesame oil and | __—=--=|
/' soy sauce

Text Recipe 3 Video Recipe 2

Video Recipe 1

2. Add in veggies, ham, onion,
/:, and garlic %
/ N,
/

\;
A,
\,
\,

0
L e

Figure 2: Dish level alignment between three text recipes and two video recipes for fried rice. Same colored text
boxes (in text recipes) and image borders (in video recipes) indicate instructions that are aligned to each other.

ing that the highlighted instructions correspond to
the same step is useful in understanding potential
ingredient substitutions, how the same step can be
linguistically described and physically realized in
different ways, and how instruction order can be
varied without affecting the outcome.

Motivated by this idea that aligned procedural
data can be a powerful source of practical common-
sense knowledge, we describe our approach for
constructing the MICROSOFT RESEARCH MULTI-
MODAL ALIGNED RECIPE CORPUS. We first
extract a large number of text and video recipes
from the web. Our goal is to find joint alignments
between multiple text recipes and multiple video
recipes for the same dish (see Figure 2). The task is
challenging, as different recipes vary in their order
of instructions and use of ingredients. Moreover,
video instructions can be noisy, and text and video
instructions include different levels of specificity
in their descriptions. Most previous alignment ap-
proaches (Munteanu and Marcu, 2005) deal with
pairwise alignments. Since our goal is to align
multiple instruction sets, we introduce a novel two-
stage unsupervised algorithm. In the first stage, we
learn pairwise alignments between two text recipes,
two video recipes, and between a text and a video
recipe using an unsupervised alignment algorithm
(§3.1). In the second stage, we use the pairwise
alignments between all recipes within a dish to
construct a graph for each dish and find a maxi-
mum spanning tree of this graph to derive joint

alignments across multiple recipes (§3.2).

We train our unsupervised algorithm on 4,262
dishes consisting of multiple text and video recipes
per dish. We release the resulting pairwise and
joint alignments between multiple recipes within a
dish for all 4,262 dishes, along with commonsense
information such as textual and visual paraphrases,
and single-step to multi-step breakdown (§5).

We evaluate our pairwise alignment algorithm on
two datasets: 1,625 text-video recipe pairs across
90 dishes from the YouCook2 dataset (Zhou et al.,
2018a), and a small set of 200 human-aligned text-
text recipe pairs across 5 dishes from Common
Crawl. We compare our algorithm to several tex-
tual similarity baselines and perform ablations over
our trained model (§4). Finally, we discuss how
this data release will help with research at the inter-
section of language, vision, and robotics (§6).

2 Recipe Data Collection

We describe our approach for collecting large-scale
text and video recipes; and constructing recipe pairs
for training our unsupervised alignment algorithm.

2.1 Common Crawl Text Recipes

We extract text recipes from Common Crawl,> one
of the largest web sources of text. We heuristi-
cally filter the extracted recipes® to obtain a total
of 48,852 recipes across 4,262 dishes. The number

“https://commoncraw].org/
3Details in supplementary.
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Hi everyone | am Natasha from Natasha's kitchen.com and this is -
Chat

the first video in our new kitchen.

‘ We're making the easiest shrimp fried rice. ‘

‘ This is a family favorite and it's perfect for busy weeknight. ‘
In a medium bowl combine 1 pound of raw shrimp with one
teaspoon of cornstarch and some salt and black pepper.
Place a large nonstick over medium high heat when a bead of G
water sizzles and evaporates swirl in 2 tablespoons of cooking oil. ontent

‘ Transfer shrimp to hot skillet & cook them one minute per side. ‘ ‘ Content ‘
The shrimp can become rubbery and just tough to eat so that’s
why | do it this way.
In the same pan cook the beaten eggs breaking them up with -
your spatula and cooking just until they are no longer running.

Figure 3: An example transcript of a video recipe with
sentences marked as “chat” (non-instructional) or “con-
tent” (instructional).

of recipes per dish ranges from 3 to 100 (with an
average of 6.54 and standard deviation of 7.22).
The average recipe length is 8 instructions.

2.2 YouTube Video Recipes

For each dish in the text recipes, we use the dish
name with ‘recipe’ appended, e.g. ‘chocolate chip
cookie recipe’, as a query on YouTube and extract
the top N videos where N is proportional to the
number of text recipes for that dish* to obtain a
total of 77,550 video recipes. We transcribe these
videos using the Microsoft Speech-to-Text Cogni-
tive service.’

Video recipes, unlike text recipes, contain non-
instructional (“‘chat”) information. For instance,
the presenter may give an introduction either of
themselves or of the dish at the beginning of the
video before diving into the steps of the recipe. Fig-
ure 3 contains an example transcript with “chat”
and “content” information marked. We hypothe-
size that it is useful to remove such chat informa-
tion from the transcripts before aligning them to
text recipes. We build a supervised chat/content
classifier using the YouCook2 dataset (Zhou et al.,
2018a), an existing instructional cooking video
dataset where parts of video that correspond to
instructions are annotated by humans. We assume
that these parts correspond to content whereas the
rest of the video corresponds to chat.® We prepro-
cess the transcriptions of all 77,550 videos using
this chat/content classifier’ to remove all sentences
classified as chat.

“Details in supplementary.

Shttps://azure.microsoft.com/
en-us/services/cognitive-services/
speech-to-text/

®Details in supplementary.

"Classifier achieves 85% F1-score on a held out test set.

‘ Train ‘ Val ‘ Test
4,065 94 103
46,054 | 5,822 | 11,652
56,291 | 3,800 | 5,341
19,200 | 274 514

No. of dishes
Text-Text Pairs
Text-Video Pairs
Video-Video Pairs

Table 1: Statistics of our recipe pairs data (2.3)

2.3 Recipe Pairs for Training

Given N text recipes and M video recipes for a dish,
we pair each text recipe with every other text recipe
to get O(N?) text-text recipe pairs. Similarly, we
pair each text recipe with every video recipe to get
O(N * M) text-video recipe pairs, and pair each
video recipe with every other video recipe to get
O(M?) video recipe pairs. On closer inspection,
we find that some of these pairs describe recipes
that are very different from one other, making a
reasonable alignment almost impossible. For ex-
ample, one black bean soup recipe might require
the use of a slow cooker, while another describes
using a stove. We therefore prune these recipe pairs
based on the match of ingredients and length® to
finally yield a set of 63,528 text-text recipe pairs,
65,432 text-video recipe pairs and 19,988 video-
video recipe pairs. We split this into training, vali-
dation and test split at the dish level. Table 1 shows
the number of dishes and pairs in each split.

3 Recipe Alignment Algorithm

We first describe our unsupervised pairwise align-
ment model trained to learn alignments between
text-text, text-video, and video-video recipes pairs.
We then describe our graph algorithm, which de-
rives joint alignments between multiple text and
video recipes given the pairwise alignments.

3.1 Pairwise Alignments between Recipes

Our alignment algorithm is based on prior work
(Naim et al.,, 2014) that learns to align a se-
quence of natural language instructions to seg-
ments of video recording of the same wet lab pro-
tocol. They first identify the nouns in the text sen-
tences and the blobs (i.e. objects) in video seg-
ments. Given the blobs from M video segments
F = [fY, ... #M)] and the nouns from N sen-
tences £ = [eM),...,e(M)], the task is to learn
alignments between video segments and text sen-
tences. They propose a hierarchical generative
model which first uses a Hidden Markov Model

8Details in supplementary.
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Saute for about 5 minutes or until
the onion and carrots are soft. ’ o

Add onion, garlic,
peas, and carrots.

Heat the oils in the skillet over

medium heat and saute the ~

onion, celery, carrots, and bell U~ -

pepper until softened. T T T
-

°
| am adding carrots with T/ — ®
0.71
L Green Bell Pepper. o—

|
g o
“r/ugﬁ 077/./

~ You can use peas or whatever
else you want to add in there.

i
i
i
Y H
!
i
|

2 Add 4 chopped green onions and

2 minced garlic cloves & continue
to stir-fry for another minute.

ol

Figure 4: A maximum span tree for fried rice dish with text instructions and transcript segments as nodes, align-
ments as edges, and alignment probabilities as edge weights. Nodes representing text instructions are labeled “T.
Nodes representing transcript segments are labeled “V”. Each color indicates a different recipe. The bounding box
shows a magnified section of the tree with edge weights and the instruction/transcript associated with each node.

(HMM) (Rabiner, 1989; Vogel et al., 1996) to gen-
erate each video segment f("™) from one of the
text sentences e(™). They then use IBM1 model
(Brown et al., 1993) emission probabilities to gen-

erate the blobs {fgm), . ff,m)} in f0™) from the

nouns {egn), vy egn)} in (™) as follows:

P(f(m) ,e(n)) -

J J
G |OMGRERNG
j=11i=1

The hidden state in the HMM model corresponds
to the alignment between video segment and text
sentence, and the state transition probabilities cor-
respond to the jump between adjacent alignments.
For computational tractability, a video segment can
be aligned to only one sentence (multiple sentences
can align to the same video segment)

We use this algorithm to learn pairwise align-
ments between text-text, text-video and video-
video recipes. Given two recipes (source and tar-
get) of the same dish, we define our alignment task
as mapping each text instruction (or video tran-
script sentence) in the source recipe to one or more
text instructions (or video transcript sentences) in
the target recipe.

We make two modifications to the alignment al-
gorithm described above: First, our recipe pairs,
unlike the wet lab protocol data, does not follow the

same temporal sequence. The alignment algorithm
must thus learn to jump within a longer range. We
set the window of jump probabilities at [—2, 2].°
Second, we use transcriptions to learn alignments
rather than the objects detected in videos. We hy-
pothesize that the richness of language used in in-
structional videos may facilitate better alignment
with transcripts (as others have observed (Malmaud
et al., 2015; Sener et al., 2015)). We use all words
(except stop words) in video transcript sentences
and all words in text instructions while learning the
IBM1 word level probabilities. An instruction in
one recipe can be aligned to multiple instructions
in the other recipe.

3.2 Joint Alignment among Multiple Recipes

We use the pairwise alignments to derive a joint
alignment at the dish level between multiple text
and video recipes. For each dish, we construct a
graph where each node represents an instruction
from a text recipe or a transcript sentence from a
video recipe. We use the pairwise alignments to
draw edges between nodes, with alignment proba-
bilities as the edge weights. We include only those
edges that have alignment probability greater than
0.5. The pairwise alignments are directed since
they go from the source recipe to the target recipe.

"We find that increasing the window beyond 5 decreases
performance.
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We first convert the directed graph into an undi-
rected graph by averaging the edge weights be-
tween two nodes and converting directed edges
into undirected edges. Note that the resultant graph
can have multiple connected components as some
recipe pairs may not have any instructions aligned
with probability greater than the threshold of 0.5

Our goal is to find a set of jointly-alignable in-
structions across different recipes. We therefore
convert the graph (with cycles) into a forest by run-
ning the maximum spanning tree algorithm on the
graph. Figure 4 shows an example tree derived for
one of the dishes. A path in this tree, that has at
most one node from each recipe, constitutes a set of
jointly-alignable instructions. For example, in the
magnified section of the tree in Figure 4, all unique
colored nodes in the path from the yellow node to
the green node constitute a set of jointly-alignable
instructions.

4 Experimental Results

We describe how we evaluate our pairwise align-
ment algorithm (from §3.1). We answer the follow-
ing research questions using our experimentation:
1. How does our alignment model perform when
evaluated on human-aligned recipe pairs?
2. Does our unsupervised alignment model out-
perform simpler non-learning baselines?
3. How does performance differ when we use
only nouns or nouns and verbs instead of all
words to learn alignments?

4.1 Human Aligned Evaluation Set

We evaluate our pairwise alignment algorithm on
the following two human annotated datasets:

YouCook2 text-video recipe pairs The
YouCook?2 dataset (Zhou et al., 2018a) consists of
1,625 cooking videos paired with human-written
descriptions for each video segment. These span
90 different dishes. We transcribe all videos using
the Microsoft Speech-to-Text Cognitive service'’
and separate it into sentences using a sentence
tokenizer. Given a sequence of human-written
descriptions and a sequence of transcript sentences,
the alignment task is to align each transcript
sentence to one of the human-written descriptions.
We train our pairwise alignment model on the
train split of our text-video recipe pairs (from

"https://azure.microsoft.com/
en-us/services/cognitive-services/
speech—-to-text/

§2.3) and evaluate on the YouCook?2 dataset. An
important difference between the text-video pairs
in YouCook?2 and in our data is that in YouCook2,
the text instructions and the video segments are
temporally aligned since the text instructions were
specifically written for the videos. In our data,
however, the text and the video recipes can differ
in order.

CommonCrawl text-text recipe pairs We ran-
domly choose 200 text-text recipes pairs (spanning
5 dishes) from the test split of our data (§2.3) and
collect alignment annotations for them using six
human experts. We show annotators a numbered
list of the instructions for the target recipe (along
with its title and ingredients). We display instruc-
tions for the source recipe with input boxes besides
them and ask annotators to write in the number(s)
(i.e labels) of one or more target instruction(s) with
which it most closely aligns. Each recipe pair is
annotated by three annotators. For 65% of the in-
structions, two or more annotators agree on a label.
For only 42% of the instructions do all three anno-
tators agree, suggesting that the difficulty level of
this annotation task is high. We train our pairwise
alignment model on the train split of our text-text
recipe pairs ( §2.3) and evaluate on the 200 human-
aligned pairs.

4.2 Baselines

Baselines described below align each instruction !!

in the source recipe to one or more instructions in
the rarget recipe.

Random We align each instruction in the source
recipe to a random instruction in the target recipe.

Uniform alignment Given N instructions in the
target recipe, we divide the instructions in the
source recipe into N equal chunks and align each
instruction in the i*” chunk of the source recipe
to the ¥ instruction in the rarget recipe. For in-
stance, given a source recipe [S1, 52,53, 54] and
a target recipe [T'1, T'2], uniform alignment would
align S1 and S2to T'1 and S3 and S4 to T'2. More
generally, we align the i*" instruction in the source
recipe to the [(££4)" — (£(i 4 1))™") instruction
in the rarget recipe.

BM25 retrieval We use BM25 (Robertson et al.,
2009) as our information retrieval baseline. Given

""We use the term “instruction” to mean both text instruc-
tion and transcript sentence.
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Methods Precision | Recall F1
Random 18.53 1447 | 14.49
Uniform alignment 63.44 50.81 | 53.10
BM25 retrieval 48.86 39.85 | 38.91
Textual Similarity
Exact word match 46.75 40.70 | 40.06
TF-IDF 46.82 39.23 | 38.55
GloVe 46.13 38.74 | 37.14
BERT 48.83 41.48 | 40.89
RoBERTa 50.21 4243 | 42.28
HMM+IBM1
Nouns 78.63 63.83 | 65.29
Nouns+Verbs 80.56 67.90 | 69.00
All words 81.39 69.27 | 70.30

Table 2: Results for text-video recipe alignments on
YouCook?2 dataset.

a source and a target recipe pair, we construct a
corpus using all instructions in the target recipe.
We then use each source instruction as a query to
retrieve the top most instruction from the target
instruction corpus and align the source instruction
to the retrieved target instruction.

Textual similarity Given a source recipe in-
struction and a target recipe instruction, we define
a measure of textual similarity between the two
instructions using the following five methods. For
each source instruction, we compute its similarity
score with every target instruction and align it to
the rarget instruction with the highest score.

a. Exact word match: Given two instructions, we
define exact word match as the ratio of the number
of common words between the two divided by
the number of words in the longer of the two.
This gives us a measure of word match that is
comparable across instructions of different lengths.

b. TF-IDF: We use all the recipes in our training
set to create a term frequency (TF)-inverse
document frequency (IDF) vectorizer. Given an
instruction from the evaluation set, we compute
the TF-IDF vector for the instruction using this
vectorizer. Given two instructions, we define their
TF-IDF similarity as the cosine similarity between
their TF-IDF vectors.

¢. GloVe: We train GloVe embeddings (Pennington
et al., 2014) on an in-domain corpus of 3 million
words put together by combining text recipes
and video transcriptions. Given an instruction,
we average the GloVe embeddings (Pennington

Methods Precision | Recall F1
Random 14.26 14.00 | 12.69
Uniform alignment 41.38 31.85 | 33.22
BM25 retrieval 50.06 55.27 | 49.30
Textual Similarity
Exact word match 53.90 48.39 | 46.98
TF-IDF 52.78 46.82 | 45.12
GloVe 56.04 51.89 | 50.30
BERT 50.72 55.07 | 49.10
RoBERTa 52.49 55.86 | 50.44
HMM+IBM1
Nouns 62.11 48.99 | 50.73
Nouns+Verbs 64.72 50.76 | 52.97
All words 66.21 52.42 | 54.55

Table 3: Results for text-text recipe alignment on Com-
mon Crawl] dataset.

et al., 2014) of nouns and verbs'? to obtain its
embedding vector. Given two instructions, we
define their embedding similarity as the cosine
similarity of their embedding vectors.

d. BERT: Given an instruction, we compute its
embedding vector using BERT-based sentence
embedding (Reimers and Gurevych, 2019). We
experiment with different variants and find that the
BERT-base model trained on AIINLI, then on STS
benchmark training set'® performed the best for
us. Given two instructions, we define their BERT
similarity as the cosine similarity between their
sentence embedding vectors.

e. RoBERTa: We also experiment with a variant
of the above baseline where we use RoOBERTa (Liu
et al., 2019) instead of BERT to compute the sen-
tence embeddings. We use RoBERTa-large trained
on AIINLI, then on STS benchmark training set.

4.3 Model Ablations

We experiment with the following ablations of our
unsupervised pairwise alignment model (§3.1):

HMM+IBM1 (nouns) We use the NLTK'* part-
of-speech tagger to identify all the nouns in an
instruction and only use those to learn the IBM1
word-level alignments. This ablation is similar to
the model proposed by Naim et al. (2014) that align
objects in videos to nouns in text.

2We find that using only nouns and verbs outperforms
using all words.

Bhttps://pypi.org/project/
sentence-transformers/

“https://www.nltk.org/
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HMM+IBMI1 (nouns and verbs) We use both
nouns and verbs to learn IBM1 word-level align-
ments. This ablation is similar to the method used
in Song et al. (2016) that align objects and actions
in videos to nouns and verbs in text.

HMM+IBM1 (all words) We use all words (ex-
cept stop words) in the source and the target recipe
instructions to learn the word-level alignments. '

4.4 Evaluation Metrics

Given M source recipe instructions and N target
recipe instructions, the alignment task is to label
each of the M source instructions with a label from
[0,...,(N — 1)]. Given a predicted sequence of
labels (from baseline or proposed model) and a
reference sequence of labels (from human annota-
tions) for a recipe pair, we calculate the weighted-
average'® precision, recall and F1 score. We av-
erage these scores across all alignment pairs to
compute aggregate scores on the test set.

4.5 Results

On text-video alignments Table 2 shows results
of our pairwise alignment algorithm compared with
baselines on 1,625 human aligned text-video recipe
pairs from YouCook2. The BM25 baseline out-
performs two of the textual similarity baselines.
Within the textual similarity baselines, ROBERTa
outperforms all others suggesting that a pretrained
sentence level embedding acts as a good textual
similarity method for this alignment task. The uni-
form alignment baseline, interestingly, outperforms
all other baselines. This is mainly because in the
YouCook?2 dataset, the text instructions and the
transcript sentences follow the same order, mak-
ing uniform alignment a strong baseline. Our un-
supervised HMM+IBM1 alignment model signifi-
cantly outperforms (with p < 0.001) all baselines.
Specifically, it gets much higher precision scores
compared to all baselines. Under ablations of the
HMM-+IBM1 model, using all words to learn align-
ments works best.

On text-text alignments Table 3 shows results
of our pairwise alignment algorithm compared with
baselines on 200 human-aligned text-text recipe
pairs from Common Crawl. Unlike text-video
alignments, we find that the uniform alignment

SExperimental details of HMM+IBM1 model is in supple-
mentary.

16Calculate metrics for each label, and find their average
weighted by the number of true instances for each label.

baseline does not outperform textual similarity
baselines, suggesting that the different re-orderings
between text-text recipe pairs makes alignment
more challenging. Within textual similarity base-
lines, similar to text-video alignment, ROBERTa
outperforms all others. We believe this is because
text recipes tend to share similar vocabulary, mak-
ing it easier to find similar words between two
textual instructions. Video narrators tend to use
more colloquial language than the authors of text
recipes, making it more difficult to learn align-
ments using word similarities. Interestingly, both
BM25 and RoBERTa get higher recall than our
best HMM+IBM1 model but they lose out on pre-
cision. This suggests that retrieval models are good
for identifying more alignments, albeit with lower
precision. Our unsupervised HMM+IBM1 model
again significantly outperforms (p < 0.001) all
baselines on F1 score. Under ablations of the
HMM-+IBM1 model, we again find that using all
words to learn alignments performs best.

Comparing text-video and text-text alignment
results On comparing Table 2 and Table 3, we
find that textual similarity baselines have overall
higher scores on the text-text alignments than the
text-video alignments. Our HMM+IBM1 model,
on the other hand, has overall higher scores on
text-video alignments than on text-text alignments.
We attribute this contrast to the fact that two text
recipes have higher vocabulary similarities than a
text and a video recipe, resulting in textual simi-
larity baselines to perform well on text-text align-
ments. Our HMM+IBM1 unsupervised learning
model is able to do better on text-video pairs where
the word usage differences are higher. Further-
more, the text-video pairs from YouCook?2 are tem-
porally aligned whereas the text-text pairs from
Common Crawl have several re-orderings making
the text-text evaluation set comparatively harder.
The supplementary material includes an analysis
of alignment outputs.

5 Data Release

We describe the data released in our MICROSOFT
RESEARCH MULTIMODAL ALIGNED RECIPE
CoORPUS. In all our released data, for text recipes,
we include the actual text of the instructions.
Whereas, for video recipes, we release the URL
to the YouTube video with timestamps correspond-
ing to the aligned video segments.
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Single Step

Multiple Steps

Beat eggs, oil vanilla and sugar together in a large bowl.

1.Beat eggs in large bowl until foamy.

2. Add sugar, oil and vanilla mix well.

Butter 2 loaf pans and bake 1 hour at 325 degrees.

. Pour into greased muffin tins or loaf pans
. Yields about 4 small loaves or 2 large.

Mix the zucchini, sugar, oil, yogurt and egg in a bowl.

. Beat eggs, sugar, oil and vanilla.
. Add zucchini.

1
2
3. Bake for 25 minutes.
1
2

Table 4: Three examples of single-step to multi-step breakdown from the pairwise alignments.
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Figure 5: We plot the trade-off between the percent-
age of paraphrases extracted and the precision, re-
call and F1 score (as measured by human annotators)
with increasing alignment probability threshold on 200
human-aligned text-text recipes pairs.

5.1 Pairwise and Joint Alignments

We release the pairwise alignments between recipes
of the same dish (derived from §3.1) for 4,262
dishes. This includes 63,528 alignments between
text recipes, 65,432 alignments between text and
video recipes; and 19,988 alignments between
video recipes. We also release the joint alignments
between multiple text and multiple video recipes
within a dish (derived from §3.2) for 4,262 dishes.

5.2 Textual and Visual Paraphrases

The pairwise alignment algorithm described in §3.1
gives alignment probabilities for each pair of in-
structions it aligns. We threshold on these align-
ment probabilities to retrieve textual and visual
paraphrases. Since our goal is to extract large num-
ber of high quality paraphrases, we decide on the
threshold value by looking at the trade-off between
the percentage of paraphrases extracted and their
quality as measured by human annotators on 200
human-aligned text-text recipe pairs from our eval-
uation set (§4.1).

Figure 5 shows the trade-off between the preci-

sion, recall and F1 score and the percentage of
paraphrases extracted with increasing threshold
on instruction-level alignment probability. At 0.5
threshold, we extract 60% of the total alignments
as paraphrases from our evaluation set. We use this
threshold value of 0.5 on the pairwise alignments
in the training, validation and test sets to extract a
total of 358,516 textual paraphrases and 211,703
text-to-video paraphrases from 4,262 dishes and
include it in our corpus.

5.3 Single-step to Multi-step breakdown

The pairwise alignments between text recipes in-
clude many instances where one instruction in one
recipe is aligned to multiple instructions in another
recipe with high alignment probability (greater than
0.9). Table 4 shows three such single-step to multi-
step breakdown. We extract a total of 5,592 such
instances from 1,662 dishes across the training, val-
idation and test sets and include it in our corpus.

6 Applications of Our Corpus

We believe that our data release will help advance
research at the intersection of language, vision and
robotics. The pairwise alignment between recipes
within a dish could be useful in training models that
learn to rewrite recipes given ingredient or cooking
method based constraints. The joint alignment over
multiple text recipes within a dish should prove use-
ful for learning the types of ingredient substitutions
and instruction reordering that come naturally to ex-
pert cooks. The textual and visual paraphrases will,
we believe, have implications for tasks like textual
similarity, image and video captioning, dense video
captioning and action recognition. The single-step
to multi-step breakdown derived from our pairwise
alignments may also prove useful for understand-
ing task simplification, an important problem for
agents performing complex actions.

Such multimodal data at scale is a crucial in-
gredient for robots to learn-from-demonstrations
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of procedural tasks in a variety of environments.
Collecting such large scale data is prohibitively
expensive in robotics since it requires extensive
instrumentation of many different environments.
Other example applications are learning to ground
natural language to physical objects in the envi-
ronment, and catching when humans are about to
commit critical errors in a complicated task and
offering to help with corrective instructions.

7 Related Work

Alignment Algorithms Our unsupervised align-
ment algorithm is based on Naim et al. (2014),
who propose a hierarchical alignment model us-
ing nouns and objects to align text instructions to
videos. Song et al. (2016) further build on this work
to make use of action codewords and verbs. Bo-
janowski et al. (2015) view the alignment task as a
temporal assignment problem and solve it using an
efficient conditional gradient algorithm. Malmaud
et al. (2015) use an HMM-based method to align
recipe instructions to cooking video transcriptions
that follow the same order. Our work contrasts
with these works in two ways: we learn alignments
between instructions that do not necessarily follow
the same order; and our algorithm is trained on a
much larger scale dataset.

Multi-modal Instructional Datasets Marin
et al. (2019) introduce a corpus of 1 million
cooking recipes paired with 13 million food
images for the task of retrieving a recipe given
an image. YouCook?2 dataset (Zhou et al., 2018a)
consists of 2,000 recipe videos with human written
descriptions for each video segment. The How?2
dataset (Sanabria et al., 2018) consists of 79,114
instructional videos with English subtitles and
crowdsourced Portuguese translations. The COIN
dataset (Tang et al., 2019) consists of 11,827
videos of 180 tasks in 12 daily life domains.
YouMakeup (Wang et al., 2019) consists of 2,800
YouTube videos, annotated with natural language
descriptions for instructional steps, grounded in
temporal video range and spatial facial areas.

Leveraging Document Level Alignments Our
work relies on the assumption that text recipes
and instructional cooking videos of the same dish
are comparable. This idea has been used to ex-
tract parallel sentences from comparable corpora
to increase the number of training examples for
machine translation (Munteanu and Marcu, 2005;

Abdul-Rauf and Schwenk, 2009; Smith et al., 2010;
Grégoire and Langlais, 2018). Likewise, Talk-
Summ (Lev et al., 2019) use the transcripts of sci-
entific conference talks to automatically extract
summaries. Zhu et al. (2015) use books and movie
adaptations of the books to extract descriptive ex-
planations of movie scenes.

Related Tasks A related task is localizing and
classifying steps in instructional videos (Alayrac
et al., 2016; Zhukov et al., 2019) where they detect
when an action is performed in the video whereas
we focus on describing actions. Dense event cap-
tioning of instructional videos (Zhou et al., 2018b;
Liet al., 2018; Hessel et al., 2019) relies on human
curated, densely labeled datasets whereas we ex-
tract descriptions of videos automatically through
our alignments.

8 Conclusion

We introduce a novel two-stage unsupervised algo-
rithm for aligning multiple text and multiple video
recipes. We use an existing algorithm to first learn
pairwise alignments and then use a graph-based
algorithm to derive the joint alignments across mul-
tiple recipes describing the same dish. We release a
large-scale dataset constructed using this algorithm
consisting of joint alignments between multiple
text and video recipes along with useful common-
sense information such as textual and visual para-
phrases; and single-step to multi-step breakdown.

Although our dataset focuses on the cooking
domain, our framework should generalize to any
domain with abundant volumes of unstructured-but-
alignable multi-modal data. DIY (Do-It-Yourself)
videos and websites, for instance, are an obvious
next target. We also envision extending this work
by including audio and video features to enhance
the quality of our alignment algorithm. Ultimately,
we believe this work will further the goal of build-
ing agents that can work with human collaborators
to carry out complex tasks in the real world.
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A Supplemental Material

In this supplementary, we describe the details of
our data collection process (§A.1), experimental
details of our algorithm (§A.2) and provide analysis
of our alignment outputs (§A.3).

A.1 Details of Data Collection

A.1.1 Common Crawl Text Recipes

We use recipe data from Common Crawl !7 that has
metadata formatted according to the Schema.org
Recipe schema '® including title, ingredients, in-
structions, and a URL to the recipe source. There
were originally 3.2 million recipes extracted from
Common Crawl. We filter the data by limiting
the data to recipes with instructions written in En-
glish, removing recipes with titles that are longer
than 5 words, removing duplicate recipes, remov-
ing recipes where the recipe title contains words
that are not in the top 50% most common words

https://commoncrawl.org/
Bhttps://schema.org/Recipe
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that occur in the recipe titles, and removing recipes
with fewer than 2 steps. After filtering the data,
we clustered the recipes into dishes using exact
match on the recipe titles. We only retain recipes
from dishes that have at least three recipes. The
final dataset has a total of 4,262 dishes and 48,852
recipes with an average of 8 instructions per recipe.

A.1.2 YouTube Video Recipes

Given the dish names from the text recipes, we ex-
tract YouTube video recipes for each of the dishes.
The number of videos extracted for each dish is
proportional to the number of text recipes found
for that dish. For instance, for a more popular dish
like chocolate chip cookies, we would extract more
text and video recipes than for a less popular dish
like creme brulee. The number of videos extracted
ranges from 3 to 100.

A.1.3 Chat/Content Classifier

Instructional cooking videos can contain a lot of
non-instructional content (“chat”). For example,
the person cooking the dish often introduces them-
selves (or their video channel) at the beginning
of the video. They sometimes also introduce the
dish they are going to prepare and suggest pairings
for the dish. The non-instruction content are often
found in the beginning and towards the end of the
video but there are several instances of “chat” inter-
spersed with instructional content as well. Since we
wish to align these videos to text recipe instructions
that do not contain non-instructional information,
we need a way to remove non-instructional con-
tent. We train a supervised neural network based
classifier for this task.

We train our classifier using the YouCook2
dataset (Zhou et al., 2018a) of 1,500 videos across
90 dishes. This dataset was created by asking
humans to identify segments of a video that cor-
respond to an instruction and annotate each seg-
ment with an imperative statement describing the
action being executed in the video segment. We
make the assumption that the transcript sentences
that are included within an annotated video seg-
ment are instructional whereas those that are not in-
cluded within an annotated video segment are non-
instructional. We first transcribe all 1,500 videos in
the dataset using a commercial transcription web
service. We split the transcription into sentences
using a sentence tokenizer. We label a transcript
sentence with the label 1 if the corresponding video
segment was annotated and with the label 0 if it

was not. We get a total of 90,927 labelled transcript
sentences which we split by dishes into the train-
ing (73,728 examples), validation (7,767 examples)
and test (9,432 examples) sets.

We use an LSTM (long-short term memory)
model (Hochreiter and Schmidhuber, 1997) with
attention (Luong et al., 2015) to train a binary clas-
sifier on this data. We initialize (and freeze) our
300-dimensional word embeddings using GloVe
(Pennington et al., 2014) vectors trained on 330
million tokens that we obtain by combining all text
recipes and transcript sentences. We use the valida-
tion set to tune hyperparametrs of our LSTM classi-
fier (hidden size: 64, learning rate: 0.00001, batch
size: 64, number of layers: 1). Our chat/content
classifier achieves 86.76 precision, 84.26 recall and
85.01 F1 score on the held out test set.

A.1.4 Recipe Pair Pruning Strategy

We define the following two pruning strategies to
reduce the number of extracted recipe pairs:

Ingredient match: Each of our text recipes
from Common Crawl contains an ingredients list.
Video recipes from YouTube however do not con-
tain ingredient lists. We therefore estimate the in-
gredients for video recipes using text recipes of
the same dish. We construct a set of ingredients
at the dish level by combining all ingredients of
the text recipes within that dish. We then use this
dish-level ingredients information to identify ingre-
dient words from the words of video transcriptions.
Given a recipe pair, we compare the ingredients of
the two recipes and if the percentage of ingredients
that match is below a threshold, we remove the
pair. For text-text and text-video recipe pair, we set
this threshold to be 70%, whereas for video-video
recipe pair, we set this threshold to be 90% (since
video-video recipe pairs tend to be more noisy).

Instruction length match: For text-text recipe
pairs, if number of instructions in one recipe is
more than double the number of instructions in an-
other recipe, we remove the pair. For video recipes,
if there are more than 100 sentences in the tran-
script after removing the background sentences, we
remove that video recipe.

A.2 Details of HMM+IBM1 Model

We train the HMM+IBM1 pairwise alignment
model on three kinds of recipe pairs: text-text,
text-video and video-video. The lower level IBM1
model works on words of text instruction or tran-
script sentences. The vocabulary size of all the
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text recipes from 4,262 dishes put together totals
to 48,609 words. Since most words do not appear
very frequently across the text recipes corpus, we
reduce the vocabulary size to 13,061 by removing
words that occur fewer than 5 times in the training
set. Likewise, we reduce the vocabulary size of
video recipe transcriptions to 16,733 words (from
88,744 words) by removing words that occur fewer
than 15 times in the training set. We first train the
HMM+IBM1 model for 3 iterations with a jump
range of [—1, 0, +1] and further train it for 2 itera-
tion with a jump range of [—2, 0, +2]. We find that
warm starting the model with a shorter range helps
the model to learn better alignments.

A.3 Alignment Output Analysis

Table 5 shows the alignment between two text
recipes for chocolate chip cookies obtained by our
pairwise algorithm. The alignment task here is to
align each instruction in the source recipe to one
of the instructions in the target recipe. The table
displays all the instructions in the source recipe
in the second column. The first column of the ta-
ble displays instructions from the target recipe that
aligns to the source recipe instruction in the same
row. The sentence level probabilities are shown in
the last column.

We can see the reordering between the two
recipes by comparing the instruction indices. We
see that instructions 0 to 2 from the source are
aligned to target instructions with very high proba-
bilities suggesting they are close paraphrases. In-
struction 3 and 8 from the source, on the other hand,
are aligned with comparatively lower probabilities
to the target and we can see that in these two cases,
the two instructions do differ in meaning. Instruc-
tions 6,7 and 8 (in source) aligned to instruction 11
(in target) is an example of single step to multi-step
breakdown.
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Target recipe instruction Source recipe instruction Probability
0: Preheat your oven to 350 degrees F. 0: Preheat the oven to 350 degrees F. 0.9999
2: In the bowl of your mixer cream 1: In a large bowl or the bowl of a stand 0.9998
together your butter and sugars until mixer cream the butter sugar brown sugar
light and fluffy about 3-5 minutes. eggs & vanilla together until smooth & fluffy.

1: Sift together the flour baking soda 2: In another bowl whisk together 0.9997
baking powder and salt into a medium the flour salt baking powder and baking soda.
sized bowl and set aside.

4: Add in the vanilla and mix. 3: Add this to the butter mixture 0.6889
and mix until well combined.

6: Fold in your chocolate until evenly 4: Stir in the chocolate chips. 0.9820

added throughout the dough.

8: Scoop your dough out onto the sheets. 5: Form the dough into golf-ball sized 0.9997
balls and place them about 2 inches
apart on a baking sheet.

11: Bake 10-12 minutes for smaller cookies | 6: Bake for 9-10 minutes just until the 0.9912
or 18-20 minutes for larger cookies. edges start to brown lightly.

11: Bake 10-12 minutes for smaller cookies | 7: Do not overbake them or they will be 0.9528
or 18-20 minutes for larger cookies. crispy rather than chewy.

11: Bake 10-12 minutes for smaller cookies | 8: They still look underbaked when you 0.6465
or 18-20 minutes for larger cookies. take them out but will firm up as they cool.

12: Allow the cookies to cool slightly 9: Let them cool on the pan for about 5 0.9973
on your baking sheet then move them to minutes and them move to a wire rack
another surface to cool completely. to cool completely.

14: Store in an air-tight container at 10: Cookies will keep for 7 days in 0.8309

room temperature for up to 3 days or
freeze for up to 2 months.

a sealed container at room temperature.
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Table 5: Alignment between two text recipes of chocolate chip cookie with their sentence level probabilities.



