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Abstract

LSTM-based recurrent neural networks are the
state-of-the-art for many natural language pro-
cessing (NLP) tasks. Despite their perfor-
mance, it is unclear whether, or how, LSTMs
learn structural features of natural languages
such as subject-verb number agreement in En-
glish. Lacking this understanding, the general-
ity of LSTMs on this task and their suitabil-
ity for related tasks remains uncertain. Fur-
ther, errors cannot be properly attributed to
a lack of structural capability, training data
omissions, or other exceptional faults. We in-
troduce influence paths, a causal account of
structural properties as carried by paths across
gates and neurons of a recurrent neural net-
work. The approach refines the notion of in-
fluence (the subject’s grammatical number has
influence on the grammatical number of the
subsequent verb) into a set of gate-level or
neuron-level paths. The set localizes and seg-
ments the concept (e.g., subject-verb agree-
ment), its constituent elements (e.g., the sub-
ject), and related or interfering elements (e.g.,
attractors). We exemplify the methodology
on a widely-studied multi-layer LSTM lan-
guage model, demonstrating its accounting for
subject-verb number agreement. The results
offer both a finer and a more complete view
of an LSTM’s handling of this structural as-
pect of the English language than prior results
based on diagnostic classifiers and ablation.

1 Introduction

Traditional rule-based NLP techniques can cap-
ture syntactic structures, while statistical NLP tech-
niques, such as n-gram models, can heuristically
integrate semantics of a natural language. Mod-
ern RNN-based models such as Long Short-Term
Memory (LSTM) models are tasked with incorpo-
rating both semantic features from the statistical
associations in their training corpus, and structural
features generalized from the same.
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Figure 1: Subject-verb agreement task for a 2-layer
LSTM language model, and primary paths across var-
ious LSTM gates implementing subject-verb number
agreement. A language model assigns score s to each
word. Agreement is the score of the correctly num-
bered verb minus that of the incorrectly numbered verb.

Despite evidence that LSTMs can capture syntac-
tic rules in artificial languages (Gers and Schmid-
huber, 2001), it is unclear whether they are as ca-
pable in natural languages (Linzen et al., 2016;
Lakretz et al., 2019) in the context of rules such as
subject-verb number agreement, especially when
not supervised for the particular feature. The incon-
gruence derives from this central question: does an
LSTM language model’s apparent performance in
subject-verb number agreement derive from statis-
tical heuristics (like n-gram models) or from gener-
alized knowledge (like rule-based models)?

Recent work has begun addressing this ques-
tion (Linzen et al., 2016) in the context of lan-
guage models: models tasked with modeling the
likelihood of the next word following a sequence
of words as expected in a natural language (see Fig-
ure 1, bottom). Subject-verb number agreement dic-
tates that the verb associated with a given subject
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should match its number (e.g., in Figure 1, the verb
“run” should match with the subject “boys”). Giu-
lianelli et al. (2018) showed that the subject gram-
matical number is associated with various gates in
an LSTM, and Lakretz et al. (2019) showed that ab-
lation (disabling activation) of an LSTM model at
certain locations can reduce its accuracy at scoring
verbs of the correct grammatical number.

Influence offers an alternate means of exploring
properties like number agreement. We say an input
is influential on an outcome when changing just
the input and nothing else induces a change on the
outcome. In English grammar, the number of a sub-
ject is influential on the number of its verb, in that
changing the number of that subject while keep-
ing all other elements of a sentence fixed would
necessitate a change in the number of the verb.
Algorithmic transparency literature offers formal
definitions for empirically quantifying notions of
influence for systems in general (Datta et al., 2016)
and for deep neural networks specifically (Leino
et al., 2018; Sundararajan et al., 2017).

The mere fact that subject number is influential
on verb number as output by an LSTM model is
sufficient to conclude that it incorporates the agree-
ment concept in some way but does not indicate
whether it operates as a statistical heuristic or as
a generalized rule. We address this question with
influence paths, which decompose influence into
a set of paths across the gates and neurons of an
LSTM model. The approach has several elements:

1. Define an input parameter to vary the concept-
specific quantity under study (e.g., the gram-
matical number of a particular noun, bottom-
left node in Figure 1) and a concept-specific
output feature to measure the parameter’s ef-
fect on (e.g, number agreement with the pa-
rameterized noun, bottom-right node in Fig-
ure 1).

2. Apply a gradient-based influence method to
quantify the influence of the concept param-
eter on the concept output feature; as per
the chain rule, decompose the influence into
model-path-specific quantities.

3. Inspect and characterize the distribution of
influence across the model paths.

The paths demonstrate where relevant state infor-
mation necessitated by the concept is kept, how
it gets there, how it ends up being used to affect

the model’s output, and how and where related
concepts interfere.

Our approach is state-agnostic in that it does not
require a priori an assumption about how or if the
concept will be implemented by the LSTM. This
differs from works on diagnostic classifiers where
a representation of the concept is assumed to ex-
ist in the network’s latent space. The approach
is also time-aware in that paths travel through
cells/gates/neurons at different stages of an RNN
evaluation. This differs from previous ablation-
based techniques, which localize the number by
clearing neurons at some position in an RNN for
all time steps.

Our contributions are as follows:

• We introduce influence paths, a causal account
of the use of concepts of interest as carried by
paths across gates and neurons of an RNN.

• We demonstrate, using influence paths, that
in a multi-layer LSTM language model, the
concept of subject-verb number agreement is
concentrated primarily on a single path (the
red path in Figure 1), despite a variety of sur-
rounding and intervening contexts.

• We show that attractors (intervening nouns
of opposite number to the subject) do not di-
minish the contribution of the primary subject-
verb path, but rather contribute their own in-
fluence of the opposite direction along the
equivalent primary attractor-verb path (the
blue path in the figure). This can lead to incor-
rect number prediction if an attractor’s contri-
bution overcomes the subject’s.

• We corroborate and elaborate on existing re-
sults localizing subject number to the same
two neurons which, in our results, lie on the
primary path. We further extend and gener-
alize prior compression/ablation results with
a new path-focused compression test which
verifies our localization conclusions.

Our results point to generalized knowledge as the
answer to the central question. The number agree-
ment concept is heavily centralized to the primary
path despite the varieties of contexts. Further, the
primary path’s contribution is undiminished even
amongst interfering contexts; number errors are
not attributable to lack of the general number con-
cept but rather to sufficiently influential contexts
pushing the result in the opposite direction.
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2 Background

LSTMs Long short-term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997)
have proven to be effective for modeling sequences,
such as language models, and empirically, this ar-
chitecture has been found to be optimal compared
to other second-order RNNs (Greff et al., 2017).
LSTMs utilize several types of gates and internal
states including forget gates (f ), input gates (i),
output gates (o), cell states (c), candidate cell state
(c̃), and hidden states (h). Each gate is designed
to carry out a certain function, or to fix a certain
drawback of the vanilla RNN architecture. E.g.,
the forget gate is supposed to determine how much
information from the previous cell state to retain
or “forget”, helping to fix the vanishing gradient
problem (Hochreiter, 1998).

Number Agreement in Language Models The
number agreement (NA) task, as described by
Linzen et al. (2016), is an evaluation of a language
model’s ability to properly match the verb’s gram-
matical number with its subject. This evaluation is
performed on sentences specifically designed for
the exercise, with zero or more words between the
subject and the main verb, termed the context. The
task for sentences with non-empty contexts will be
referred to as long-term number agreement.

“Human-level” performance for this task can
be achieved with a 2-layer LSTM language
model (Gulordava et al.), indicating that the lan-
guage model incorporates grammatical number de-
spite being trained only for the more general word
prediction task. Attempts to explain or localize the
number concept within the model include (Lakretz
et al., 2019), where ablation of neurons is applied
to locate specific neurons where such information
is stored; and (Giulianelli et al., 2018; Hupkes et al.,
2018), where diagnostic classifiers are trained on
gate activations to predict the number of the subject
to see which gates or timesteps the number concept
exhibits itself. These works also look at the special
cases involving attractors—intervening nouns with
grammatical number opposite to that of the sub-
ject (deemed instead helpful nouns if their number
agrees with the subject)—such as the word “tree”
in Figure 1. Both frameworks provide explanations
as to why attractors lower the performance of NA
tasks. However, they tend to focus on the activa-
tion patterns of gates or neurons without justifying
their casual relationships with the concept of gram-

matical number, and do not explicitly identify the
exact temporal trajectory of how the number of the
subject influences the number of the verb.

Other relevant studies that look inside RNN mod-
els to locate specific linguistic concepts include
visualization techniques such as (Karpathy et al.,
2015), and explanations for supervised tasks involv-
ing LSTMs such as sentiment analysis (Murdoch
et al., 2018).

Attribution Methods Attribution methods quan-
titatively measure the contribution of each of a
function’s individual inputs to its output. Gradient-
based attribution methods compute the gradient of
a model with respect to its inputs to describe how
important each input is towards the output predic-
tions. These methods have been applied to assist in
explaining deep neural networks, predominantly in
the image domain (Leino et al., 2018; Sundarara-
jan et al., 2017; Bach et al., 2015; Simonyan et al.,
2013). Some such methods are also axiomatically
justified to provide a causal link between inputs (or
intermediate neurons) and the output.

As a starting point in this work, we consider In-
tegrated Gradients (IG) (Sundararajan et al., 2017).
Given a baseline, x0, the attribution for each in-
put at point, x, is the path integral taken from the
baseline to x of the gradients of the model’s output
with respect to its inputs. The baseline establishes
a neutral point from which to make a counterfac-
tual comparison; the attribution of a feature can be
interpreted as the share of the model’s output that
is due to that feature deviating from its baseline
value. By integrating the gradients along the linear
interpolation from the baseline to x, IG ensures
that the attribution given to each feature is sensitive
to effects exhibited by the gradient at any point
between the baseline and instance x.

Leino et al. (2018) generalize IG to better focus
attribution on concepts other than just model out-
puts, by use of a quantity of interest (QoI) and a
distribution of interest (DoI). Their measure, Dis-
tributional Influence, is given by Definition 1. The
QoI is a function of the model’s output express-
ing a particular output behavior of the model to
calculate influence for; in IG, this is fixed as the
model’s output. The DoI specifies a distribution
over which the influence should faithfully summa-
rize the model’s behavior; the influences are found
by taking an expected value over DoI.

Definition 1 (Distributional Influence). With quan-
tity of interest, q, and distribution of interest, D,
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the influence, χ, of the inputs on the quantity of
interest is:

χ(q,D) = E
~x∼D

[
∂q

∂x
(~x)

]
The directed path integral used by IG can be im-
plemented by setting the DoI to a uniform dis-
tribution over the line from the baseline to ~x:
D = Uniform

(
~x0~x

)
, for baseline, ~x0, and then

multiplying χ by ~x− ~x0. Conceptually, by mul-
tiplying by ~x − ~x0, we are measuring the attribu-
tion, i.e., the contribution to the QoI, of ~x− ~x0 by
weighting its features by their influence. We use the
framework of Leino et al. in this way to define our
measure of attribution for NA tasks in Section 3.

Distributional Influence can be approximated
by sampling according to the DoI. In particular,
when using D = Uniform

(
~x0~x

)
as noted above,

Definition 1 can be computationally approximated
with a sum of n intervals as in IG:

χ ≈
n∑
i=1

∂q

∂x

(
i

n
~x+

(
1− i

n

)
~x0

)
Other related works include Fiacco et al. (2019),
which employs the concept of neuron paths based
on cofiring of neurons instead of influence, also on
different NLP tasks from ours.

3 Methods

Our method for computing influence paths begins
with modeling a relevant concept, such as grammat-
ical number, in the influence framework of Leino
et al. (Definition 1) by defining a quantity of in-
terest that corresponds to the grammatical number
of the verb, and defining a component of the input
embedding that isolates the subject’s grammatical
number (Section 3.1). We then decompose the in-
fluence measure along the relevant structures of
LSTM (gates or neurons) as per standard calculus
identities to obtain a definition for influence paths
(Section 3.2).

3.1 Measuring Number Agreement
For the NA task, we view the initial fragment con-
taining the subject as the input, and the word distri-
bution at the position of its corresponding verb as
the output.

Formally, each instance in this task is a se-
quence of d-dimensional word embedding vectors,
w

def
= 〈~wi〉i, containing the subject and the corre-

sponding verb, potentially with intervening words

in between. We assume the subject is at position t
and the verb at position t+ n. The output score of
a word, w, at position i will be written si(w). If w
has a grammatical number, we write w+ and w− to
designate w with its original number and the equiv-
alent word with the opposite number, respectively.

Quantity of Interest We instrument the output
score with a QoI measuring the agreement of the
output’s grammatical number to that of the subject:

Definition 2 (Number Agreement Measure).
Given a sentence, w, with verb, w, whose correct
form (w.r.t. grammatical number) is w+, the quan-
tity of interest, q, measures the correctness of the
grammatical number of the verb:

q (w)
def
= st+n

(
w+
)
− st+n

(
w−
)

In plain English, q captures the weight that the
model assigns to the correct form of w as opposed
to the weight it places on the incorrect form. Note
that the number agreement concept could have rea-
sonably been measured using a different quantity
of interest. E.g., considering the scores of all vo-
cabulary words of the correct number and incorrect
number in the positive and negative terms, respec-
tively, is an another alternative. However, based on
our preliminary experiments, we found this alter-
native does not result in meaningful changes to the
reported results in the further sections.

Distribution of Interest We also define a com-
ponent of the embedding of the subject that cap-
tures its grammatical number, and a distribution
over the inputs that allows us to sensitively measure
the influence of this concept on our chosen quantity
of interest. Let ~w0 be the word embedding mid-
way between its numbered variants, i.e., ~w++~w−

2 .
Though this vector will typically not correspond
to any English word, we interpret it as a number-
neutral version of ~w. Various works show that
linear arithmetic on word embeddings of this sort
preserves meaningful word semantics as demon-
strated in analogy parallelograms (Mikolov et al.,
2013). Finally, given a sentence, w, let w0

t be
the sentence w, except with the word embedding
~wt replaced with its neutral form ~w0

t . We see that
w−w0

t captures the part of the input corresponding
to the grammatical number of the subject, ~wt.

Definition 3 (Grammatical Number Distribution).
Given a singular (or plural) noun,wt, in a sentence,
w, the distribution density of sentences, Dw, exer-
cising the noun’s singularity (or plurality) linearly
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interpolates between the neutral sentence, w0
t , and

the given sentence, w:

Dw
def
= Uniform

(
w0
tw
)

If ~wt is singular, our counterfactual sentences span
w with number-neutral ~w0

t all the way to its singu-
lar form ~wt = ~w+

t . We thus call this distribution
a singularity distribution. Were wt plural instead,
we would refer to the distribution as a plurality
distribution. Using this distribution of sentences
as our DoI thus allows us to measure the influence
of w −w0

t (the grammatical number of a noun at
position t) on our quantity of interest sensitively
(in the sense that Sundararajan et al. define their
axiom of sensitivity for IG (Sundararajan et al.,
2017)).

Subject-Verb Number Agreement Putting
things together, we define our attribution measure.

Definition 4 (Subject-Verb Number Agreement
Attribution). The measure of attribution, α, of a
noun’s grammatical number on the subject-verb
number agreement is defined in terms of the DoI,
Dw, and QoI, q, as in Definitions 3 and 2, respec-
tively.

α (w) = (w −w0
t ) χ(q,Dw)

Essentially, the attribution measure weights the
features of the subject’s grammatical number by
their Distributional Influence, χ. Because Dw

is a uniform distribution over the line segment
between w and w0

t , as with IG, the attribution
can be interpreted as each feature’s net contribu-
tion to the change in the QoI, q(w) − q(w0

t ), as∑
i χ(w)i = q(w)− q(w0

t ) (i.e., Definition 4 sat-
isfies the axiom Sundararajan et al. term complete-
ness (Sundararajan et al., 2017)).

In Figure 1, for instance, this definition mea-
sures the attribution from the plurality of the sub-
ject (“boys”), towards the model’s prediction of the
correctly numbered verb (“run”) versus the incor-
rectly numbered verb (“runs”). Later in this paper
we will also investigate the attribution of interven-
ing nouns on this same quantity. We expect the
input attribution to be positive for all subjects and
helpful nouns, and negative for attractors, which
can be verified by the P+columns of Table 1 (the
details of this experiment are introduced in Sec-
tion 4).

3.2 Influence Paths
Input attribution as defined by IG (Sundararajan
et al., 2017) provides a way of explaining a model
by highlighting the input dimensions with large
attribution towards the output. Distributional Influ-
ence (Leino et al., 2018) with a carefully chosen
QoI and DoI (Definition 4) further focuses the in-
fluence on a concept at hand, grammatical number
agreement. Neither, however, demonstrate how
these measures are conveyed by the inner workings
of a model. In this section we define a decomposi-
tion of the influence into paths of a model, thereby
assigning attribution not just to inputs, but also to
the internal structures of a given model.

We first define arbitrary deep learning models
as computational graphs, as in Definition 5. We
then use this graph abstraction to define a notion
of influence for a path through the graph. We posit
that any natural path decomposition should satisfy
the following conservation property: the sum of the
influence of each path from the input to the output
should equal the influence of the input on the QoI.
We then observe that the chain rule from calculus
offers one such natural decomposition, yielding
Definition 6.
Definition 5 (Model). A model is an acyclic graph
with a set of nodes, edges, and activation functions
associated with each node. The output of a node,
n, on input x is n(x) def

= fn (n1(x), · · · , nm(x))
where n1, · · · , nm are n’s predecessors and fn is
its activation function. If n does not have predeces-
sors (it is an input), its activation is fn(x). We as-
sume that the domains and ranges of all activation
functions are real vectors of arbitrary dimension.

We will write n1 → n2 to denote an edge (i.e.,
n1 is a direct predecessor of n2), and n1 →∗ n2 to
denote the set of all paths from n1 to n2. The par-
tial derivative of the activation of n2 with respect
to the activation of n1 will be written ∂n2

∂n1
.

This view of a computation model is an exten-
sion of network decompositions from attribution
methods using the natural concept of “layers” or
“slices” (Dhamdhere et al., 2018; Leino et al., 2018;
Bach et al., 2015). This decomposition can be tai-
lored to the level of granularity we wish to expose.
Moreover, in RNN models where no single and
consistent “natural layer” can be found due to the
variable-length inputs, a more general graph view
provides the necessary versatility.
Definition 6 (Path Influence). Expanding Defini-
tion 4 using the chain rule, the influence of input



4753

node, s, on target node, t, in a model, G, is:

χs = E
x∼D(x)

[
∂t

∂s
(x)

]

= E
x∼D(x)

 ∑
p∈(s→∗t)

∏
(n1→n2)∈p

∂n2
∂n1

(x)


=

∑
p∈(s→∗t)

E
x∼D(x)

 ∏
(n1→n2)∈p

∂n2
∂n1

(x)


︸ ︷︷ ︸

χp
s

Note that the same LSTM can be modeled with
different graphs to achieve a desired level of ab-
straction. We will use two particular levels of gran-
ularity: a coarse gate-level abstraction where nodes
are LSTM gates, and a fine neuron-level abstrac-
tion where nodes are the vector elements of those
gates. Though the choice of abstraction granularity
has no effect on the represented model semantics,
it has implications on graph paths and the scale of
their individual contributions in a model.

Gate-level and Neuron-level Paths We de-
fine the set of gate-level nodes to include:{
f lt , i

l
t, o

l
t, c

l
t, c̃

l
t, h

l
t : t < T, l < L

}
, where T

is the number of time steps (words) and L is num-
ber of LSTM layers. The node set also includes
an attribution-specific input node (w − w0

t ) and
an output node (the QoI). An example of this is
illustrated in Figure 2. We exclude intermediate
calculations (the solid nodes of Figure 2, such as
ft�ct−1) as their inclusion does not change the set
of paths in a graph. We can also break down each
vector node into scalar components and further de-
compose the gate-level model into a neuron-level
one: {f lti, ilti, olti, clti, c̃lti, hlti : t < T, i <
H, l < L}, where H is the size of each gate
vector. This decomposition results in an exponen-
tially large number of paths. However, since many
functions between gates in an LSTM are element-
wise operations, neuron-level connections between
many neighboring gates are sparse.

Path Refinement While the neuron-level path
decomposition can theoretically be performed on
the whole network, in practice we choose to spec-
ify a gate-level path first, then further decompose
that path into neuron-level paths. We also collapse
selected vector nodes, allowing us to further local-
ize a concept on a neuron level while avoiding an
explosion in the number of paths. The effect of this
pipeline will be empirically justified in Section 4.
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Figure 2: Influence path diagram in a NA task for the
2-layer LSTM model. The red path shows the path with
the greatest attribution (the primary path) from the sub-
ject; The blue path shows the primary path from the
intervening noun.

4 Evaluation

In this section we apply influence path decompo-
sition to the NA task. We investigate major gate-
level paths and their influence concentrations in
Section 4.2. We further show the relations between
these paths and the paths carrying grammatical
number from intervening nouns (i.e. attractors &
helpful nouns) in Section 4.3. In both we also in-
vestigate high-attribution neurons along primary
paths allowing us to compare our results to prior
work.

4.1 Dataset and Model

We study the exact combination of language model
and NA datasets used in the closely related prior
work of Lakretz et al. (2019). The pre-trained lan-
guage model of Gulordava et al. and Lakretz et al.
is a 2-layer LSTM trained from Wikipedia articles.
The number agreement datasets of Lakretz et al.
are several synthetically generated datasets varying
in syntactic structures and in the number of nouns
between the subject and verb.

For example, nounPP refers to sentences con-
taining a noun subject followed by a prepositional
phrase such as in Figure 1. Each NA task has
subject number (and intervening noun number if
present) realizations along singular (S) and plural
(P) forms. In listings we denote subject number (S
or P) first and additional noun (if any) number sec-
ond. Details including the accuracy of the model
on the NA tasks are summarized by Lakretz et al.
(2019). Our evaluation replicates part of Table 2 in
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said work.

4.2 Decomposing Number Agreement
We begin with the attribution of subject number on
its corresponding verb, as decomposed per Defi-
nition 6. Among all NA tasks, the gate-level path
carrying the most attribution is one following the
same pattern with differences only in the size of
contexts. With indices t and t + n referring to
the subject and verb respectively, this path, which
we term the primary path of subject-verb number
agreement, is as follows:

xt(DoI) · c̃0 · c0 · h0 · c̃1 ·
(
c1
)∗ · h1 ·QoI

The primary path is represented by the red path in
Figure 2. The influence first passes through the
temporary cell state c̃0, the only non-sigmoid cell
states capable of storing more information than sig-
moid gates, since i, f, o ∈ (0, 1) while the tanh
gate c̃ ∈ (−1, 1). Then the path passes through c0,
h0, and similarly to c1 through c̃1 , jumping from
the first to the second layer. The path then stays
at c1, through the direct connections between cell
states of neighbouring time steps, as though it is
“stored” there without any interference from subse-
quent words. As a result, this path is intuitively the
most efficient and simplistic way for the model to
encode and store a “number bit.”

The extent to which this path can be viewed as
primary is measured by two metrics. The results
across a subset of syntactic structures and number
conditions mirroring those in Lakretz et al. (2019)
are shown in Table 1. We include 3 representative
variations of the task. The metrics are:

1. t-value: probability that a given path has
greater attribution than a uniformly sampled
path on a uniformly sampled sentence.

2. Positive/Negative Share (±Share): expected
(over sentences) fraction of total positive (or
negative) attribution assigned to the given pos-
itive (or negative) path.

Per Table 1 (From Subject, Primary Path), we make
our first main observation:

Observation 1. The same one primary path con-
sistently carries the largest amount positive attri-
bution across all contexts as compared to all other
paths.

Even in the case of its smallest share (nounPPAdv),
the 3% share is large when taking into account

more than 40,000 paths in total. Sentences with sin-
gular subjects (top part of Table 1) have a slightly
stronger concentration of attribution in the pri-
mary path than plural subjects (bottom part of Ta-
ble 1), possibly due to English plural (infinitive)
verb forms occurring more frequently than singu-
lar forms, thus less concentration of attribution is
needed due to the “default signal” in place.

Primary Neurons We further decompose the pri-
mary path into influence passing through each neu-
ron. Since only connections between second layer
cell states are sparse, we only decompose the seg-
ment of the primary path from c1t to c1t+n, result-
ing in a total of 650 (the number of hidden units)
neuron-level paths. (We leave the non-sparse de-
compositions for future work). The path for neuron
i, for example, is represented as:

xt(DoI) · c̃0 · c0 · h0 · c̃1 ·
(
c1i
)∗ · h1 ·QoI

To compare the attribution of an individual neuron
with all other neurons, we employ a similar afore-
mentioned t-value, where each neuron-level path
is compared against other neuron-level paths.

The results of the neuron-level analysis are
shown in Table 1 (From Subject, Primary Neuron).
Out of the 650 neuron-level paths in the gate-level
primary path, we discover two neurons with con-
sistently the most attribution (neurons 125 and 337
of the second layer). This indicates the number
concept is concentrated in only two neurons.

Comparison with Lakretz et al. (2019) Unco-
incidentally, both neurons match the units found
through ablation by Lakretz et al., who use the
same model and dataset (neurons 988 and 776 are
neurons 125 and 337 of the second layer). This
accordance to some extent verifies that the neurons
found through influence paths are functionally im-
portant. However, the t-values shown in Table 1
show that both neuron 125 and 337 are influential
regardless of the subject number, whereas Lakretz
et al. assign a subject number for each of these two
neurons due to their disparate effect in lowering
accuracy in ablation experiments. One possible rea-
son is that the ablation mechanism used in (Lakretz
et al., 2019) assumes that a “neutral number state”
can be represented by zero-activations for all gates,
while in reality the network may encode the neutral
state differently for different gates.

Another major distinction of our analysis from
Lakretz et al. (2019) regards simple cases with no
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Task C
From Subject From Intervening Noun

P+ |P | Primary Path Primary Neuron
P+ |P | Primary Path Primary Neuron

+Share t t125 t337 ± Share t t125 t337

Simple S 1.0 16 0.47 1.0 0.99 1.0 - - - - - -
nounPP SS 1.0 6946 0.1 1.0 1.0 1.0 0.82 16 0.31(+) 0.9 0.78 0.98
nounPP SP 1.0 6946 0.1 1.0 1.0 1.0 0.23 16 0.24(-) 0.23 0.06 0.15
nounPPAdv SS 1.0 41561 0.07 1.0 1.0 1.0 0.92 152 0.09(+) 0.96 0.85 1.0
nounPPAdv SP 1.0 41561 0.07 1.0 1.0 1.0 0.32 152 0.09(-) 0.14 0.13 0.01

Simple P 1.0 16 0.33 0.93 0.97 0.99 - - - - - -
nounPP PS 1.0 6946 0.05 0.91 0.99 1.0 0.06 16 0.28(-) 0.21 0.22 0.12
nounPP PP 1.0 6946 0.05 0.92 0.99 1.0 0.95 16 0.31(+) 0.9 0.97 0.79
nounPPAdv PS 1.0 41561 0.03 0.93 0.99 1.0 0.32 152 0.04(-) 0.28 0.41 0.16
nounPPAdv PP 1.0 41561 0.03 0.92 0.99 1.0 0.83 152 0.07(+) 0.92 0.99 0.84

Table 1: Statistics for attribution of primary paths and neurons from the subject/intervening noun: P+ is the
percentage of sentences with positive input attribution. Task and C columns refer to sentence structures in Lakretz
et al. (2019). |P | is the total number of paths; t and ±Share are t-values and positive/negative share, respectively.
For calculating t125 and t337 of primary neurons (125 and 337), we exclude these two neurons to avoid comparing
them with each other.

word between subjects and verbs. Unlike Lakretz
et al., who claim that the two identified neurons
are “long-term neurons”, we discover that these
two neurons are also the only neurons important
for short-term number agreement. This localization
cannot be achieved by diagnostic classifiers used
by Lakretz et al., indicating that the signal can be
better uncovered using influence-based paths rather
than association-based methods such as ablation.

4.3 Decomposing from Intervening Nouns
Next we focus on NA tasks with intervening nouns
and make the following observation:

Observation 2. The primary subject-verb path
still accounts for the largest positive attribution
in contexts with either attractors or helpful nouns.

A slightly worse NA task performance (Lakretz
et al., 2019) in cases of attractors (SP, PS) indi-
cates that they interfere with prediction of the cor-
rect verb. In contrast, we also observe that helpful
nouns (SS, PP) contribute positively to the cor-
rect verb number (although they should not from a
grammar perspective).

Primary Path from the Intervening Noun We
adapt our number agreement concept (Definition 2)
by focusing the DoI on the intervening noun,
thereby allowing us to decompose its influence on
the verb number not grammatically associated with
it. In Table 1 (From Intervening Noun) we discover
a similar primary path from the intervening noun:

Observation 3. Attribution towards verb number
from intervening nouns follows the same primary
path as the subject but is of lower magnitude and

Task C
Compression Scheme
Csi Cs Ci Csi Cs Ci C

nounPP SS .66 .77 .95 .93 .71 .77 .95
nounPP SP .64 .36 .94 .64 .75 .40 .74
nounPP PS .34 .24 .92 .40 .69 .18 .80
nounPP PP .39 .66 .91 .76 .68 .58 .97

nounPP mean .51 .51 .93 .68 .70 .48 .87

nounPPAdv SS .70 .86 .98 .73 .56 .43 1.0
nounPPAdv SP .70 .43 .99 .50 .60 .27 .88
nounPPAdv PS .38 .22 .98 .76 .79 .56 .96
nounPPAdv PP .39 .67 .98 .84 .83 .76 1.0

nounPPAdv mean .54 .55 .99 .71 .69 .50 .96

Table 2: Model compression accuracy under various
compression schemes. C is the uncompressed model.

reflects either positive or negative attribution in
cases of helpful nouns or attractors, respectively.

This disparity in magnitude is expected since the
language model possibly identifies the subject as
the head noun through the prepositions such as
“behind” in Figure 1, while still needing to track
the number of the intervening noun in possible
clausal structures. Such need is comparably weaker
compared to tracking numbers of subjects, possibly
because in English, intervening clauses are rarer
than intervening non-clauses. Similar arguments
can be made for neuron-level paths.

4.4 Model Compression

Though the primary paths are the highest contrib-
utors to NA tasks, it is possible that collections
of associated non-primary paths account for more
of the verb number concept. We gauge the extent
to which the primary paths alone are responsible
for the concept with compression/ablation exper-
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iments. We show that the computations relevant
to a specific path alone are sufficient in maintain-
ing performance for the NA task. We compress
the model by specifying node sets to preserve, and
intervene on the activations of all other nodes by
setting their activations to constant expected values
(average over all samples). We choose the expected
values instead of full ablation (setting them to zero),
as ablation would nullify the function of Sigmoid
gates. For example, to compress the model down
to the red path in Figure 2, we only calculate the ac-
tivation for gates c̃0t and c̃1t for each sample, while
setting the activation of all other c̃, f, o, i to their
average values over all samples. In Table 2, we list
variations of the compression schemes based on
the following preserved node sets:

C
def
=
{
f lt , i

l
t, o

l
t, c̃

l
t : tsub < t < tverb, l ∈ {0, 1}

}
Cs

def
=
{
c̃0tsub

, c̃1tsub

}
Ci

def
=
{
c̃0tint

, c̃1tint

}
Csi

def
= Cs ∪ Ci

For example, column Csi in Table 2 shows the ac-
curacy when the compressed model only retains
the primary path from both the subject and the in-
tervening noun while the computations of all other
paths are set to their expected values; while in Csi,
all paths but the paths in Csi are kept.

We observe that the best compressed model is
Ci, where the primary path from the intervening
noun is left out; it performs even better than the
original model; the increase comes from the cases
with attractors (PS, SP). This indicates that elimi-
nating the primary path from the attractor improves
the model. The next best models apart from C are
Cs and Csi, where primary paths are kept. Com-
pressed models without the primary subject-verb
path (Csi, Cs, Ci) have performances close to ran-
dom guessing.

Observation 4. Accuracy under path-based model
compression tests corroborate that primary paths
account for most of the subject number agreement
concept of the LSTM.

By comparing the SP and PS rows of Csi, Cs, Cs,
and Ci, we observe the effect of attractors in mis-
guiding the model into giving wrong predictions.
Similarly, we see that helpful nouns (SS, PP) help
guide the models to make more accurate predic-
tions, though this is not grammatically justified.

5 Conclusions

The combination of finely-tuned attribution and gra-
dient decomposition lets us investigate the handling
of the grammatical number agreement concept at-
tributed to paths across LSTM components. The
concentration of attribution to a primary path and
two primary cell state neurons and its persistence in
a variety of short-term and long-term contexts, even
with confounding attractors, demonstrates that the
concept’s handling is, to a large degree, general and
localized. Though the heuristic decisioning aspect
of an LSTM is present in the large quantities of
paths with non-zero influence, their overall contri-
bution to the concept is insignificant as compared to
the primary path. Node-based compression results
further corroborate these conclusions.

We note, however, that our results are based on
datasets exercising the agreement concept in con-
texts of a limited size. We speculate that the pri-
mary path’s attribution diminishes with the length
of the context, which would suggest that at some
context size, the handling of number will devolve
to be mostly heuristic-like with no significant pri-
mary paths. Though our present datasets do not
pose computational problems, the number of paths,
at both the neuron and the gate level, is exponential
with respect to context size. Investigating longer
contexts, the diminishing dominance of the primary
path, and the requisite algorithmic scalability re-
quirements are elements of our ongoing work.

We also note that our method can be expanded
to explore number agreement in more complicated
sentences with clausal structures, or other syntac-
tic/semantic signals such as coreference or gender
agreement.
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