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Abstract

Large pretrained language models like BERT,
after fine-tuning to a downstream task, have
achieved high performance on a variety of
NLP problems. Yet explaining their decisions
is difficult despite recent work probing their
internal representations. We propose a pro-
cedure and analysis methods that take a hy-
pothesis of how a transformer-based model
might encode a linguistic phenomenon, and
test the validity of that hypothesis based on a
comparison between knowledge-related down-
stream tasks with downstream control tasks,
and measurement of cross-dataset consistency.
We apply this methodology to test BERT and
RoBERTa on a hypothesis that some attention
heads will consistently attend from a word in
negation scope to the negation cue. We find
that after fine-tuning BERT and RoBERTa on a
negation scope task, the average attention head
improves its sensitivity to negation and its at-
tention consistency across negation datasets
compared to the pre-trained models. However,
only the base models (not the large models)
improve compared to a control task, indicat-
ing there is evidence for a shallow encoding
of negation only in the base models.

1 Introduction

As large-scale pre-trained language models such as
BERT and ELMo have achieved high performance
in a variety of natural language processing tasks
(Peters et al., 2018a; Radford et al., 2018; Devlin
et al., 2019), a growing body of research is devoted
to understanding what linguistic properties these
language models have acquired. Recent work uses
probes, which are supervised models trained to
predict linguistic properties including morphology
(Belinkov et al., 2017), syntax (Hewitt and Man-
ning, 2019) and semantics (Peters et al., 2018b),
etc. (See Belinkov and Glass (2019) for a complete
survey.) A good probing performance is considered

as evidence that the language models have learned
the linguistic knowledge.

What is not yet well understood is how this en-
coded linguistic knowledge changes when a pre-
trained language model is fine-tuned for a down-
stream task. Peters et al. (2019) applies a super-
vised probe both before and after fine-tuning BERT,
and suggests that fine-tuning makes the internal
representation task-sensitive. But with supervised
probes it can be difficult to disentangle what was
learned by the probe from what was present in the
internal representation (Hewitt and Liang, 2019).

Recent studies have thus turned to unsupervised
probes that require no additional training of the
model and instead look directly at the attention
mechanism, i.e., how much to care about other
words when computing the next version of the cur-
rent word. Clark et al. (2019) inspected pretrained
transformers and found several syntactic properties
encoded in an intuitive way, where the maximum
attention from a dependent is on its syntactic head.
But only the pretrained models were considered,
not what happened to these intuitive encodings af-
ter fine-tuning to a downstream task.

We argue that if some interpretable encoding
of linguistic knowledge is a good explanation of
a model, rather than showing it in the pretrained
model, it is more important to show it will be en-
hanced by fine-tuning on a task where that linguis-
tic knowledge is necessary. If the encoding is not
enhanced by such fine-tuning, then the model must
be using some other mechanism to encode that
linguistic knowledge. We therefore propose the
following methodology for testing whether a hy-
pothesized encoding of a linguistic phenomenon is
a good explanation for a transformer’s predictions.

1. Hypothesize an attention representation of the
knowledge of interest and design an unsuper-
vised probe, such that each attention head can
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make its own prediction.
2. Identify a downstream task related to the

knowledge of interest, and design a control
task that is learnable and has a similar in-
put and output space but is not related to the
knowdge of interest.

3. Fine-tune on both the downstream and control
tasks, and measure the unsupervised probe
performance of each attention head before and
after fine-tuning.

Applying this methodology and a variety of analy-
ses that it enables, and focusing on the phenomenon
of linguistic negation scope in a intuitive encoding
(the maximal attention from a word in negation
scope will be on the negation cue), we find that:

1. Before fine-tuning, several attention heads are
sensitive to negation scope. The best heads
are better than a fixed-offset baseline, with the
best BERT-base head achieving an F1 of 53.8
in a fully unsupervised setting.

2. There is consistency in which heads are
negation-sensitive across different datasets.

3. After fine-tuning on a negation scope task,
the average sensitivity of attention heads im-
proved over the pretrained model for all four
models (BERT-base, BERT-large, RoBERTa-
base, RoBERTa-large) but only the two base
models improved more than the control task.

4. The rich do not get richer: attention heads that
had the top F1s in the pretrained model do
not have the top-ranked improvements after
fine-tuning on negation scope.

5. The behavior of individual attention heads be-
comes more consistent across datasets after
fine-tuning on the negation task, compared
to the pretrained model and the control task,
except for RoBERTa-large.

Items 1 and 2 suggest that in the pretrained models
negation scope may be encoded via attention to
negation cues. Items 3 to 5 indicate that during
fine-tuning, this encoding continues to play a role
in BERT-base and RoBERTa-base, but RoBERTa-
large and BERT-large may rely on other mech-
anisms to represent negation scope. The anal-
ysis code is available at https://github.com/

yiyunzhao/negation-scope-probing

Though our findings are specific to the linguistic
phenomenon of negation scope and the specific
attention encoding we hypothesized, our proposed
methodology and analyses are general, and can
easily be applied to other linguistic phenomena or

other encoding hypotheses to discover the role they
play in modern pre-trained neural network models.

2 Background

2.1 BERT and attention heads

We performed our analysis on the attention mech-
anism of uncased BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), large Transformer
models (Vaswani et al., 2017). In the following
text, we primarily focus on BERT-base and refer
the reader to the appendix for detailed results on
the other models. BERT-base contains 12 layers
and each layer contains 12 attention heads. Each
attention head takes a sequence of input vectors
h = [h1, .., hn] that correspond to the n tokens.
An attention head transforms each hi into query
(qi), key (ki) and value (vi) vectors and computes
an output vector (oi) via a weighted sum of value
vectors based on attention weights (ai) :

aij =
exp(qTi kj)∑n
l=1 exp(q

T
i kl)

(1)

oi =

n∑
j=1

aijvj (2)

Attention weights can be viewed as the amount of
contribution from other tokens to the new represen-
tation of the current token.

2.2 Negation scope

Negation is a grammatical structure that reverses
the truth value of a proposition. The tokens that
express the presence of negation are the negation
cue and the tokens that are affected by the negation
cue belong to the negation scope. For example, in
the following sentence, not is the negation cue and
the underlined tokens are the negation scope.

Holmes was sitting with his back to me,
and I had given him {no} sign of my oc-
cupation.

Knowledge about negation and its scope is impor-
tant for tasks such as sentiment anlaysis and logical
inference. And as a linguistic phenomenon that
bridges between syntax and semantics, it is a good
candidate for exploring BERT’s attention, as re-
lated phenomena have already been found in BERT
(Tenney et al., 2019; Clark et al., 2019).

 https://github.com/yiyunzhao/negation-scope-probing
 https://github.com/yiyunzhao/negation-scope-probing
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3 Methodology and Analyses

In this section, we explain our proposed methodol-
ogy and analyses, and illustrate their application to
the linguistic phenomenon of negation scope.

Step 1: hypothesize an interpretable represen-
tation of the phenomenon of interest. Trans-
former models could represent linguistic knowl-
edge in many ways: attention, contextualized em-
beddings, etc. To apply our methodology, one must
first hypothesize a specific encoding of the phe-
nomenon of interest. For negation scope, we hy-
pothesize that for some subset of attention heads,
words in negation scope will attend primarily to
the negation cue, while words out of negation
scope will attend primarily to other words (see
Section 4.1). Under this hypothesis, each attention
head is an unsupervised negation scope classifier.

Step 2: Identify a downstream task that re-
quires the phenomenon of interest. To infer
that a transformer model is explainable in terms of
the hypothesized encoding, we must see evidence
that the encoding is strengthened when fine-tuning
on a task that requires the phenomenon of interest.
If the encoding is visible in the pre-trained model
but disappears during fine-tuning, then the model
is handling the phenomenon through some other
mechanism. For negation scope, our downstream
tasks are supervised negation scope prediction prob-
lems (see Section 5.1).

Step 3: Design a control task where the phe-
nomenon of interest is irrelevant. The control
task should have input and output spaces that match
those of the downstream task but should be learn-
able without any knowledge of the phenomenon.
For negation scope, we arbitrarily assign word
types to binary labels (see Section 5.1).

Step 4: Analyze differences between models
fine-tuned on the downstream and control tasks.
If the hypothesized encoding explains the model
predictions, changes observed when fine-tuning on
the downstream task must be greater than changes
observed when fine-tuning on the control task. For
negation scope, we analyze changes in performance
of individual attention heads as unsupervised nega-
tion classifiers.

. . . and you know not whether for good or ill

Figure 1: Example text with true negation scope on top
and layer 8 head 4’s maximally-attended word for each
input on the bottom. Dashed lines are precision errors
and dotted lines are recall errors.

4 Does BERT pay ‘attention’ to negation
scope before fine-tuning?

We start by hypothesizing a way that negation
scope could be encoded in transformer models.
This hypothesis must not rely on any negation-
specific training data, as we want to be able to
measure evidence of the encoding equally well
both before and after fine-tuning. Our hypothe-
sized encoding treats each attention head as an
unsupervised negation scope classifier.

4.1 Attention as a negation classifier

Our goal is to see if any individual attention head
is good at detecting negation scope. Because at-
tention heads by definition compare two tokens to
each other, we formulate negation scope detection
as a pair-wise task. We treat each attention head as
an unsupervised classifier that considers each token
in the sentence, and if the maximum attention from
that token is to the negation cue, we classify the
token as within the negation scope. Formally, the
prediction of an attention head for token i is:

attendneg(i) =

1 if jneg=
n

argmax
j=1

aij

0 otherwise
(3)

where jneg is the index of the negation cue, and aij
is attention as defined in Equation (1).

The quality of each attention head as such a
negation classifier can be evaluated based on how
often it agrees with the true negation scope, as
shown in Figure 1. We use the standard measures
of precision, recall, and F1:

precision =

∑n
i=1 attendneg(i) ∧ negscope(i)∑n

i=1 attendneg(i)

recall =

∑n
i=1 attendneg(i) ∧ inscope(i)∑n

i=1 negscope(i)

F1 =
2 · precision · recall
precision+ recall
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where attendneg(i) is the unsupervised classifier
of Equation (3) and negscope(i) is 1 if i is within
the annotated negation scope and 0 otherwise.

4.2 Checking for confounds
If we find an attention head that achieves a high
F1 for negation detection, are we sure that BERT
has learned negation? Or could the head be doing
something simpler to achieve that F1? If most nega-
tion scopes were just one word after the negation
cue, simply attending to the previous word would
achieve high performance on the negation task.

To build confidence that attention heads that
achieve high F1 in negation detection aren’t some-
how cheating, we (1) look at several baselines to es-
tablish the difficulty of the task, (2) use a regression
to see which factors explain the attention, and (3)
look for consistency in attention head performance
across different datasets. We use the baselines:
all in-scope: Always attend to the negation token,

regardless of the input word. This guarantees
100% recall, but is somewhat unrealistic, since
the attention mechanism doesn’t know where
the negation word is1.

fixed offset: Always attend to a fixed position rel-
ative to the input word. For example, a fixed
offset of +1 would mean to always attend to
the next word in the sentence, and therefore,
according to Equation (3), to only predict a
token is in the negation scope if it is imme-
diately followed by the negation cue. Clark
et al. (2019) observed several of BERT’s at-
tention heads displaying such behavior. We
considered fixed offsets from -3 to +3.

Predictors of attention If an attention head has
truly learned something about negation, its atten-
tion should not be easily explainable by something
simpler like the proximity in the text. We thus
build a simple regression model using the token’s
negation scope label (in-scope or out-of-scope) and
the distance to the negation cue as predictors, and
the attention of the token to the negation cue as the
dependent variable. If an attention head is truly de-
tecting negation scope, we expect that scope label
will be a significant predictor in this model, and
token distance will be much less important.

Consistency across domains If an attention
head has truly learned something about negation,

1Note that our classifier in Equation (3) does know where
the negation word is, since it is given jneg as an input. But a
standalone transformer model is not given such information.

Models P R F1

baseline all in scope 34.0 100.0 50.7
baseline average fixed offset 66.1 8.6 15.2
baseline best fixed offset (-1) 83.5 11.6 20.4
attention average head 49.5 5.2 9.0
attention best head (8-4) 76.2 41.5 53.8

Table 1: Performance of unsupervised BERT-base
attention-based classifiers and baselines on the nega-
tion scope detection task in terms of precision (P), re-
call (R) and F1. The best fixed offset and attention head
according to their F1 score are reported.

we would expect it to perform reasonably well re-
gardless of changes in text genre or style of nega-
tion annotation. Several studies show that general-
ization ability to a different dataset is not always
guaranteed despite a good test performance on the
same dataset (Weber et al., 2018; McCoy et al.,
2019). We thus consider two different corpora an-
notated for negation: ConanDoyle-neg (Morante
and Daelemans, 2012) and SFU Review (Konstanti-
nova et al., 2012)2. These datasets differ in genre
(Sherlock Holmes stories vs. movie, book, and con-
sumer product reviews) and in annotation schema
(e.g., they have different rules for what sentences
are considered to contain negation, and how to deal
with coordination structure).

To see whether the same attention heads are per-
forming well at negation scope detection across the
two corpora, we measure kendall rank correlation:

τ =
2

n(n− 1)

∑
i<j

sgn(xi − xj)sgn(yi − yj)

where xi is the performance of attention head i on
the Conan Dolye dataset and yi is the performance
of head i on the SFU-review dataset.

4.2.1 Results
Table 1 shows the performance of BERT-base’s at-
tention heads and the baselines. Table A1 in the Ap-
pendix shows the results for other models. BERT-
base attention heads on average are not good predic-
tors of negation scope (49.5% in precision, 5.2%
in recall, 9.0% in F1) but the 4th attention head
in layer 8 stands out (76.2% in precision, 41.5%
in recall, 53.8% in F1). This performance is un-
like either the best fixed offset baseline (-1) or the

2We exclude cases in these datasets where the negation cue
is part of a word (e.g., im in impossible) because such subword
segmentation does not always align to BERT’s tokenization.
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Figure 2: The heatmap of unsupervised negation-scope classification F1 for BERT-base’s 12 layers x 12 heads
across two different datasets. The consistency (measure by kendall rank correlation) between the two datasets for
precision, recall and F1 are 0.440, 0.418 and 0.415 respectively. See fig. A1 for precision and recall.

all-in-scope baseline, exceeding both of these in
F1, and with very different precision/recall trade-
offs. When we fit a regression model to predict
layer 8 head 4’s attention based on token distance
and the true negation scope label, we found that
both distance (β = 0.043, p < 2 × 10−16) and
label (β = 0.310, p < 2× 10−16) were significant
predictors for the attention, but the true negation
scope label had a much larger coefficient. Anova
tests comparing the full model with a model leav-
ing out distance or label found that true negation
scope explains more variance (207.7) than distance
(1.5). This suggests that a large part of what the
best attention head is doing can be best explained
as detecting negation.

Figure 2 shows that there is consistency in the F1

of BERT-base’s attention heads across the two nega-
tion scope datasets, e.g., BERT-base’s layer 8 head
4 has the best F1 in both. Kendall correlation tests
confirm that the similarities across attention heads
of BERT-base are significant: 0.440 tau coefficient
(p = 5.24× 10−15) in precision, 0.418 tau coeffi-
cient (p = 1.20 × 10−13) in recall and 0.415 tau
coefficient (p = 1.56× 10−13) in F1. Figures A1
to A4 in the Appendix show plots for precision and
recall, and that similar results hold for the other
models. Seeing that attention heads that are pre-
dictive of negation in one dataset continue to be
predictive in another differently annotated dataset
from a different text genre suggests that these most
successful heads are indeed learning some form of
linguistic negation during the BERT pre-training.

5 What happens to negation-sensitive
attention heads when you fine-tune?

We have seen that without any explicit training on
a negation task, some attention heads are sensi-

BERT

. . .

. . .

and

0

you

1

know

1

{

1

not

1

}

1

whether

1

for

1

good

1

or

1

ill

1

.

0

Figure 3: Negation scope detection as a word-piece-by-
word-piece binary classification task.

tive to negation scope in an intuitive way (in-scope
words attend primarily to the negation cue). What
happens to the attention when we fine-tune (i.e.,
continue training the pre-trained model) on a down-
stream task that requires an understanding of nega-
tion scope? Will this attention-based encoding of
negation scope be strengthened? Or will the model
choose to represent negation-scope knowledge in
some other way during fine-tuning? What about
for a downstream task that is unrelated to nega-
tion? We answer these questions and others in the
following sections by fine-tuning models on down-
stream tasks, and measuring how this changes the
negation-sensitivity of different attention heads.

5.1 Downstream Tasks

Downstream negation task We construct a
downstream negation scope detection task from
the ConanDoyle-neg dataset. As shown in Fig-
ure 3, we formulate the problem as a word-piece-
by-word-piece binary classification problem, where
a word-piece should be labeled 1 if it is in a nega-
tion scope and 0 otherwise. To provide the location
of the negation cue as an input to the classifier, we
add two tokens to the input, surrounding the cue
with “{” and “}”. As is standard for BERT token
classification models, a fully-connected layer with
sigmoid activation connects BERT’s contextual em-
bedding for each token with the binary outputs that
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must be predicted. This model can then be trained
with BERT’s standard back-propagation procedure.

Downstream control task Inspired by the con-
trol tasks of Hewitt and Liang (2019), we construct
a downstream control task on the ConanDoyle-neg
dataset that has the same input space and output
space as the downstream negation task, but is con-
structed to be irrelevant to negation and most other
linguistic phenomena. We arbitrarily assign each
unique token in the training vocabulary to be al-
ways in-scope or always out-of-scope, with a dis-
tribution close to the empirical in-scope and out-of-
scope distribution. To succeed in this control task,
the model must memorize the category (in-scope
or out-of-scope) for each token type. Since the as-
signment is arbitrary, there is no way for the model
to generalize to unseen tokens, and thus when we
evaluate performance on this task, we consider per-
formance only on the tokens seen during training.

5.2 Fine-tuning classifiers

We split the data into 662 negation frames for train-
ing and 200 negation frames for testing. We use
the same data split for both the downstream nega-
tion scope task and the downstream control task.
For each task, we take pre-trained BERT base as
our starting point. We fine-tune this model for 50
epochs with a learning rate of 4× 10−5 using the
transformers libary (Wolf et al., 2019), and pick
the best epoch based upon its performance on the
testing data. For the negation scope task, perfor-
mance is measured in F1. For the control task,
performance is measured in accuracy on the test-
ing data tokens that have been seen in the training
data. We repeat this process 10 times, generating
10 different fine-tuned BERT models for each task,
to allow us to quantify variance due to the inherent
randomness in neural network training3.

5.3 Results

Table 2 and Table A2 in the Appendix show that
after fine-tuning all models achieve very high per-
formance in both downstream tasks. BERT-base
achieves on average 92.8% F1 for the negation
scope task and on average 95.9% accuracy for the
control task. The BERT-base model trained on the
control task has learned essentially nothing about
negation scope relationship, achieving an average

3Random restarts with the exact same hyperparameters
can induce a surprising amount of instability in performance
(Reimers and Gurevych, 2017; Devlin et al., 2019).

35.4% F1. These results show that both tasks are
learnable from their data, and that the control task
is irrelevant to negation scope.

How does fine-tuning change attention? Fine-
tuning changes many parameters to make a model
better at a downstream task. Will the change be
reflected in our hypothesized encoding, i.e., will
in-scope words increase their attention to negation
cues? And what will the patterns of such a change
be? Will sensitivity to negation be spread through-
out the attention heads of the model? Will just the
attention heads that were already sensitive to nega-
tion improve? Or maybe no individual attention
heads will get better at negation; the model will
only becomes sensitive to negation in aggregate?

We first look at overall changes. Table 3 shows
the average performance change across all 144
heads of BERT-base, and for just the best head
(layer 8, head 4). Table A3 shows average per-
formance changes for the other models. When
BERT-base is fine-tuned on the control task, the
F1 for most heads is similar to what it was before
fine-tuning. When BERT is fine-tuned on the nega-
tion task, both the average F1 and the F1 of the
best attention head increase. The Wilcoxon test
shows that both the average F1 (p = 7.578×10−5)
and the F1 of the best head (p = 0.002089) fine-
tuned on the negation task are significantly higher
than when fine-tuned on the control task. Table A3
shows that all negation-finetuned models improve
over the pretrained models, but only BERT-base
and RoBERTa-base improve over the controls.

We next look at changes at the level of individual
attention heads.

Figure 4 plots the average F1 performance gain
for each of BERT-base’s 144 attention heads after
fine-tuning on either the negation or control task.
Figure A5 in the Appendix plots the same for the
other models. These plots show that in negation-
finetuned models the mid-to-late layers of attention
heads improve their sensitivity to negation scope,
while in control-finetuned models the changes are
less positive and spread more broadly. Figure 4
shows that when BERT-base is fine-tuned on the
negation task, the biggest gains in F1 are on atten-
tion heads in layers 6 through 10, while no such
pattern is visible when BERT-base is fine-tuned on
the control task.

Do the rich heads get richer? Are attention
heads that are already good predictors of negation
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Testing Task

Negation Control

Training Task P ± sd R ± sd F1± sd A ± sd

Negation 96.1± 1.3 89.7 ± 1.3 92.8 ± 1.1 -
Control 34.8 ± 0.4 36.1 ± 2.2 35.4 ± 1.2 95.9 ± 3.0

Table 2: Performance of fine-tuned BERT-base models on the supervised negation scope detection and control
tasks in terms of precision (P), recall (R) and F1 for negation scope and accuracy (A) for the control task. We
report the average performance of 10 runs and 1 standard deviation.

Attention Head Fine-Tune P± sd R± sd F1 ± sd

Average None 49.5 5.2 9.0
Average Control 48.6± 1.7 5.3± 0.2 9.0± 0.4
Average Negation 52.2± 2.2 6.6± 0.8 11.1± 1.2
Best (8-4) None 76.2 41.5 53.8
Best (8-4) Control 65.0± 8.9 47.5± 11.7 53.1± 6.7
Best (8-4) Negation 82.3± 4.1 58.6± 10.8 67.7± 7.9

Table 3: Performance of unsupervised BERT-base attention-based classifiers on the scope detection task in terms
of precision (P), recall (R) and F1 after the BERT model has been fine-tuned on different downstream tasks.

scope improve more after fine-tuning? That is, if an
attention head has a high negation-scope prediction
performance before fine-tuning, will it increase
in performance more than other attention heads
that had lower performance before fine-tuning? To
test this, we measure the kendall rank correlation
between an attention head’s performance before
fine-tuning on the downstream negation task, and
its change in performance after fine-tuning. For
the BERT-base model, most coefficients are very
small and many of the runs show no significant
correlation: the average τ coefficient for precision
is -0.07 and only 3 out of 10 runs show a significant
correlation, the average τ coefficient for recall is
0.10 and only 5 out of 10 runs show a significant
correlation, and the τ coefficient for F1 is 0.08 and
only 5 out of 10 runs show a significant correlation.
Table A4 in the Appendix shows that in other mod-
els the rich on average get poorer: we find weak
negative correlations. This suggests fine-tuning,
even on a relevant downstream task, does not focus
on improving the attention heads that are already
good at the problem.

Which layers improve the most? Are attention
heads at certain layers more sensitive to fine-tuning
than other layers? We measure the average per-
formance gain for attention heads in each layer of
BERT-base, and plot how these vary across the 10

runs in Figure 5. Figure A6 in the Appendix plot
the same for the other models. After the model
is fine-tuned on the negation task, we see that at-
tention heads in mid-to-later layers (e.g., layers 6
through 10 in BERT-base) become more sensitive
to negation scope. The models fine-tuned on the
control task generally show smaller changes. The
exception is BERT-large, whose pattern is very dif-
ferent, perhaps because it is the only model to have
perfectly memorized the control task.

Is the change consistent across datasets? We
have seen that fine-tuning on a downstream nega-
tion task increases the negation sensitivity broadly
across the many attention heads. Do these changes
truly represent a better understanding of the linguis-
tic phenomenon of negation, or are they simply a
form of better fitting the training data? If a more
general understanding is being learned, when look-
ing across several different types of negation prob-
lems, there should be greater consistency in which
attention heads are paying attention to negation
than in the pretrained model or control task.

We thus take models after fine-tuning on the
ConanDoyle-neg downstream negation scope task,
treat each of the attention heads as unsupervised
negation-scope classifiers as in Section 4.1, and
calculate performance on both the ConanDoyle-
neg data (the same type of data as was used for
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Figure 4: Change in F1 for each attention head in BERT-base (averaged across 10 runs) before and after fine-tuning.

Figure 5: Average change in F1 for the attention heads in each layer in BERT-base, repeated for 10 runs.

fine-tuning) and the SFU-review data (a different
text genre and annotation scheme). We then run
kendall rank correlation tests between the two sets
of attention-head performances and report them in
Table 4 for BERT-base and Table A5 in the Ap-
pendix for the other models. Fine-tuning BERT-
base on the downstream negation task indeed yields
more similar performance across datasets (0.516
F1) than for the original model before fine-tuning
(0.415 F1) or the model fine-tuned on the down-
stream control task (0.409 F1). A Wilcoxon test
shows that the τ coefficients fine-tuned on the nega-
tion task are significantly higher compared to those
fine-tuned on the control task (p = 1.083× 10−5).
RoBERTa-base patterns similarly. For BERT-large
the negation-tuned models show a marginal con-
sistency improvement over the pretrain and the
attention head consistency in the negation-tuned
RoBERTa-large models does not exceed that of the
control-tuned ones.

6 Discussion

We have presented a methodology for looking for
explanations of transformer models, where a hy-
pothesized encoding of knowledge within the trans-
former is measured before and after fine-tuning and
the changes are compared to those seen when fine-
tuning on a control task. We considered a specific

linguistic phenomenon, negation scope detection,
proposed an intuitive way that attention may en-
code negation-scope (in-scope words pay attention
to the negation cue), and applied our methodol-
ogy to test whether the hypothesized encoding was
indeed an explanation of the behavior of BERT
and/or RoBERTa models. We found evidence that
BERT-base and RoBERTa-base encode some nega-
tion knowledge in the proposed way as both aver-
age negation sensitivity and cross-dataset consis-
tency improved over the pretrained model and the
control task. Evidence for the large versions of the
models was weaker, suggesting that they may be
representing negation knowledge in other ways.

Other works have explored the effects of fine-
tuning on attention without testing for specific
linguistic knowledge. Serrano and Smith (2019),
Jain and Wallace (2019) and Wiegreffe and Pinter
(2019) found many redundancies in the attention
of sequence-to-sequence models, suggesting that
attention may encode knowledge in many ways.
Kovaleva et al. (2019) found that removal of at-
tention heads in transformers does not necessarily
damage downstream performance. Our results sug-
gest an explanation for this finding: knowledge
sensitivity spreads broadly, so recovering from a
small number of missing heads should be easy.

Htut et al. (2019) investigated the role of gram-
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Fine-Tune Precision Recall F1

mean τ ± sd sig mean τ ± sd sig mean τ ± sd sig

Pretrain 0.440 0.418 0.415
Control 0.438 ± 0.020 10/10 0.406 ± 0.034 10/10 0.409 ± 0.026 10/10
Negation 0.469 ± 0.025 10/10 0.519 ± 0.020 10/10 0.516 ± 0.020 10/10

Table 4: Kendall rank correlation (τ ) between an attention head’s performance on the ConanDoyle-neg dataset and
its performance in the SFU-review dataset. For the fine-tuning settings, we report the average τ across 10 runs
with 1 standard deviation, and the number of runs where there was a significant correlation.

matical relations in BERT’s changes before and
after fine-tuning. They found that long distance
grammatical relations such as advcl and csubj im-
proved greatly after finetuning on a semantically
related task, but other relations did not. They in-
cluded no control task and did not report changes
for individual attention heads (only changes in
the maximum performance) so their work inspires
some questions: Do advcl and csubj improve more
than expected by chance? For the other relations,
does performance not improve because they are
irrelevant? Or maybe performance of one of the
non-maximal heads improved quite a bit, but not
enough to exceed the maximal head? Applying our
methodology for comparing against a control task
and examining changes in individual heads could
address these questions.

Other work has tested for specific linguistic
knowledge in pretrained models, but not explored
how the encoding of that knowledge changes dur-
ing fine-tuning. For instance, Clark et al. (2019)
identified several syntactic relationships that are
encoded in an intuitive way: the dependent’s pri-
mary attention is on its grammtical head. We argue
that testing whether this hypothesized encoding of
grammatical relations survives fine-tuning is criti-
cal if this is to be an explanation of how transformer
models make predictions.

We found no past work that considered the cross-
dataset consistency of attention. We believe mea-
suring such consistency is important for differen-
tiating between an attention head that learned to
encode a linguistic phenomenon for a single dataset
vs. an attention head that learned an encoding of the
true linguistic phenomenon. For example, it could
have been the case that fine-tuning improves sensi-
tivity to negation in both datasets, but the improve-
ments happen at different heads. We see this for
example in BERT-large on the control task, where
there is essentially zero consistency in which atten-

tion heads are active across the two datasets.
Some limitations of our current work suggest

future research directions. First, we have focused
on one interpretable way of encoding of negation
scope knowledge but one can hypothesize many
other ways. For instance, instead of assuming that
all in-scope words directly pay attention to negation
cue, it is possible that the head of in-token words
are organized in a tree of attention that leads to the
negation cue. We use a single nonlinguistic control
task, but one could imagine exploring attention
head changes in the face of a gradient of fine-tuning
tasks that are more or less relevant to the linguistic
phenomenon of interest. We also focus primarily
on the attention mechanism, but it would be useful
to explore the value vectors that transformers apply
the attention to, since these form the outputs and are
thus more directly tied to classification decisions.

7 Conclusion

In this paper, we propose a basic procedure and
analysis methods that take a hypothesis of how a
transformer-based model might encode a linguistic
phenomenon, and test the validity of that hypoth-
esis based on unsupervised probes, downstream
control tasks, and measurement of cross-dataset
consistency. We hypothesize an interpretable en-
coding of negation scope, where in-scope words at-
tend to the negation cue, and find evidence of such
an encoding in BERT-base and RoBERTa-base.
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Models P R F1

baseline all in scope 34.0 100.0 50.7
baseline average fixed offset 66.1 8.6 15.2
baseline best fixed offset (-1) 83.5 11.6 20.4
BERT-base attention average head 49.5 5.2 9.0
BERT-base attention best head (8-4) 76.2 41.5 53.8
BERT-large attention average head 45.4 3.3 5.9
BERT-large attention best head (14-4) 74.9 28.3 41.0
RoBERTa-base attention average head 56.0 6.9 12.1
RoBERTa-base attention best head (9-12) 92.9 19.1 31.1
RoBERTa-large attention average head 50.2 5.3 9.4
RoBERTa-large attention best head (15-15) 66.7 21.3 32.3

Table A1: Performance of unsupervised attention-based classifiers and baselines on the negation scope detection
task in terms of precision (P), recall (R) and F1. The best fixed offset and attention head according to their F1 score
are reported. Finding: all models have attention heads that know more about negation than the simple baselines.

Testing Task

Negation Control

Training Task P ± sd R ± sd F1± sd A ± sd

BERT-base Negation 96.1± 1.3 89.7 ± 1.3 92.8 ± 1.1 -
BERT-base Control 34.8 ± 0.4 36.1 ± 2.2 35.4 ± 1.2 95.9 ± 3.0
BERT-large Negation 97.3± 0.9 93.0 ± 1.1 95.1 ± 0.6 -
BERT-large Control 39.2 ± 0.9 33.1 ± 1.0 35.9 ± 0.6 100.0 ± 0.0
RoBERTa-base Negation 97.2± 0.9 92.9 ± 1.0 95.9 ± 0.3 -
RoBERTa-base Control 43.4 ± 0.7 45.4 ± 1.2 44.4 ± 0.7 98.3 ± 0.4
RoBERTa-large Negation 97.9± 0.9 93.5 ± 1.2 95.7 ± 0.9 -
RoBERTa-large Control 44.1 ± 0.6 45.2 ± 1.8 44.6 ± 1.0 97.9 ± 2.2

Table A2: Performance of fine-tuned models on the supervised negation scope detection and control tasks in terms
of precision (P), recall (R) and F1 for negation scope and accuracy (A) for the control task. We report the average
performance of 10 runs and 1 standard deviation. Finding: All models successfully learned both supervised tasks.

Attention Head Fine-Tune P± sd R± sd F1 ± sd

BERT-base Average None 49.5 5.2 9.0
BERT-base Average Control 48.6± 1.7 5.3± 0.2 9.0± 0.4
BERT-base Average Negation 52.2± 2.2 6.6± 0.8 11.1± 1.2
BERT-large Average None 45.4 3.3 5.9
BERT-large Average Control 44.8± 0.3 4.6± 0.1 8.3± 0.2
BERT-large Average Negation 46.0± 3.7 4.8± 1.5 8.0± 2.3
RoBERTa-base Average None 56.0 6.9 12.1
RoBERTa-base Average Control 53.7± 1.7 7.0± 0.3 12.0± 0.5
RoBERTa-base Average Negation 55.5± 1.9 7.9± 0.9 13.4± 1.4
RoBERTa-large Average None 50.2 5.3 9.4
RoBERTa-large Average Control 48.2± 2.2 7.0± 1.0 11.5± 1.3
RoBERTa-large Average Negation 54.2± 3.4 8.0± 1.8 13.2± 2.7

Table A3: Performance of unsupervised attention-based classifiers on the scope detection task in terms of precision
(P), recall (R) and F1 after models have been fine-tuned on different downstream tasks. All models fine-tuned on
negation-scope significantly outperformed their pretrained counterparts in F1, but only two (in bold) significantly
outperformed the controls. Finding: In BERT-base and RoBERTa-base, attention can be a explanation of negation.
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Negation change Precision Recall F1

τ pos/neg sig τ pos/neg sig τ pos/neg sig

BERT-base -0.065 0/3 3/10 0.096 5/0 5/10 0.085 5/0 5/10
BERT-large -0.098 2/5 7/10 -0.132 0/7 7/10 -0.132 0/8 8/10
RoBERTa-base -0.134 0/7 7/10 -0.107 0/5 5/10 -0.113 0/6 6/10
RoBERTa-large -0.155 0/8 8/10 -0.142 0/8 8/10 -0.144 0/8 8/10

Table A4: Kendall rank correlation (τ ) between the change of an attention head after fine-tuning on the negation
task and its performance in the pretrained model. We report the average τ across 10 runs, the number of runs where
there was a significant correlation, and the direction (positive or negative) of the significant correlations. Finding:
The rich do not get richer: attention heads that had the top F1s in the pretrained model do not have the top-ranked
improvements after fine-tuning on negation scope.

Consistency Precision Recall F1

mean τ ± sd sig mean τ ± sd sig mean τ ± sd sig

BERT-base Pretrain 0.440 0.418 0.415
BERT-base Control 0.438 ± 0.020 10/10 0.406 ± 0.034 10/10 0.409 ± 0.026 10/10
BERT-base Negation 0.469 ± 0.025 10/10 0.519 ± 0.020 10/10 0.516 ± 0.020 10/10
BERT-large Pretrain 0.295 0.487 0.482
BERT-large Control 0.0005 ± 0.057 3/10 0.007 ± 0.039 1/10 0.006 ± 0.039 1/10
BERT-large Negation 0.474 ± 0.038 10/10 0.523 ± 0.082 10/10 0.530 ± 0.066 10/10
RoBERTa-base Pretrain 0.438 0.472 0.471
RoBERTa-base Control 0.456 ± 0.022 10/10 0.502 ± 0.023 10/10 0.487 ± 0.021 10/10
RoBERTa-base Negation 0.521 ± 0.024 10/10 0.538 ± 0.033 10/10 0.531 ± 0.033 10/10
RoBERTa-large Pretrain 0.377 0.504 0.493
RoBERTa-large Control 0.389 ± 0.031 10/10 0.579 ± 0.029 10/10 0.561 ± 0.026 10/10
RoBERTa-large Negation 0.516 ± 0.037 10/10 0.593 ± 0.056 10/10 0.584 ± 0.054 10/10

Table A5: Kendall rank correlation (τ ) between an attention head’s performance on the ConanDoyle-neg dataset
and its performance in the SFU-review dataset. For the fine-tuning settings, we report the average τ across 10
runs with 1 standard deviation, and the number of runs where there was a significant correlation. Only in two
models (in bold) was the correlation for the negation-trained model significantly higher than the correlation for both
the pretrained model and the control model. Finding: In BERT-base and RoBERTa-base, attention performance
finetuned on a negation task is more consistent scope across different domains and annotation schemes.
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(a) Precision

(b) Recall

(c) F1

Figure A1: The heatmap of unsupervised negation-scope classification performance for BERT-base’s 12 layers x
12 heads across two different datasets. The consistency (measure by kendall rank correlation) between the two
datasets for precision, recall and F1 are 0.440, 0.418 and 0.415 respectively.
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(a) Precision

(b) Recall

(c) F1

Figure A2: The heatmap of unsupervised negation-scope classification performance for BERT-large’s 24 layers x
16 heads across two different datasets. The consistency (measure by kendall rank correlation) between the two
datasets for precision, recall and F1 are 0.295, 0.487 and 0.482 respectively.
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(a) Precision

(b) Recall

(c) F1

Figure A3: The heatmap of unsupervised negation-scope classification performance for RoBERTa-base’s 12 layers
x 12 heads across two different datasets. The consistency (measure by kendall rank correlation) between the two
datasets for precision, recall and F1 are 0.438, 0.472 and 0.471 respectively.
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(a) Precision

(b) Recall

(c) F1

Figure A4: The heatmap of unsupervised negation-scope classification performance for RoBERTa-large’s 24 layers
x 16 heads across two different datasets. The consistency (measure by kendall rank correlation) between the two
datasets for precision, recall and F1 are 0.377, 0.504 and 0.493 respectively.
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Figure A5: Change in F1 for each attention head (averaged across 10 runs) before and after fine-tuning.
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Figure A6: Change in F1 for each attention head (averaged across 10 runs) before and after fine-tuning.


