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Abstract
Predicting how events induce emotions in the
characters of a story is typically seen as a stan-
dard multi-label classification task, which usu-
ally treats labels as anonymous classes to pre-
dict. They ignore information that may be con-
veyed by the emotion labels themselves. We
propose that the semantics of emotion labels
can guide a model’s attention when represent-
ing the input story. Further, we observe that
the emotions evoked by an event are often re-
lated: an event that evokes joy is unlikely to
also evoke sadness. In this work, we explicitly
model label classes via label embeddings, and
add mechanisms that track label-label correla-
tions both during training and inference. We
also introduce a new semi-supervision strategy
that regularizes for the correlations on unla-
beled data. Our empirical evaluations show
that modeling label semantics yields consis-
tent benefits, and we advance the state-of-the-
art on an emotion inference task.

1 Introduction

Understanding how events in a story affect the char-
acters involved is an integral part of narrative un-
derstanding. Rashkin et al. (2018) introduced an
emotion inference task on a subset of the ROCSto-
ries dataset (Mostafazadeh et al., 2016), labeling
entities with the emotions they experience from the
short story contexts. Previous work on this and re-
lated tasks typically frame them as multi-label clas-
sification problems. The standard approach uses an
encoder that produces a representation of the tar-
get event along with the surrounding story events,
and then pushes it through a classification layer to
predict the possible emotion labels (Rashkin et al.,
2018; Wang et al., 2018).

This classification framework ignores the seman-
tics of the emotions themselves. Each emotion
label (e.g., joy) is just a binary prediction. How-
ever, consider the sentence, “Danielle was really

short on money”. The emotional reaction is FEAR
of being short on money. First, if a model had lexi-
cal foreknowledge of “fear”, we should expect an
improved ability to decide if a target event evokes
FEAR. Second, such a model might represent rela-
tionships between the emotions themselves. For ex-
ample, an event that evokes FEAR is likely to evoke
SADNESS and unlikely to evoke JOY. When pre-
vious models frame this as binary label prediction,
they miss out on ways to leverage label semantics.

In this work, we show that explicitly modeling
label semantics improves emotion inference. We
describe three main contributions1. First, we show
how to use embeddings as the label semantics rep-
resentation. We then propose a label attention net-
work that produces label-informed representations
of the event and the story context to improve pre-
diction accuracy. Second, we add mechanisms that
can make use of label-label correlations as part of
both training and inference. During training, the
correlations are used to add a regularization loss.
During inference, the prediction logits for each la-
bel are modified to incorporate the correlations,
thus allowing the model’s confidence on one label
to influence its prediction of other labels. Third,
we show that the label correlations can be used as
a semi-supervised signal on the unlabeled portion
of the ROCStories dataset.

Our empirical evaluations show that adding label
semantics consistently improves prediction accu-
racy, and produces labelings that are more consis-
tent than models without label semantics. Our best
model outperforms previously reported results and
achieves more than 4.9 points absolute improve-
ment over the BERT classification model yielding
a new state-of-the-art result for this task.

1https://github.com/StonyBrookNLP/emotion-label-
semantics
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2 Emotion Inference

The emotion inference task introduced by Rashkin
et al. (2018) is defined over a subset of short sto-
ries from the ROCStories dataset (Mostafazadeh
et al., 2016). It infers the reactions that each event
evokes in the characters of the story, given the story
context thus far. For each sentence (i.e. event)
in a story, the training data includes annotations
of eight emotions. Given a sentence xs denoting
a single event in a story, the task is to label the
possible emotional reactions that an event evokes
in each character in the story. Since an event can
evoke multiple reactions, the task is formulated as
a multi-label classification problem.

The standard approach to this task has been as
follows. For a given character c and the target sen-
tence xs, collect all previous sentences xc in the
story in which the character c is mentioned as the
character context. Encode the target sentence, and
the character context to obtain a single represen-
tation, and use it as input to a multi-label classifi-
cation layer for prediction. Rashkin et al. (2018)
benchmark the performance of multiple encoders
(see Section 5).

We extend this previous work to integrate label
semantics into the model by adding label embed-
dings (Section 3) and explicitly representing label-
label correlations (Section 4).

3 Label Semantics using Embeddings

A simple strategy to model label semantics is to ex-
plicitly represent each with an embedding that cap-
tures the surface semantics of its label name. Since
the emotion labels correspond to actual words (e.g.,
joy, fear, etc.), we can initialize them with their
corresponding word embeddings (learned from a
large corpus). We then use these label embeddings
in two ways as detailed below.

3.1 Label Attention Network
The label embeddings can be used to guide an
encoder network to extract emotion-related in-
formation from the sentences. We adopted the
Label-Embedding Attentive Network (LEAM) ar-
chitecture to produce label-focused representa-
tions (Wang et al., 2018). The main idea behind
the LEAM model is to compute attention scores
between the label and the representations of the to-
kens in the input that is to be classified2. This can

2The original model used LEAM directly on top of Glove
embeddings (Wang et al., 2018).

Figure 1: Label-Embedding Attentive Network using
BERT Features. y denotes the label attended story sen-
tence and context representation, where α is the atten-
tion score.

then be used to appropriately weight the contribu-
tions of each token to the final representations. In
this work, we use LEAM to compute an attention
matrix computed over the hidden states produced
by the encoder and the label embeddings. The en-
coder used is the BERT features for each token Bt

in the text and each of the label sentences J . The
attention matrix is then used to produce a weighted
combination of the contextual representations of
the input, using the compatibility matrixH , as com-
puted in (Wang et al., 2018). This gives emotion
focused representations y to use for classification:

H = (JTBt)� Ĥ (1)

Figure 1 illustrates the key steps in the model.

3.2 Labels as Additional Input

Rather than learning label embeddings from
scratch, we also explore using contextual embed-
dings from transformer-based models like BERT.
This allows us to use richer semantics derived from
pre-training and also allows us to exploit the self-
attention mechanism to introduce label semantics
as part of the input itself. In addition to the target
and context sentences, we also include emotion-
label sentences, Ls, of the form “[character]
is [emotional state]” as input to the clas-
sifier. For each instance, we add eight such sen-
tences covering all emotional labels3. In this paper,
we use the final layer of a pretrained Bert-base
model to get representations for the input sentence
and each of the emotion-label sentences. The self-
attention mechanism will automatically learn to
attend to these label sentences when constructing
the representations for the input text.

3This is similar to how answer options are encoded in mul-
tiple choice question answering in transformer-based models.
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Figure 2: Emotion correlations as seen in the ground
truth labels in the test set

4 Label Semantics using Correlations

When more than one emotion is evoked by an event,
they aren’t independent. Indeed, as shown in Fig-
ure 2, there are strong (positive and negative) cor-
relations between the emotion labels in the ground
truth. For instance, there is a high negative corre-
lation (ρ = −0.9) between JOY and SAD labels
and a high positive correlation between JOY and
TRUST (ρ = 0.9). We propose two ways to incor-
porate these label correlations to improve predic-
tion.

4.1 Correlations on Labeled Data

In a multi-label setting, a good model should re-
spect the label correlations. If it is confident about
a particular label, then it should also be confident
about other positively correlated labels, and con-
versely less confident about labels that are nega-
tively correlated.

Following Zhao et al. (2019), we add (i) a loss
function that penalizes the model for making incon-
gruous predictions, i.e. those that are not compati-
ble with the label correlations, and (ii) a component
that multiplies the classification logit vector z with
the learned label relations encoded as a learned cor-
relation matrix G. This component transforms the
raw prediction score of each label to a weighted
sum of the prediction scores of the other labels. For
each label, these weights are given by its learned
correlation with all the other labels. Therefore,
the prediction score of each label is affected by
the prediction score of the other labels, based on
the correlation between label pairs. The final pre-

diction scores are then calculated as shown in the
equation:

e = σ(z ·G) (2)

The overall loss then comprises of two loss
functions - the prediction loss (LBCE), and the
correlation-loss (Lcorr):

L(θ) = LBCE(e, y) + Lcorr(e, y′) (3)

Where Lcorr computes BCE Loss with contin-
uous representation of the true labels y, using the
learned label correlation G:

y′ = y ·G (4)

4.2 Semi-supervision on Unlabeled Data

We also introduce a new semi-supervision idea to
exploit label correlations as a regularization sig-
nal on unlabeled data. The multi-label annotations
used in this work (Rashkin et al., 2018) only com-
prises a small fraction of the original ROCStories
data. There are ∼40k character-line pairs that have
open text descriptions of emotional reactions, but
these aren’t annotated with multi-label emotions,
and therefore were not used in the above supervised
emotion prediction tasks. We propose a new semi-
supervised method over BERT representations that
augments the soft-training objective used in Section
4.1 with a label correlation incompatibility loss de-
fined over the unlabeled portion of the ROCStories
dataset.

We use two loss functions: the loss computed
in Equation 3, and the regularization loss on the
unlabeled training data (Equation 5).

For the semi-supervised training, we use an it-
erative batch-wise training. In the first step, all
weights of the model are minimized by minimizing
the loss in Equation 3. In the next step, the learned
label correlations are updated using:

Lreg =
∑
i,j

Gij · d(ei, ej) (5)

d(ei, ej) =

{
‖ei − ej‖ for Gij ≥ 0,

‖ei − ej‖−1 otherwise.

This loss helps the model to produce consistent
predictions based on the correlations by forcing
positively correlated labels to have similar scores
and negatively correlated ones to have dissimilar
scores.
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Model Precision Recall F1
Rashkin et al. (2018)
BiLSTM 25.31 33.44 28.81
CNN 24.47 38.87 30.04

Baselines REN 25.30 37.30 30.15
NPN 24.33 40.10 30.29
Paul and Frank (2019)∗ 59.66 51.33 55.18
BERT 65.63 56.91 60.96
Label Embeddings
LEAM w/ GloVe 59.81 54.46 57.03
LEAM w/ BERT Features 67.29 54.48 60.22

Adding BERT + Labels as Input 63.05 61.70 62.36
Label Semantics Label Correlation

Learned Correlations 56.50 71.47 63.11
Semi-supervision 57.94 76.35 65.88

Table 1: Comparison Results on ROCStories with Plutchik emotion labels

5 Experimental Setup

We compare our proposed models with the models
presented in Rashkin et al. (2018), the LEAM archi-
tecture of Wang et al. (2018), and fine-tuned BERT
models (Devlin et al., 2019) for multi-label classifi-
cation without label semantics. For all the models
we report the micro-averaged Precision, Recall and
F1 score of the emotion prediction task.

Rashkin et al. (2018) modeled character context
and pre-trained on free response data to predict the
mental states of characters using different encoder-
decoder setups, including BiLSTMs, CNNs, the re-
current entity network (REN) (Henaff et al., 2016),
and neural process networks (NPN) (Bosselut et al.,
2017). Additionally, we compare with the self-
attention architecture proposed in (Paul and Frank,
2019), without the knowledge from ConceptNet
(Speer and Havasi, 2012) and ELMo embeddings
(Peters et al., 2018).

To compare against LEAM, we compare it
against our proposal of the LEAM+BERT model,
where our label attention is computed from BERT
representations of each of the label sentences, and
words in the input sentence. We also encode the
sentence and context separately in a BiLSTM layer
as done in Rashkin et al. (2018).

We also fine-tuned a BERT-base-uncased model
for emotion classification, using xs, xc andLs as in-
puts. This beats the other baselines by a significant
margin, and is thus a strong new baseline. All our
models are evaluated on the emotion reaction pre-
diction task over the eight emotion labels (Plutchik
categories) annotated in the Rashkin et al. (2018)

dataset. We follow their evaluation setup, and re-
port the final results on the test set. We use pre-
trained GloVe embeddings (100d) and BERT-base-
uncased representations with the LEAM model.
The final classifier used in all models is a feed-
forward layer, followed by a sigmoid.

6 Results

Table 1 compares the performance of the base-
lines with our models that use label semantics.
Among the baselines, the fine-tuned BERT base
model obtains the best results. Adding label em-
beddings (section 3.1) to the basic BiLSTM via
LEAM model provides substantial increase, more
than 27 absolute points in F1. We swapped in
BERT features instead of GloVe and found a fur-
ther 3 point improvement. The BERT baseline beat
both of these, but appending label sentences as
additional input to fine-tuned BERT increased its
performance by 1.4 F1 points.

A further increase of 2 points in F1 is achieved
by tracking label-label correlations through train-
ing loss and inference logits. In addition, adding
semi-supervision yields the best gain of more than
4.9 points in F1 over basic BERT, providing a sig-
nificant advance in state-of-the-art results for emo-
tion inference in this dataset. We also checked
the statistical significance of the Semi-supervision
model (Table 1) against the Learned Correlations,
BERT+Labels as Input, LEAM w/ BERT Features
and the BERT model using the Randomization Test
(Smucker et al., 2007). This involved comparing
the outputs of the Semi-supervision model with the
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Sentence Ground Truth LS NoLS

And nobody could give him any direction
Sad, Disgust Sad, Disgust

Sad
Surprise Anger

She said Mark can come for free
Joy, Trust Joy ,Trust Joy, Anticipation

Anticipation Anticipation

He is relieved that it was not harmed
Joy, Surprise Joy, Surprise Fear, Surprise
Anticipation Anticipation

The marshmallows were totally smooshed Anger, Sad Anger, Sad Joy, Anticipation

Table 2: Prediction of labels with label semantics (LS) versus without label semantics (NoLS). Including label
semantics helps the model predict semantically labels (high correlations), with high probability.

above mentioned models after creating 100,000 ran-
dom permutations. The Semi-supervision model
achieved statistically significant improvement over
all the baselines. We did further qualitative analysis
of the results on the dev set to better understand the
performance of the Semi-supervised Label Seman-
tics model. Compared to base BERT, this model
predicts more emotion classes per instance (8839 vs
5024). The wrong predictions of this model have
lower probabilities than the correct labels suggest-
ing that classification could be further improved
with proper threshold identification. This model is
also better at capturing the semantic relations be-
tween labels during prediction. This is highlighted
through some examples in Table 2.

7 Related Work

One of the most widely-used work in narrative
understanding introduced ROCStories, a dataset
for evaluating story understanding (Mostafazadeh
et al., 2016). On a subset of these stories (Rashkin
et al., 2018) added annotations for causal links
between events in stories and mental states of char-
acters. They model entity state to predict emotional
reactions and motivations for causing events occur-
ring in ROCStories. Additionally, they also intro-
duce a new dataset annotation that tracks emotional
reactions and motivations of characters in stories.
Other work looked at encoding external knowledge
sources to augment motivation inference (Paul and
Frank, 2019) on the same dataset. Both treat labels
as anonymous classes, whereas this work explores
modeling the semantics of the emotion labels ex-
plicitly. Recent work in multi-label emotion clas-
sification has shown that using the relation infor-
mation between labels can improve performance.
(Kurata et al., 2016) use the label co-occurrence
information in the final layer of the neural network

to improve multi-label classification. Correlation-
based label representations have also been used
for music classification styles (Zhao et al., 2019).
Our work builds on these and adds a similar result
showing that label correlations can have significant
impact for emotion label inference.

8 Conclusions

We present new results for the multi-label emotion
classification task of Rashkin et al. (2018), extend-
ing previous reported results by 10.7 F1 points
(55.1 to 65.8). The multi-label nature of emotion
prediction lends itself naturally to use the correla-
tions between the labels themselves. Further, we
showed that modeling the class labels as seman-
tic embeddings helped to learn better representa-
tions with more meaningful predictions. As with
many tasks, BERT provided additional context, but
our integration of these label semantics showed
significant improvements. We believe these mod-
els can improve many other NLP tasks where the
class labels carry inherent semantic meaning in
their names.
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