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Abstract

Thanks to the wealth of high-quality annotated
images available in popular repositories such
as ImageNet, multimodal language-vision re-
search is in full bloom. However, events, feel-
ings and many other kinds of concepts which
can be visually grounded are not well repre-
sented in current datasets. Nevertheless, we
would expect a wide-coverage language un-
derstanding system to be able to classify im-
ages depicting RECESS and REMORSE, not just
CATS, DOGS and BRIDGES. We fill this gap
by presenting BabelPic, a hand-labeled dataset
built by cleaning the image-synset association
found within the BabelNet Lexical Knowledge
Base (LKB). BabelPic explicitly targets non-
concrete concepts, thus providing refreshing
new data for the community. We also show
that pre-trained language-vision systems can
be used to further expand the resource by ex-
ploiting natural language knowledge available
in the LKB. BabelPic is available for down-
load at http://babelpic.org.

1 Introduction

There is growing research interest in developing
effective systems capable of achieving some under-
standing of the content of an image. As in most
fields of applied AI, this requires annotated data
to train a supervised system on. While ImageNet1

(Deng et al., 2009), one of the most influential
projects in computer vision, was undeniably an
important milestone towards image understanding,
there is still a lot of ground to be covered. Ima-
geNet’s initial aim was to collect pictures for most
WordNet synsets (Miller, 1995). Yet, at the time
of writing, only some 21,841 nominal synsets are
covered according to ImageNet’s official website.

One issue with ImageNet and most other im-
age repositories like COCO (Lin et al., 2014) and

1http://www.image-net.org

Flickr30kEntities (Plummer et al., 2015) is their fo-
cus on concepts denoting concrete, tangible things,
such as CAT, TRAFFIC LIGHT and so on. Concepts
whose denotation is not clearly identifiable with a
set of objects having distinct boundaries, such as
events (e.g., FATALITY, COMPETITION), emotions
(e.g., SADNESS) and psychological features (e.g.,
SHARPNESS), have enjoyed less attention. For lack
of a better term, we will henceforth refer to them
as non-concrete (NC) concepts.

On one hand, the inclusion of NC concepts
would be an important step towards wide-coverage
image semantic understanding. On the other hand,
it also goes in the same direction as recent mul-
timodal language-vision approaches, e.g., mono-
and cross-lingual Visual Sense Disambiguation
(Barnard and Johnson, 2005; Loeff et al., 2006;
Saenko and Darrell, 2008; Gella et al., 2016, 2019).
Taking into account NC concepts could also be
of crucial importance for fascinating language-
focused applications, such as Multimodal Machine
Translation. Last but not least, NC concepts would
represent a significative benchmark for real-world
multimodal applications. In fact, traditional com-
puter vision approaches rely on the detection of
objects within the image, but many NC concepts
are not well described by a bag of objects. Con-
sider, for instance, Figure 1. The two images illus-
trate different NC concepts (i.e., HIGH JUMP and
POLE VAULT) which are different configurations of
the same elementary objects (i.e., PERSON, ROD,
BLEACHERS). Thus, NC concepts require complex
image understanding, integrating a fair amount of
common sense knowledge.

As a contribution towards this goal of expanding
the scope of research, we introduce BabelPic, the
first dataset for multimodal language-vision tasks
with a focus on NC concepts and that is also linked
to WordNet. BabelPic has been built by manually
validating synset-image associations available in

http://babelpic.org
http://www.image-net.org
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Figure 1: Two images described by the same bag of
visual words but illustrating different NC concepts (i.e.,
high jump and pole vault).

BabelNet (Navigli and Ponzetto, 2012), a large mul-
tilingual resource linking WordNet to Wikipedia
and other resources.

Furthermore, we provide a methodology to ex-
tend the BabelPic coverage to all the BabelNet
synsets. To this end, we adapt the recently intro-
duced Vision-Language Pre-training (VLP) model
(Zhou et al., 2020). We define the verification of
synset-image associations as a Visual Question An-
swering (VQA) task with two possible answers.
The evaluation demonstrates that our methodology
achieves high performances on zero-shot classifica-
tion as well, thus enabling verification across the
inventory. Thanks to the automatic production of
a silver dataset, BabelPic constitutes a significant
extension of ImageNet. A few examples from Ba-
belPic (both gold and silver) are shown in Figure 2.

2 Related Work

To the best of our knowledge, no dataset of anno-
tated images exists which has a focus on NC nomi-
nal and verbal concepts and is also linked to Lexical
Knowledge Bases (LKB) such as WordNet and Ba-
belNet. For example, the very popular ImageNet
dataset, which includes images belonging to around
21,800 categories organized according to the Word-
Net nominal hierarchy, offers only sparse coverage
of NC concepts. JFT (Hinton et al., 2015; Chol-
let, 2017; Sun et al., 2017) is an internal dataset at
Google containing 300M images annotated with
over 19,000 classes including objects, scenes (e.g.,
SUNSET), events (e.g., BIRTHDAY) and attributes
(e.g., RED). JFT differs from our work in not be-
ing linked to an LKB and in not being publicly
released. The Open Images dataset (Kuznetsova
et al., 2018) contains 9M images annotated with
19,794 classes taken from JFT. While Open Im-
ages does contain NC labels, the classes are not
linked to an LKB, thus limiting their usefulness.
The Tencent ML-Images dataset (Wu et al., 2019)
was created starting from a subset of ImageNet and

Open Images and includes images annotated with
11,166 categories, which are then linked to Word-
Net synsets. The dataset differs from our work
since any NC label has been explicitly discarded.
Our work is in some sense similar to MultiSense
(Gella et al., 2019) and VerSe (Gella et al., 2016),
two datasets including images annotated with ver-
bal senses. However, MultiSense is not directly
linked to an LKB and neither of these two datasets
deals with nominal synsets. Finally, we note that
datasets including images annotated with object-
level categories (Lin et al., 2014; Plummer et al.,
2015) or videos (Loui et al., 2007; Dollár et al.,
2009; Moneglia et al., 2014; Heilbron et al., 2015;
Abu-El-Haija et al., 2016) are outside the scope of
this work, since we are only interested in the main
NC concepts depicted within images.

3 Gold Dataset

BabelPic is built by exploiting the link between
WordNet (Miller, 1995) and Wikipedia within Ba-
belNet2 (Navigli and Ponzetto, 2012). Our ap-
proach is organised in a three-step process. First,
we select a set of NC synsets from WordNet, on the
basis of both their paradigmatic nature and relations
in the knowledge base. Second, we gather all the
corresponding images in BabelNet, which are them-
selves mostly taken from Wikipedia pages. Third,
we manually validate the synset-images mapping.
Note that, having defined the task as a validation of
concept-image associations, we do allow images
to be mapped to more than one concept and vice
versa. For instance, both images in Figure 1 could
be mapped to the concept COMPETITION as well.
The result is a gold dataset containing 2,733 synsets
and 14,931 images.

3.1 Synset selection

We decided to build our gold dataset starting from
concepts related to events and emotions because
these have been shown to be the most appealing
NC concepts for the multimodal and vision com-
munities (see Section 2). As a first step towards
this goal, we select the nominal synsets belonging
to the transitive closure of the hyponymy relation,
rooted in the following set of WordNet synsets:
{feeling.n.01,event.n.01}. To ensure that only NC
concepts are selected, we filter out any synset
connected by the hypernymy relation to at least
one of the following synsets: physical entity.n.01,

2https://babelnet.org

https://babelnet.org
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Figure 2: A few examples from BabelPic, both gold (G) and silver (S).

shape.n.02, color.n.01. This is done in order
to discard concepts denoting tangible things that
inherit from abstraction.n.06 in WordNet (e.g.,
THUNDERBOLT). Furthermore, we select all the
synsets belonging to the following WordNet lexi-
cographer files: verb.competition, verb.motion and
verb.social. This is done to create a dataset with an
explicit focus on events, properties and verbs.

As a second step, we discard all the concepts
belonging to either the mathematics or the physics
domains since images are often not relevant (e.g.,
ROUNDING). Finally, we associate each selected
synset with the first 15 corresponding images in
BabelNet 4.0. Note that, in order to improve the
quality of the dataset, we filter out images on the
basis of simple heuristics. For example, we filter
out all images where transparency is used and at
least half of the pixels are white-coloured, as these
are not likely be relevant. Most of the noise images
from Wikipedia are removed as a result of this step.

3.2 Manual validation

The synset-image associations found are manually
validated during phase 3. We have decided to use
the services of two expert annotators who are fa-
miliar with the BabelNet resource, and the whole
annotation process is performed through an ad hoc
graphical interface. Annotators are shown tuples in
the form 〈s, l, g, i〉, where s is the target synset, i
is a candidate image for s, and l and g are, respec-
tively, the main lemma and gloss (i.e., definition)
for s. Annotators are asked to answer the ques-
tion “is i pertinent to g?”. Possible answers are
yes (i.e., i is an illustration of g), no (i.e., i is ei-
ther not pertinent or in contradiction with g) and

discard (i.e., i is a bad image). To maximize cover-
age, each annotator is assigned roughly half of the
concept-image association candidates. However,
in order to establish and agree on possible useful
guidelines for the evaluation, annotators are asked
to collaboratively perform the validation of a first
sample of 500 instances. We also provide them
with a few extra directions. For instance, we ask
them to discard images in which the association
cannot be verified without reading text depicted
in the image. In addition to this collaboratively
annotated sample, we select an intersection of 100
annotation instances which we then use to obtain
an inter-annotator agreement figure. The level of
agreement achieved is 80.39%, with a κ value of
0.6078 (moderate agreement). As for these shared
examples, we include in our gold dataset only those
instances that have been approved by both annota-
tors. Our gold dataset is hence composed of all the
validated synset-image associations.

4 Model

Since manual validation is time consuming, we are
interested in developing a methodology for the au-
tomatic verification of synset-image associations.
In the recent past there has been a great research
effort to develop models for vision-language pre-
training. Many such models (e.g., VLP (Zhou
et al., 2020), VisualBERT (Li et al., 2019), ViL-
BERT (Lu et al., 2019), LXMERT (Tan and Bansal,
2019)) are built upon BERT (Devlin et al., 2019),
a popular system for contextualized embeddings.
BERT-based models achieve state-of-the-art scores
on many language-vision tasks, hence they repre-
sent a promising resource for our task.
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The system that we use to perform classifica-
tion is the fine-tuned VLP model. Despite the fact
that LXMERT (Tan and Bansal, 2019) achieves a
slightly higher score on yes/no questions on the
VQA 2.0 dataset (Goyal et al., 2017), our prefer-
ence goes for the VLP system since it is pre-trained
on a wider and more general dataset. More specifi-
cally, the VLP model is pre-trained on Conceptual
Captions (CC) (Sharma et al., 2018), a dataset in-
cluding more than 3M image-caption pairs, using
two unsupervised vision-language tasks: bidirec-
tional and sequence-to-sequence masked language
prediction. The input images are preprocessed us-
ing Faster R-CNN (Ren et al., 2015) pre-trained
on Visual Genome (Krishna et al., 2017; Ander-
son et al., 2018), hence obtaining 100 object re-
gions per image. The model input consists of both
class-aware region embeddings and word embed-
dings, the former obtained by combining the cor-
responding region features with the probability of
each object label and region geometric information.
Furthermore, a Multi-Layer Perceptron (MLP) is
trained during the fine-tuning phase in order to se-
lect the chosen answer starting from the hidden
state of the encoder.

In order to adapt the VLP model to extend the
BabelPic coverage to all the BabelNet synsets, we
define the verification of synset-image associations
as a VQA task with two possible answers. More
specifically, we define a question template as in the
following:

“Does the image depict l (g)?”

where l is the main lemma and g is the WordNet
gloss of the target synset. We instantiate our tem-
plate for each synset-image pair in the dataset, thus
obtaining a textual question for each instance. We
set the ground truth answers to either “yes” or “no”,
hence reducing our classification task to VQA.

5 Experiments

To test the reliability of our approach for the auto-
matic verification of concept-image associations
we experiment in a zero-shot setting (see Sec-
tion 5.3). As a first step toward this goal, we need
to augment our dataset with negative instances (see
Section 5.1) and select the most suitable VLP ver-
sion (see Section 5.2). A deeper analysis of how the
sampling of negative instances affects the perfor-
mances of the system is described in Section 5.4.

5.1 Setting
In order to evaluate our methodology for the au-
tomatic verification of synset-image associations,
we need to define a procedure for the generation of
negative instances (i.e., irrelevant 〈synset, image〉
pairs). More specifically, we define a negative in-
stance 〈s, i〉 by picking two different synsets s and
s′ and an image i associated with s′ from our gold
dataset. Negative instances can be distinguished on
the basis of the relation connecting s to s′:

Sibling: there exists a synset s′′ in BabelNet
s.t. both s and s′ are connected to s′′ by
the hypernymy relation (e.g., FUN RUN and
MARATHON).

Polysemy: both s and s′ contain the same lemma
(e.g., the synsets of swim.v.01 and swim.v.02).

Unrelated: there exists no relation connecting s
to s′ in BabelNet (e.g., RACING and GLAD-
FULNESS).

Exploiting the WordNet relations as mentioned
above is also very effective in handling any po-
tential issue due to images that are instances of
multiple concepts. For instance, the images in Fig-
ure 1 could never be used as negative examples for
COMPETITION because of the hyponymy relation
connecting this concept to HIGH JUMP and POLE

VAULT. Moreover, we manually validated a sam-
ple of the negative examples in order to ensure the
reliability of our methodology.

The result is a dataset which is perfectly bal-
anced between the two output classes. We split
the dataset into training, validation and test sets
following the 80%/10%/10% rule. Each class is
proportionally distributed between the splits, as
well as the relations used to define the negative
instances. In order to test the system’s capability to
handle previously unseen concepts, we force both
the validation and test sets to contain also instances
referring to synsets that are not present in the train-
ing set. We refer to the subset of the test set given
by these instances as the zero-shot test. Statistics
are reported in Table 1.

5.2 Pre-Trained vs. Fine-Tuned
In this work we refer to the VLP3 model (Zhou
et al., 2020) pre-trained on CC and fine-tuned for
the VQA task on the VQA 2.0 dataset as, respec-
tively, P-VLP and F-VLP. Note that both P-VLP

3https://github.com/LuoweiZhou/VLP

https://github.com/LuoweiZhou/VLP
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Split N C I S(%) P(%)

Training 23,891 2,618 13,311 10.20 1.95

Validation 2,986 1,442 2,740 10.18 1.98

Test 2,987 1,416 2,715 10.21 1.94

Zero-Shot 502 43 490 11.55 2.19

Table 1: Overview of the BabelPic’s splits: number of
instances (N), concepts (C), images (I) and distribution
of instances labelled as sibling (S) and polysemy (P).

Model Validation Test Zero-Shot

P F1 P F1 P F1

P-VLP 71.93 78.97 72.48 79.33 71.43 77.90

F-VLP 76.14 77.50 75.94 75.99 77.67 71.67

Table 2: Precision and F1 scores (as percentages) on
the verification of synset-image associations.

and F-VLP are then further fine-tuned for the verifi-
cation of concept-image associations on BabelPic’s
training split. Our experiments show that both sys-
tems are reliable on our task, achieving precision
and F1 scores that are over 70% on all the splits
(see Table 2). However, the F-VLP model proves
to be the most stable for the task. In fact, in a
common use case scenario it is more important to
accept only correct synset-image associations than
it is to detect all the correct pairs. More specifically,
we value precision over recall, and thus prefer the
fine-tuned VLP model.

5.3 Zero-Shot Classification

Our main interest is in developing a model capable
of annotating images with synsets even when the
target concept is new to the system (i.e., zero-shot).
As shown in the last column of Table 2, both the
P-VLP and F-VLP models are robust to zero-shot
classification, achieving scores that are comparable
to the performances registered on the other splits.
The F-VLP system, in particular, is able to verify
the associations between unseen synsets and im-
ages with precision 77.67%, hence enabling the au-
tomatic extension of BabelPic to any other synset.

5.4 Fine-Grained Analysis

Finally, we analyse the system performances on the
different types of negative instances. The accuracy
scores achieved by F-VLP are listed in Table 3. As
one would expect, when the input synset-image
pair is unrelated, the system is able to correctly

Relation Validation Test Zero-Shot

Unrelated 83.98 83.63 89.01

Sibling 51.64 53.11 62.07

Polysemy 30.51 44.83 45.45

Table 3: Accuracy scores (as percentages) achieved by
F-VLP on all the different types of negative instances.

classify most of the instances. When considering
the instances labelled as sibling, the difficulty level
increases and F-VLP achieves an accuracy score of
62.07%. This is not surprising when it is consid-
ered that discriminating between images represent-
ing sibling concepts (e.g., DISAPPOINTMENT and
BOREDOM) can be tricky for humans as well. Fi-
nally, the instances labelled as polysemy prove to be
the hardest ones, demonstrating that BabelPic can
be an interesting benchmark for Visual Sense Dis-
ambiguation as well. The performances achieved
by P-VLP follow the same trend.

6 Conclusions

In this work we introduced BabelPic, a new re-
source for language-vision tasks, built by validat-
ing the existing image-to-synset associations in the
BabelNet resource. BabelPic is innovative in be-
ing the first dataset with a focus on nominal and
verbal non-concrete concepts linked to the Word-
Net and BabelNet Lexical Knowledge Bases. Fur-
thermore, we presented a methodology to extend
the resource by fine-tuning VLP, a state-of-the-art
pre-trained language-vision architecture. In our ap-
proach, we automatically verify the synset-image
associations by exploiting the natural language def-
initions in WordNet, showing strong results on
zero-shot classification as well. We exploited our
method for the automatic generation of a wide-
coverage silver dataset containing around 10,013
synsets. We make BabelPic (both gold and silver
data) available to the community for download at
http://babelpic.org.
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