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Abstract

Correctly resolving textual mentions of people
fundamentally entails making inferences about
those people. Such inferences raise the risk of
systemic biases in coreference resolution sys-
tems, including biases that can harm binary
and non-binary trans and cis stakeholders. To
better understand such biases, we foreground
nuanced conceptualizations of gender from so-
ciology and sociolinguistics, and develop two
new datasets for interrogating bias in crowd
annotations and in existing coreference reso-
lution systems. Through these studies, con-
ducted on English text, we confirm that with-
out acknowledging and building systems that
recognize the complexity of gender, we build
systems that lead to many potential harms.

1 Introduction

Coreference resolution—the task of determining
which textual references resolve to the same real-
world entity—requires making inferences about
those entities. Especially when those entities are
people, coreference resolution systems run the risk
of making unlicensed inferences, possibly resulting
in harms either to individuals or groups of people.
Embedded in coreference inferences are varied as-
pects of gender, both because gender can show up
explicitly (e.g., pronouns in English, morphology
in Arabic) and because societal expectations and
stereotypes around gender roles may be explicitly
or implicitly assumed by speakers or listeners. This
can lead to significant biases in coreference resolu-
tion systems: cases where systems “systematically
and unfairly discriminate against certain individ-
uals or groups of individuals in favor of others”
(Friedman and Nissenbaum, 1996, p. 332).

Gender bias in coreference resolution can mani-
fest in many ways; work by Rudinger et al. (2018),
Zhao et al. (2018a), and Webster et al. (2018) fo-
cused largely on the case of binary gender dis-

crimination in trained coreference systems, show-
ing that current systems over-rely on social stereo-
types when resolving HE and SHE pronouns1 (see
§2). Contemporaneously, critical work in Human-
Computer Interaction has complicated discussions
around gender in other fields, such as computer
vision (Keyes, 2018; Hamidi et al., 2018).

Building on both lines of work, and inspired by
Keyes’s (2018) study of vision-based automatic
gender recognition systems, we consider gender
bias from a broader conceptual frame than the bi-
nary “folk” model. We investigate ways in which
folk notions of gender—namely that there are two
genders, assigned at birth, immutable, and in per-
fect correspondence to gendered linguistic forms—
lead to the development of technology that is exclu-
sionary and harmful of binary and non-binary trans
and cis people.2 Addressing such issues is critical
not just to improve the quality of our systems, but
more pointedly to minimize the harms caused by
our systems by reinforcing existing unjust social
hierarchies (Lambert and Packer, 2019).

There are several stakeholder groups who may
easily face harms when coreference systems is
used (Blodgett et al., 2020). Those harms includes
several possible harms, both allocational and rep-
resentation harms (Barocas et al., 2017), including
quality of service, erasure, and stereotyping harms.
Following Bender’s (2019) taxonomy of stakehold-

1Throughout, we avoid mapping pronouns to a “gender” la-
bel, preferring to use the pronoun directly, include (in English)
SHE, HE, the non-binary use of singular THEY, and neopro-
nouns (e.g., ZE/HIR, XEY/XEM), which have been in usage
since at least the 1970s (Bustillos, 2011; Merriam-Webster,
2016; Bradley et al., 2019; Hord, 2016; Spivak, 1997).

2Following GLAAD (2007), transgender individuals are
those whose gender differs from the sex they were assigned
at birth. This is in opposition to cisgender individuals, whose
assigned sex at birth happens to correspond to their gender.
Transgender individuals can either be binary (those whose
gender falls in the “male/female” dichotomy) or non-binary
(those for which the relationship is more complex).
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ers and Barocas et al.’s (2017) taxonomy of harms,
there are several ways in which trans exclusionary
coreference resolution systems can cause harm:

� Indirect: subject of query. If a person is the
subject of a web query, pages about xem may
be missed if “multiple mentions of query” is a
ranking feature, and the system cannot resolve
xyr pronouns⇒ quality of service, erasure.
� Direct: by choice. If a grammar checker uses

coreference, it may insist that an author writ-
ing hir third-person autobiography is repeatedly
making errors when referring to hirself⇒ qual-
ity of service, stereotyping, denigration.
� Direct: not by choice. If an information extrac-

tion system run on résumés relies on cisnorma-
tive assumptions, job experiences by a candidate
who has transitioned and changed his pronouns
may be missed⇒ allocative, erasure.
� Many stakeholders. If a machine translation sys-

tem uses discourse context to generate pronouns,
then errors can results in directly misgendering
subjects of the document being translated ⇒
quality of service, denigration, erasure.

To address such harms as well as understand where
and how they arise, we need to complicate (a) what
“gender” means and (b) how harms can enter into
natural language processing (NLP) systems. To-
ward (a), we begin with a unifying analysis (§3)
of how gender is socially constructed, and how so-
cial conditions in the world impose expectations
around people’s gender. Of particular interest is
how gender is reflected in language, and how that
both matches and potentially mismatches the way
people experience their gender in the world. Then,
in order to understand social biases around gen-
der, we find it necessary to consider the different
ways in which gender can be realized linguisti-
cally, breaking down what previously have been
considered “gendered words” in NLP papers into
finer-grained categories that have been identified in
the sociolinguistics literature of lexical, referential,
grammatical, and social gender.

Toward (b), we focus on how bias can enter
into two stages of machine learning systems: data
annotation (§ 4) and model definition (§ 5). We
construct two new datasets: (1) MAP (a similar
dataset to GAP (Webster et al., 2018) but without
binary gender constraints) on which we can per-
form counterfactual manipulations and (2) GICoref
(a fully annotated coreference resolution dataset

written by and about trans people).3 In all cases,
we focus largely on harms due to over- and under-
representation (Kay et al., 2015), replicating stereo-
types (Sweeney, 2013; Caliskan et al., 2017) (par-
ticular those that are cisnormative and/or heteronor-
mative), and quality of service differentials (Buo-
lamwini and Gebru, 2018).

The primary contributions of this paper are:
(1) Connecting existing work on gender bias in
NLP to sociological and sociolinguistic concep-
tions of gender to provide a scaffolding for fu-
ture work on analyzing “gender bias in NLP” (§3).
(2) Developing an ablation technique for measur-
ing gender bias in coreference resolution annota-
tions, focusing on the human bias that can enter
into annotation tasks (§4). (3) Constructing a new
dataset, the Gender Inclusive Coreference dataset
(GICOREF), for testing performance of coreference
resolution systems on texts that discuss non-binary
and binary transgender people (§5).

2 Related Work

There are four recent papers that consider gender
bias in coreference resolution systems. Rudinger
et al. (2018) evaluates coreference systems for evi-
dence of occupational stereotyping, by construct-
ing Winograd-esque (Levesque et al., 2012) test ex-
amples. They find that humans can reliably resolve
these examples, but systems largely fail at them,
typically in a gender-stereotypical way. In contem-
poraneous work, Zhao et al. (2018a) proposed a
very similar, also Winograd-esque scheme, also
for measuring gender-based occupational stereo-
types. In addition to reaching similar conclusions
to Rudinger et al. (2018), this work also used a
similar “counterfactual” data process as we use in
§4.1 in order to provide additional training data
to a coreference resolution system. Webster et al.
(2018) produced the GAP dataset for evaluating
coreference systems, by specifically seeking exam-
ples where “gender” (left underspecified) could not
be used to help coreference. They found that coref-
erence systems struggle in these cases, also point-
ing to the fact that some success of current corefer-
ence systems is due to reliance on (binary) gender
stereotypes. Finally, Ackerman (2019) presents
an alternative breakdown of gender than we use
(§ 3), and proposes matching criteria for model-

3Both datasets are released under a BSD license at
github.com/TristaCao/into inclusivecoref
with corresponding datasheets (Gebru et al., 2018).

https://github.com/TristaCao/into_inclusivecoref
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ing coreference resolution linguistically, taking a
trans-inclusive perspective on gender.

Gender bias in NLP has been considered more
broadly than just in coreference resolution, includ-
ing, natural language inference (Rudinger et al.,
2017), word embeddings (e.g., Bolukbasi et al.,
2016; Romanov et al., 2019; Gonen and Goldberg,
2019), sentiment analysis (Kiritchenko and Mo-
hammad, 2018), machine translation (Font and
Costa-jussà, 2019; Prates et al., 2019; Dryer, 2013;
Frank et al., 2004; Wandruszka, 1969; Nissen,
2002; Doleschal and Schmid, 2001), among many
others (Blodgett et al., 2020, inter alia). Gender is
also an object of study in gender recognition sys-
tems (Hamidi et al., 2018). Much of this work has
focused on gender bias with a (usually implicit)
binary lens, an issue which was also called out
recently by Larson (2017b) and May (2019).

3 Linguistic & Social Gender

The concept of gender is complex and contested,
covering (at least) aspects of a person’s internal ex-
perience, how they express this to the world, how
social conditions in the world impose expectations
on them (including expectations around their sex-
uality), and how they are perceived and accepted
(or not). When this complex concept is realized in
language, the situation becomes even more com-
plex: linguistic categories of gender do not even
remotely map one-to-one to social categories. As
observed by Bucholtz (1999):

“Attempts to read linguistic structure di-
rectly for information about social gender
are often misguided.”

For instance, when working in a language like En-
glish which formally marks gender on pronouns, it
is all too easy to equate “recognizing the pronoun
that corefers with this name” with “recognizing the
real-world gender of referent of that name.”

Furthermore, despite the impossibility of a per-
fect alignment with linguistic gender, it is gener-
ally clear that an incorrectly gendered reference
to a person (whether through pronominalization
or otherwise) can be highly problematic (Johnson
et al., 2019; McLemore, 2015). This process of
misgendering is problematic for both trans and cis
individuals to the extent that transgender historian
Stryker (2008) writes:

“[o]ne’s gender identity could perhaps best
be described as how one feels about being
referred to by a particular pronoun.”

3.1 Sociological Gender

Many modern trans-inclusive models of gender rec-
ognize that gender encompasses many different
aspects. These aspects include the experience that
one has of gender (or lack thereof), the way that
one expresses one’s gender to the world, and the
way that normative social conditions impose gender
norms, typically as a dichotomy between mascu-
line and feminine roles or traits (Kramarae and Tre-
ichler, 1985; West and Zimmerman, 1987; Butler,
1990; Risman, 2009; Serano, 2007). Gender self-
determination, on the other hand, holds that each
person is the “ultimate authority” on their own gen-
der identity (Zimman, 2019; Stanley, 2014), with
Zimman (2019) further arguing the importance of
the role language plays in that determination.

Such trans-inclusive models deconflate anatomi-
cal and biological traits and the sex that a person
had assigned to them at birth from one’s gendered
position in society; this includes intersex people,
whose anatomical/biological factors do not match
the usual designational criteria for either sex. Trans-
inclusive views typically recognize that gender ex-
ists beyond the regressive “female”/“male” binary4;
additionally, one’s gender may shift by time or con-
text (often “genderfluid”), and some people do not
experience gender at all (often “agender”) (Kessler
and McKenna, 1978; Schilt and Westbrook, 2009;
Darwin, 2017; Richards et al., 2017). In §5 we an-
alyze the degree to which NLP papers make trans-
inclusive or trans-exclusive assumptions.

Social gender refers to the imposition of gen-
der roles or traits based on normative social condi-
tions (Kramarae and Treichler, 1985), which often
includes imposing a dichotomy between feminine
and masculine (in behavior, dress, speech, occupa-
tion, societal roles, etc.). Ackerman (2019) high-
lights a highly overlapping concept, “bio-social
gender”, which consists of gender role, gender ex-
pression, and gender identity. Taking gender role
as an example, upon learning that a nurse is coming
to their hospital room, a patient may form expecta-
tions that this person is likely to be “female,” and
may generate expectations around how their face or
body may look, how they are likely to be dressed,
how and where hair may appear, how to refer to
them, and so on. This process, often referred to as
gendering (Serano, 2007) occurs both in real world

4Some authors use female/male for sex and woman/man
for gender; we do not need this distinction (which is itself
contestable) and use female/male for gender.
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interactions, as well as in purely linguistic settings
(e.g., reading a newspaper), in which readers may
use social gender clues to assign gender(s) to the
real world people being discussed.

3.2 Linguistic Gender
Our discussion of linguistic gender largely fol-
lows (Corbett, 1991; Ochs, 1992; Craig, 1994; Cor-
bett, 2013; Hellinger and Motschenbacher, 2015;
Fuertes-Olivera, 2007), departing from earlier char-
acterizations that postulate a direct mapping from
language to gender (Lakoff, 1975; Silverstein,
1979). Our taxonomy is related but not identical to
(Ackerman, 2019), which we discuss in §2.

Grammatical gender, similarly defined in Ack-
erman (2019), is nothing more than a classification
of nouns based on a principle of grammatical agree-
ment. In “gender languages” there are typically
two or three grammatical genders that have, for
animate or personal references, considerable cor-
respondence between a FEM (resp. MASC) gram-
matical gender and referents with female- (resp.
male-)5 social gender. In comparison, “noun class
languages” have no such correspondence, and typ-
ically many more classes. Some languages have
no grammatical gender at all; English is generally
seen as one (Nissen, 2002; Baron, 1971) (though
this is contested (Bjorkman, 2017)).

Referential gender (similar, but not identical
to Ackerman’s (2019) “conceptual gender”) re-
lates linguistic expressions to extra-linguistic re-
ality, typically identifying referents as “female,”
“male,” or “gender-indefinite.” Fundamentally, ref-
erential gender only exists when there is an entity
being referred to, and their gender (or sex) is real-
ized linguistically. The most obvious examples in
English are gendered third person pronouns (SHE,
HE), including neopronouns (ZE, EM) and singular
THEY6, but also includes cases like “policeman”
when the intended referent of this noun has so-
cial gender “male” (though not when “policeman”
is used non-referentially, as in “every policeman
needs to hold others accountable”).

Lexical gender refers to an extra-linguistic
properties of female-ness or male-ness in a non-
referential way, as in terms like “mother” as well

5One difficulty in this discussion is that linguistic gender
and social gender use the terms “feminine” and “masculine”
differently; to avoid confusion, when referring to the linguistic
properties, we use FEM and MASC.

6People’s mental acceptability of singular THEY is still rel-
atively low even with its increased usage (Prasad and Morris,
2020), and depends on context (Conrod, 2018).

as gendered terms of address like “Mrs.” Impor-
tantly, lexical gender is a property of the linguistic
unit, not a property of its referent in the real world,
which may or may not exist. For instance, in “Ev-
ery son loves his parents”, there is no real world
referent of “son” (and therefore no referential gen-
der), yet it still (likely) takes HIS as a pronoun
anaphor because “son” has lexical gender MASC.

3.3 Social and Linguistic Gender Interplays

The relationship between these aspects of gender
is complex, and none is one-to-one. The refer-
ential gender of an individual (e.g., pronouns in
English) may or may not match their social gender
and this may change by context. This can happen in
the case of people whose everyday life experience
of their gender fluctuates over time (at any inter-
val), as well as in the case of drag performers (e.g.,
some men who perform drag are addressed as SHE

while performing, and HE when not (for Transgen-
der Equality, 2017)). The other linguistic forms of
gender (grammatical, lexical) also need not match
each other, nor match referential gender (Hellinger
and Motschenbacher, 2015).

Social gender (societal expectations, in particu-
lar) captures the observation that upon hearing “My
cousin is a librarian”, many speakers will infer “fe-
male” for “cousin”, because of either an entailment
of “librarian” or some sort of probabilistic infer-
ence (Lyons, 1977), but not based on either gram-
matical gender (which does not exist in English) or
lexical gender. We focus on English, which has no
grammatical gender, but does have lexical gender.
English also marks referential gender on singular
third person pronouns.

Below, we use this more nuanced notion of dif-
ferent types of gender to inspect how bias play out
in coreference resolution systems. These biases
may arise in the context of any of these notions of
gender, and we encourage future work to extend
care over and be explicit about what notions of
gender are being utilized and when.

4 Bias in Human Annotation

A possible source of bias in coreference systems
comes from human annotations on the data used
to train them. Such biases can arise from a com-
bination of (possibly) underspecified annotations
guidelines and the positionality of annotators them-
selves. In this section, we study how different
aspects of linguistic notions impact an annotator’s
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Mrs.
(d)−−→ /0 Rebekah Johnson Bobbitt

(b)−−→ M. Booth was the younger sister
(c)−→ sibling of

Lyndon B. Johnson
(b)−−→ T. Schneider, 36th President of the United States. Born in 1910 in Stonewall,

Texas, she
(a)−−→ they worked in the cataloging department of the Library of Congress in the 1930s before

her
(a)−−→ their brother

(c)−→ sibling entered politics.

Figure 1: Example of applying all ablation substitutions for an example context in the MAP corpus. Each
substitution type is marked over the arrow and separately color-coded.

judgments of anaphora. This parallels Ackerman
(2019) linguistic analysis, in which a Broad Match-
ing Criterion is proposed, which posits that “match-
ing gender requires at least one level of the mental
representation of gender to be identical to the can-
didate antecedent in order to match.”

Our study can be seen as evaluating which con-
ceptual properties of gender are most salient in
human judgments. We start with natural text in
which we can cast the coreference task as a binary
classification problem (“which of these two names
does this pronoun refer to?”) inspired by Webster
et al. (2018). We then generate “counterfactual aug-
mentations” of this dataset by ablating the various
notions of linguistic gender described in §3.2, sim-
ilar to Zmigrod et al. (2019). We finally evaluate
the impact of these ablations on human annotation
behavior to answer the question: which forms of
linguistic knowledge are most essential for human
annotators to make consistent judgments. See Ap-
pendix A for examples of how linguistic gender
may be used to infer social gender.

4.1 Ablation Methodology

In order to determine which cues annotators are us-
ing and the degree to which they use them, we con-
struct an ablation study in which we hide various
aspects of gender and evaluate how this impacts
annotators’ judgments of anaphoricity. We con-
struct binary classification examples taken from
Wikipedia pages, in which a single pronoun is
selected, and two possible antecedent names are
given, and the annotator must select which one. We
cannot use Webster et al.’s GAP dataset directly,
because their data is constrained that the “gender”
of the two possible antecedents is “the same”7; for
us, we are specifically interested in how annotators
make decisions even when additional gender infor-
mation is available. Thus, we construct a dataset
called Maybe Ambiguous Pronoun (MAP) follow-

7It is unclear from the GAP dataset what notion of “gender”
is used, nor how it was determined to be “the same.”

ing Webster et al.’s approach, but we do not restrict
the two names to match gender.

In ablating gender information, one challenge
is that removing social gender cues (e.g., “nurse”
tending female) is not possible because they can ex-
ist anywhere. Likewise, it is not possible to remove
syntactic cues in a non-circular manner. For exam-
ple in (1), syntactic structure strongly suggests the
antecedent of “herself” is “Liang”, making it less
likely that “He” corefers with Liang later (though
it is possible, and such cases exist in natural data
due either to genderfluidity or misgendering).

(1) Liang saw herself in the mirror. . .He . . .

Fortunately, it is possible to enumerate a high cov-
erage list of English terms that signal lexical gen-
der: terms of address (Mrs., Mr.) and semantically
gendered nouns (mother).8 We assembled a list by
taking many online lists (mostly targeted at English
language learners), merging them, and manual fil-
tering. The assembling process and the final list is
published with the MAP dataset and its datasheet.

To execute the “hiding” of various aspects of
gender, we use the following substitutions:
(a) ¬PRO: Replace third person pronouns with

gender neutral variants (THEY, XEY, ZE).
(b) ¬NAME: Replace names by random names

with only a first initial and last name.
(c) ¬SEM: Replace semantically gendered nouns

with gender-indefinite variants.
(d) ¬ADDR: Remove terms of address.9

See Figure 1 for an example of all substitutions.
We perform two sets of experiments, one fol-

lowing a “forward selection” type ablation (start
with everything removed and add each back in one-
at-a-time) and one following “backward selection”
(remove each separately). Forward selection is nec-
essary in order to de-conflate syntactic cues from

8These are, however, sometimes complex. For instance,
“actress” signals lexical gender of female, while “actor” may
signal social gender of male and, in certain varieties of English,
may also signal lexical gender of male.

9An alternative suggested by Cassidy Henry that we did
not explore would be to replace all with Mx. or Dr.
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stereotypes; while backward selection gives a sense
of how much impact each type of gender cue has
in the context of all the others.

We begin with ZERO, in which we apply all
four substitutions. Since this also removes gender
cues from the pronouns themselves, an annotator
cannot substantially rely on social gender to per-
form these resolutions. We next consider adding
back in the original pronouns (always HE or SHE

here), yielding ¬NAME ¬SEM ¬ADDR. Any dif-
ference in annotation behavior between ZERO and
¬NAME ¬SEM ¬ADDR can only be due to so-
cial gender stereotypes. The next setting, ¬SEM

¬ADDR removes both forms of lexical gender (se-
mantically gendered nouns and terms of address);
differences between ¬SEM ¬ADDR and ¬NAME

¬SEM ¬ADDR show how much names are relied
on for annotation. Similarly, ¬NAME ¬ADDR re-
moves names and terms of address, showing the im-
pact of semantically gendered nouns, and ¬NAME

¬SEM removes names and semantically gendered
nouns, showing the impact of terms of address.

In the backward selection case, we begin with
ORIG, which is the unmodified original text. To
this, we can apply the pronoun filter to get ¬PRO;
differences in annotation between ORIG and ¬PRO

give a measure of how much any sort of gender-
based inference is used. Similarly, we get ¬NAME

by only removing names, which gives a measure
of how much names are used (in the context of
all other cues); we get ¬SEM by only removing
semantically gendered words; and ¬ADDR by only
removing terms of address.

4.2 Annotation Results
We construct examples using the methodology de-
fined above. We then conduct annotation experi-
ments using crowdworkers on Amazon Mechanical
Turk following the methodology by which the origi-
nal GAP corpus was created10. Because we wanted
to also capture uncertainty, we ask the crowdwork-
ers how sure they are in their choices, between
“definitely” sure, “probably” sure and “unsure.”

Figure 2 shows the human annotation results as
binary classification accuracy for resolving the pro-
noun to the antecedent. We can see that removing
pronouns leads to significant drop in accuracy. This
indicates that gender-based inferences, especially
social gender stereotypes, play the most significant

10Our study was approved by the Microsoft Research Ethics
Board. Workers were paid $1 to annotate ten contexts (the
average annotation time was seven minutes).

Figure 2: Human annotation results for the ablation
study on MAP dataset. Each column is a different abla-
tion, and the y-axis is the degree of accuracy with 95%
significance intervals. Bottom bar plots are annotator
certainties as how sure they are in their choices.

role when annotators resolve coreferences. This
confirms the findings of Rudinger et al. (2018) and
Zhao et al. (2018a) that human annotated data in-
corporates bias from stereotypes.

Moreover, if we compare ORIG with columns
left to it, we see that name is another significant
cue for annotator judgments, while lexical gender
cues do not have significant impacts on human
annotation accuracies. This is likely in part due
to the low appearance frequency of lexical gen-
der cues in our dataset. Every example has pro-
nouns and names, whereas 49% of the examples
have semantically gendered nouns but only 3% of
the examples include terms of address. We also
note that if we compare ¬NAME ¬SEM ¬ADDR

to ¬SEM ¬ADDR and ¬NAME ¬ADDR, accuracy
drops when removing gender cues. Though the
differences are not statistically significant, we did
not expect the accuracy drop.

Finally, we find annotators’ certainty values fol-
low the same trend as the accuracy: annotators
have a reasonable sense of when they are unsure.
We also note that accuracy score are essentially
the same for ZERO and ¬PRO, which suggests that
once explicit binary gender is gone from pronouns,
the impact of any other form of linguistic gender
in annotator’s decisions is also removed.

5 Bias in Model Specifications

In addition to biases that can arise from the data
that a system is trained on, as studied in the previ-
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ous section, bias can also come from how models
are structured. For instance, a system may fail to
recognize anything other than a dictionary of fixed
pronouns as possible referents to entities. Here,
we analyze prior work in models for coreference
resolution in three ways. First, we do a literature
study to quantify how NLP papers discuss gender.
Second, similar to Zhao et al. (2018a) and Rudinger
et al. (2018), we evaluate five freely available sys-
tems on the ablated data from §4. Third, we evalu-
ate these systems on the dataset we created: Gender
Inclusive Coreference (GICOREF).

5.1 Cis-normativity in published NLP papers

In our first study, we adapt the approach Keyes
(2018) took for analyzing the degree to which com-
puter vision papers encoded trans-exclusive models
of gender. In particular, we began with a random
sample of ∼150 papers from the ACL anthology
that mention the word “gender” and coded them
according to the following questions:
• Does the paper discuss coreference resolution?
• Does the paper study English?
• L.G: Does the paper deal with linguistic gender

(grammatical gender or gendered pronouns)?
• S.G: Does the paper deal with social gender?
• L.G 6=S.G: (If yes to L.G and S.G:) Does the

paper distinguish linguistic from social gender?
• S.G Binary: (If yes to S.G:) Does the paper

explicitly or implicitly assume that social gender
is binary?
• S.G Immutable: (If yes to S.G:) Does the paper

explicitly or implicitly assume social gender is
immutable?
• They/Neo: (If yes to S.G and to English:) Does

the paper explicitly consider uses of definite sin-
gular “they” or neopronouns?

The results of this coding are in Table 1 (the full
annotation is in Appendix B). We see out of the
22 coreference papers analyzed, the vast majority
conform to a “folk” theory of language:
� Only 5.5% distinguish social from linguistic gen-

der (despite it being relevant);
� Only 5.6% explicitly model gender as inclusive

of non-binary identities;
� No papers treat gender as anything other than

completely immutable;11

11The most common ways in which papers implicitly as-
sume that social gender is immutable is either 1) by relying on
external knowledge bases that map names to “gender”; or 2)
by scraping a history of a user’s social media posts or emails
and assuming that their “gender” today matches the gender of

All Papers Coref Papers

L.G? 52.6% (of 150) 95.4% (of 22)
S.G? 58.0% (of 150) 86.3% (of 22)

L.G 6=S.G? 11.1% (of 27) 5.5% (of 18)
S.G Binary? 92.8% (of 84) 94.4% (of 18)

S.G Immutable? 94.5% (of 74) 100.0% (of 14)
They/Neo? 3.5% (of 56) 7.1% (of 14)

Table 1: Analysis of a corpus of 150 NLP papers that
mention “gender” along the lines of what assumptions
around gender are implicitly or explicitly made.

� Only 7.1% (one paper!) considers neopronouns
and/or specific singular THEY.

The situation for papers not specifically about
coreference is similar (the majority of these pa-
pers are either purely linguistic papers about gram-
matical gender in languages other than English,
or papers that do “gender recognition” of au-
thors based on their writing; May (2019) discusses
the (re)production of gender in automated gender
recognition in NLP in much more detail). Overall,
the situation more broadly is equally troubling, and
generally also fails to escape from the folk theory
of gender. In particular, none of the differences are
significant at a p = 0.05 level except for the first
two questions, due to the small sample size (accord-
ing to an n−1 chi-squared test). The result is that
although we do not know exactly what decisions
are baked in to all systems, the vast majority in our
study (including two papers by one of the authors
(Daumé and Marcu, 2005; Orita et al., 2015)) come
with strong gender binary assumptions, and exist
within a broader sphere of literature which erases
non-binary and binary trans identities.

5.2 System performance on MAP

Next, we analyze the effect that our different ab-
lation mechanisms have on existing coreference
resolutions systems. In particular, we run five
coreference resolution systems on our ablated data:
the AI2 system (AI2; Gardner et al., 2017), hug-
ging face (HF; Wolf, 2017), which is a neural sys-
tem based on spacy, and the Stanford deterministic
(SfdD; Raghunathan et al., 2010), statistical (SfdS;
Clark and Manning, 2015) and neural (SfdN; Clark
and Manning, 2016) systems. Figure 3 shows the
results. We can see that the system accuracies
mostly follow the same pattern as human accu-
racy scores, though all are significantly lower than
human results. Accuracy scores for systems drop

that historical record.
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Figure 3: Coreference resolution systems results for
the ablation study on MAP dataset. The y-axis is the
degree of accuracy with 95% significance intervals.

dramatically when we ablate out referential gender
in pronouns. This reveals that those coreference
resolution systems reply heavily on gender-based
inferences. In terms of each systems, HF and SfdN
systems have similar results and outperform other
systems in most cases. SfdD accuracy drops signif-
icantly once names are ablated.

These results echo and extend previous observa-
tions made by Zhao et al. (2018a), who focus on de-
tecting stereotypes within occupations. They detect
gender bias by checking if the system accuracies
are the same for cases that can be resolved by syn-
tactic cues and cases that cannot, with original data
and reversed-gender data. Similarly, Rudinger et al.
(2018) focus on detecting stereotypes within occu-
pations as well. They construct dataset without any
gender cues other than stereotypes, and check how
systems perform with different pronouns – THEY,
SHE, HE. Ideally, they should all perform the same
because there is not any gender cues in the sen-
tence. However, they find that systems do not work
on “they” and perform better on “he” than “she”.
Our analysis breaks this stereotyping down further
to detect which aspects of gender signals are most
leveraged by current systems.

5.3 System behavior on gender-inclusive data

Finally, in order to evaluate current coreference res-
olution models in gender inclusive contexts we in-
troduce a new dataset, GICOREF. Here we focused
on naturally occurring data, but sampled specifi-
cally to surface more gender-related phenomena
than may be found in, say, the Wall Street Journal.

Our new GICOREF dataset consists of 95 doc-

Precision Recall F1

AI2 40.4% 29.2% 33.9%
HF 68.8% 22.3% 33.6%
SfdD 50.8% 23.9% 32.5%
SfdS 59.8% 24.1% 34.3%
SfdN 59.4% 24.0% 34.2%

Table 2: LEA scores on GICOREF (incorrect reference
excluded) with various coreference resolution systems.
Rows are different systems while columns are preci-
sion, recall, and F1 scores. When evaluate, we only
count exact matches of pronouns and name entities.

uments from three types of sources: articles from
English Wikipedia about people with non-binary
gender identities, articles from LGBTQ periodi-
cals, and fan-fiction stories from Archive Of Our
Own (with the respective author’s permission)12.
These documents were each annotated by both of
the authors and adjudicated.13 This data includes
many examples of people who use pronouns other
than SHE or HE (the dataset contains 27% HE, 20%
SHE, 35% THEY, and 18% neopronouns, people
who are genderfluid and whose names or pronouns
change through the article, people who are mis-
gendered, and people in relationships that are not
heteronormative. In addition, incorrect references
(misgendering and deadnaming14) are explicitly
annotated.15 Two example annotated documents,
one from Wikipedia, and one from Archive of Our
Own, are provided in Appendix C and Appendix D.

We run the same systems as before on this
dataset. Table 2 reports results according the stan-
dard coreference resolution evaluation metric LEA
(Moosavi and Strube, 2016). Since no systems
are implemented to explicitly mark incorrect ref-
erences, and no current evaluation metrics address
this case, we perform the same evaluation twice.
One with incorrect references included as regular
references in the ground truth; and other with in-
correct references excluded. Due to the limited
number of incorrect references in the dataset, the

12See https://archiveofourown.org; thanks to
Os Keyes for this suggestion.

13We evaluate inter-annotator agreement by treating one
annotation as gold standard and the other as system output
and computing the LEA metric; the resulting F1-score is 92%.
During the adjudication process we found that most of the dis-
agreement are due to one of the authors missing/overlooking
mentions, and rarely due to true “disagreement.”

14According to Clements (2017) deadnaming occurs when
someone, intentionally or not, refers to a person who’s trans-
gender by the name they used before they transitioned.

15Thanks to an anonymous reader of a draft version of this
paper for this suggestion.

https://archiveofourown.org
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difference of the results are not significant. Here
we only report the latter.

The first observation is that there is still plenty
room for coreference systems to improve; the best
performing system achieves as F1 score of 34%, but
the Stanford neural system’s F1 score on CoNLL-
2012 test set reaches 60% (Moosavi, 2020). Ad-
ditionally, we can see system precision dominates
recall. This is likely partially due to poor recall of
pronouns other than HE and SHE. To analyze this,
we compute the recall of each system for finding
referential pronouns at all, regardless of whether
they are correctly linked to their antecedents. We
find that all systems achieve a recall of at least 95%
for binary pronouns, a recall of around 90% on
average for THEY, and a recall of around a paltry
13% for neopronouns (two systems—Stanford de-
terministic and Stanford neural—never identify any
neopronouns at all).

6 Discussion and Moving Forward

Our goal in this paper was to analyze how gender
bias exist in coreference resolution annotations and
models, with a particular focus on how it may fail
to adequately process text involving binary and
non-binary trans referents. We thus created two
datasets: MAP and GICOREF. Both datasets show
significant gaps in system performance, but perhaps
moreso, show that taking crowdworker judgments
as “gold standard” can be problematic. It may be
the case that to truly build gender inclusive datasets
and systems, we need to hire or consult experiential
experts (Patton et al., 2019; Young et al., 2019).

Moreover, although we studied crowdworkers on
Mechanical Turk (because they are often employed
as annotators for NLP resources), if other popula-
tions are used for annotation, it becomes important
to consider their positionality and how that may im-
pact annotations. This echoes a related finding in
annotation of hate-speech that annotator positional-
ity matters (Olteanu et al., 2019). More broadly, we
found that trans-exclusionary assumptions around
gender in NLP papers is made commonly (and
implicitly), a practice that we hope to see change
in the future because it fundamentally limits the
applicability of NLP systems.

The primary limitation of our study and analysis
is that it is limited to English. This is particularly
limiting because English lacks a grammatical gen-
der system, and some extensions of our work to
languages with grammatical gender are non-trivial.

We also emphasize that while we endeavored to
be inclusive, our own positionality has undoubt-
edly led to other biases. One in particular is a
largely Western bias, both in terms of what models
of gender we use and also in terms of the data we
annotated. We have attempted to partially compen-
sate for this bias by intentionally including docu-
ments with non-Western non-binary expressions
of gender in the GICoref dataset16, but the dataset
nonetheless remains Western-dominant.

Additionally, our ability to collect naturally oc-
curring data was limited because many sources
simply do not yet permit (or have only recently
permitted) the use of gender inclusive language in
their articles. This led us to counterfactual text
manipulation, which, while useful, is essentially
impossible to do flawlessly. Moreover, our abil-
ity to evaluate coreference systems with data that
includes incorrect references was limited as well,
because current systems do not mark any forms of
misgendering or deadnaming explicitly, and cur-
rent metrics do not take this into account. Finally,
because the social construct of gender is fundamen-
tally contested, some of our results may apply only
under some frameworks.

We hope this paper can serve as a roadmap for fu-
ture studies. In particular, the gender taxonomy we
presented, while not novel, is (to our knowledge)
previously unattested in discussions around gender
bias in NLP systems; we hope future work in this
area can draw on these ideas. We also hope that
developers of datasets or systems can use some of
our analysis as inspiration for how one can attempt
to measure—and then root out—different forms
of bias in coreference resolution systems and NLP
systems more broadly.
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Hanna Wallach. 2020. Language (technology) is
power: The need to be explicit about NLP harms.
In Proceedings of the Conference of the Association
for Computational Linguistics (ACL).
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A Examples of Possible Bias in Data Annotation

Bias can enter coreference resolution datasets, which we use to train our systems, through annotation
phase. Annotators may use linguistic notions to infer social gender. For instance, consider (2) below, in
which an annotator is likely to determine that “her” refers to “Mary” and not “John” due to assumptions
on likely ways that names may map to pronouns (or possibly by not considering that SHE pronouns
could refer to someone named “John”). While in (3), an annotator is likely to have difficulty making a
determination because both “Sue” and “Mary” suggest “her”. In (4), an annotator lacking knowledge
of name stereotypes on typical Chinese and Indian names (plus the fact that given names in Chinese —
especially when romanized —generally do not signal gender strongly), respectively, will likewise have
difficulty.

(2) John and Mary visited her mother.

(3) Sue and Mary visited her mother.

(4) Liang and Aditya visited her mother.

In all these cases, the plausible rough inference is that a reader takes a name, uses it to infer the social
gender of the extra-linguistic referent. Later the reader sees the SHE pronoun, infers the referential gender
of that pronoun, and checks to see if they match.

An equivalent inference happens not just for names, but also for lexical gender references (both
gendered nouns (5) and terms of address (6)), grammatical gender references (in gender languages like
Arabic (7)), and social gender references (8). The last of these ((8)) is the case in which the correct referent
is likely to be least clear to most annotators, and also the case studied by Rudinger et al. (2018) and Zhao
et al. (2018a).

(5) My brother and niece visited her mother.

(6) Mr. Hashimoto and Mrs. Iwu visited her mother.

(7)

 

 المطرب و الممثلة شاهدا والدتها
 

 

walidatuha                       shahadaa      almomathela    w            almutreb 

her mother    saw    actor[f]  and  singer[m] 

 

 

walidatu -ha shahidanaan walidatuha w almutarab
mother -her saw actor[FEM] and singer[MASC]
The singer[MASC] and actor[FEM] saw her mother.

(8) The nurse and the actor visited her mother.
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B Annotation of ACL Anthology Papers

Below we list the complete set of annotations we did of the papers described in §5.1. For each of the
papers considered, we annotate the following items:
• Coref: Does the paper discuss coreference resolution?
• L.G: Does the paper deal with linguistic gender (grammatical gender or gendered pronouns)?
• S.G: Does the paper deal with social gender?
• Eng: Does the paper study English?
• L 6=G: (If yes to L.G and S.G:) Does the paper distinguish linguistic from social gender?
• 0/1: (If yes to S.G:) Does the paper explicitly or implicitly assume that social gender is binary?
• Imm: (If yes to S.G:) Does the paper explicitly or implicitly assume social gender is immutable?
• Neo: (If yes to S.G and to English:) Does the paper explicitly consider uses of definite singular “they”

or neopronouns?
For each of these, we mark with [Y] if the answer is yes, [N] if the answer is no, and [-] if this question is
not applicable (ie it doesn’t pass the conditional checks).

Citation Coref L.G S.G Eng L6=S 0/1 Imm Neo

Sidner (1981) Y Y Y Y N - - -
Bainbridge (1985) Y Y N Y - - - -
Kameyama (1986) Y Y Y Y N Y Y N
Mellish (1988) N Y N Y - - - -
Danlos and Namer (1988) N Y N N - - - -
Yoshimoto (1988) N Y N N - - - -
Zock et al. (1988) N Y N N - - - -
Popowich (1989) N Y N Y - - - -
Mani et al. (1993) Y N Y Y - Y - -
Narayanan and Hashem (1993) N Y N N - - - -
Soloman and Wood (1994) N Y N Y - - - -
Quantz (1994) N Y N Y - - - -
Baker et al. (1994) - - - - - - - -
Genthial et al. (1994) N Y N N - - - -
Levinger et al. (1995) N Y N N - - - -
Holan et al. (1997) N Y N N - - - -
Dorna et al. (1998) N N N Y - - - -
Harabagiu and Maiorano (1999) Y Y Y Y N Y Y N
Avgustinova and Uszkoreit (2000) N Y N N - - - -
Channarukul et al. (2000) N Y N Y - - - -
Abuleil et al. (2002) N Y N N - - - -
Cucerzan and Yarowsky (2003) N Y N N - - - -
Pakhomov et al. (2003) N N Y Y - - - -
Tadić and Fulgosi (2003) N Y N N - - - -
Debowski (2003) N Y N N - - - -
Navarretta (2004) Y Y Y N N Y Y -
Carl et al. (2004) Y Y Y N N Y Y -
Mota et al. (2004) N Y N Y - - - -
Eisner and Karakos (2005) N Y N Y - - - -
Boulis and Ostendorf (2005) N N Y Y - Y Y N
Smith et al. (2005) N Y N N - - - -
Bergsma and Lin (2006) Y Y Y Y N Y Y N
Vogt and André (2006) N N Y N - Y Y -
Quirk and Corston-Oliver (2006) N Y N Y - - - -
Dada (2007) N Y N N - - - -
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Citation Coref L.G S.G Eng L6=S 0/1 Imm Neo

Streiter et al. (2007) N N Y N - - - -
Jing et al. (2007) Y Y Y Y N Y - N
Badr et al. (2008) N Y N N - - - -
Marchal et al. (2008) N Y N N - - - -
van Peursen (2009) N Y N N - - - -
Badr et al. (2009) N Y N N - - - -
Garera and Yarowsky (2009) N Y Y Y N Y Y N
Bergsma et al. (2009) Y Y Y Y N Y Y N
Nastase and Popescu (2009) N Y N N - - - -
Nanba et al. (2009) N N N Y - - - -
Robaldo and Di Carlo (2009) N N N Y - - - -
Mukherjee and Liu (2010) N N Y Y - Y Y -
Ng (2010) Y Y Y Y N Y Y N
Burkhardt et al. (2010) N N Y N - Y Y -
Marton et al. (2010) N Y N N - - - -
Le Nagard and Koehn (2010) Y Y Y Y N Y Y N
Rojas-Barahona et al. (2011) N Y N N - - - -
Mukund et al. (2011) N Y N N - - - -
Sarawgi et al. (2011) N N Y Y - Y Y N
Li et al. (2011) Y Y Y Y N Y Y N
Burger et al. (2011) N N Y Y - Y Y N
Mohammad and Yang (2011) N N Y Y - Y Y N
Sapena et al. (2011) Y Y Y Y N Y Y N
Charton and Gagnon (2011) Y Y Y Y N Y Y N
Alkuhlani and Habash (2011) N Y N N - - - -
Mareček et al. (2011) N Y N N - - - -
López-Ludeña et al. (2011) N Y N N - - - -
Declerck et al. (2012) Y Y N Y - - - -
Bergsma et al. (2012) N N Y Y - Y Y N
Alkuhlani and Habash (2012) N Y N N - - - -
Filippova (2012) N N Y Y - Y - -
Dinu et al. (2012) N Y N N - - - -
El Kholy and Habash (2012) N Y N N - - - -
Yu (2012) N N N N - - - -
Guillou (2012) Y Y Y Y Y Y - -
Vogel and Jurafsky (2012) N N Y Y - Y Y N
Goldberg and Elhadad (2013) N Y N N - - - -
Marton et al. (2013) N Y N N - - - -
Weller et al. (2013) N Y N Y - - - -
Ciot et al. (2013) N N Y N - Y Y -
Volkova et al. (2013) N N Y Y - Y Y N
Levitan (2013) N N Y Y - N N N
Bojar et al. (2013) N Y N N - - - -
Glavaš et al. (2013) N Y N N - - - -
Liu et al. (2013) N N N N - - - -
Kestemont (2014) N N N Y - - - -
Novák and Žabokrtský (2014) Y Y N Y - - - -
Babych et al. (2014) N Y N N - - - -
Soler-Company and Wanner (2014) N N Y Y - Y Y N
Chen and Ng (2014) Y Y Y Y N Y Y N
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Citation Coref L.G S.G Eng L6=S 0/1 Imm Neo

Sap et al. (2014) N N Y Y - Y Y -
Nguyen et al. (2014a) N N Y Y - Y Y N
Prabhakaran et al. (2014) N N Y Y - Y Y N
Sidorov et al. (2014) N N Y Y - Y Y N
Darwish et al. (2014) N Y N N - - - -
Ahmed Khan (2014) N Y N N - - - -
Nguyen et al. (2014b) N N Y N - Y Y -
Stewart (2014) N N Y Y - Y Y -
Matthews et al. (2014) N Y N N - - - -
Vaidya et al. (2014) N Y N N - - - -
Kokkinakis et al. (2015) N Y Y N N Y - -
Johannsen et al. (2015) N N Y Y - Y Y -
Schwartz et al. (2015) N N N Y - - - -
Hovy (2015) N N Y Y - Y Y N
Agarwal et al. (2015) N Y Y Y N Y Y N
Preoţiuc-Pietro et al. (2015) N N Y Y N Y Y -
Ramakrishna et al. (2015) N Y Y Y N Y Y N
Taniguchi et al. (2015) N N Y Y - N Y N
Schofield and Mehr (2016) N N Y Y - Y Y N
Levitan et al. (2016) N N Y Y - Y Y N
Flekova et al. (2016) N N Y Y - Y Y N
Tran and Ostendorf (2016) N N N Y - - - -
Qian et al. (2016) N Y N Y - - - -
Li et al. (2016) N N Y Y - Y Y N
Zhang et al. (2016) N N Y Y - Y Y N
Garimella and Mihalcea (2016) N N Y Y - Y Y N
Reddy and Knight (2016) N N Y Y - Y Y N
Li and Dickinson (2017) N N Y N - Y Y -
Pérez Estruch et al. (2017) N N Y Y - Y Y N
Pérez-Rosas et al. (2017) N N Y Y - Y Y N
Rabinovich et al. (2017) N N Y N - Y Y -
Costa-jussà (2017) N Y N N - - - -
Sap et al. (2017) N N Y Y - Y - -
Zhao et al. (2017) N N Y Y - Y Y N
Mandravickaitė and Krilavičius (2017) N N Y Y - Y Y N
Verhoeven et al. (2017) N N Y Y - Y Y N
Larson (2017a) N Y Y Y Y N N Y
Koolen and van Cranenburgh (2017) N N Y N - N Y -
Tatman (2017) N N Y Y - Y Y N
Soler-Company and Wanner (2017) N N Y Y - Y Y N
Ljubešić et al. (2017) N N Y N - Y Y -
Litvinova et al. (2017) N N Y N - Y Y -
Mohammad et al. (2018) N N Y Y - Y - -
Wang and Jurgens (2018) N Y Y Y Y N N N
Kraus et al. (2018) N N Y Y - Y - -
Martinc and Pollak (2018) N N Y Y - Y Y N
Chan and Fyshe (2018) N N Y Y - Y Y N
Durmus and Cardie (2018) N N N Y - - - -
Zaghouani and Charfi (2018) N Y Y N N Y Y -
Plank (2018) N N Y Y - Y Y N
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Citation Coref L.G S.G Eng L6=S 0/1 Imm Neo

Wood-Doughty et al. (2018) N N Y Y - Y Y N
Moorthy et al. (2018) N N Y Y - Y - -
Levitan et al. (2018) N N Y Y - Y Y N
Webster et al. (2018) Y Y Y Y N Y Y N
Park et al. (2018) N Y Y Y N Y Y N
Vanmassenhove et al. (2018) N Y Y N N Y Y -
Kleinberg et al. (2018) N N Y Y - Y Y N
Zhao et al. (2018b) N N Y Y - Y Y N
Balusu et al. (2018) N N N Y - - - -
Rudinger et al. (2018) Y Y Y Y N N - Y
Zhao et al. (2018a) Y Y Y Y N Y Y N
Kiritchenko and Mohammad (2018) - - - - - - - -
Barbieri and Camacho-Collados (2018) N N Y Y - Y N -
van der Goot et al. (2018) N N Y N - Y Y -
Karlekar et al. (2018) N N Y Y - Y Y N
de Gibert et al. (2018) N N N Y - - - -
Mickus et al. (2019) N Y N N - - - -



4593

C Example GICoref Document from Wikipedia: Dana Zzyym

[[Source: https://en.wikipedia.org/wiki/Dana_Zzyym]]

Dana Alix ZzyymA is an Intersex activist and former sailor who was the first military veteran in the United States
to seek a non - binary gender U.S. passport , in a lawsuit ZzyymA v. PompeoC .

Early life
ZzyymA has expressed that theirA childhood as a military brat made it out of the question for themA to be

associated with the queer community as a youth due to the prevalence of homophobia in the armed forces .
TheirA parentsB hid ZzyymA ’s status as intersex from themA and ZzyymA discovered theirA identity and the
surgeries theirA parentsB had approved for themA by themselvesB after theirA Navy service . In 1978 , ZzyymA
joined the Navy as a machinist ’s mate .

Activism
ZzyymA has been an avid supporter of the Intersex Campaign for Equality .

Legal case
ZzyymA is the first veteran to seek a non - binary gender U.S. passport . In light of the State Department ’s

continuing refusal to recognize an appropriate gender marker , on June 27 , 2017 a federal court granted Lambda
Legal ’s motion to reopen the case . On September 19 , 2018 , the United States District Court for the District of
Colorado enjoined the U.S. Department of State from relying upon its binary - only gender marker policy to withhold
the requested passport .

https://en.wikipedia.org/wiki/Dana_Zzyym
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D Example GICoref Document from AO3: Scar Tissue

[[Source: https://archiveofourown.org/works/14476524]]
[[Author: cornheck]]

Despite dreading theirA first true series of final exams , CronaA ’s relieved to have a particularly absorbative
memory , lucky to recall all the material theyA ’d been required to catch up on . Half a semester of attendance , a
whole year of course content .

The only true moment of discomfort came when theyA ’d arrived at the essay portion . Thankful it was easy
enough to answer , however , theirA subtle eye - roll stemmed entirely from just how much writing it asked of themA ,
hands already beginning to ache at the thought of scrawling out two pages on the origins , history , and importance
of partnered and grouped soul resonance .

By the end of it all , theirA neck , wrist , back , and ribs ached from the strain of theirA typical , hunched posture –
a habit theyA defaulted to , and Miss MarieB silently wished theyA ’d be more mindful of . It was a relief , at least to
themA , not to be the last one out of the lecture hall . Booklet turned in , theyA left the room as quietly as possible
and lingered just outside , an air of hesitance settling upon themA as theyA considered what to do now that , it
seemed , everything was over with . No more class , no more lessons , just ... students on break from their studies
for the season .

“ Kind of a breeze , was n’t it ? ” EvansC ’ voice echoes in the arched hall and CronaA ’s shoulders jump , theirA
frame still a tense and anxious mess .

“ Oh , ” theyA sigh , “ IA ... IA suppose so . It was n’t ... necessarily hard . ” CronaA answers , putting forth a
vaguely forced smile .

Smiling with the assumed purpose of making SoulC comfortable with the interaction . A defense mechanism .
“ IA - IA guess , for a final , it was easier than IA expected ... everyone ... made it sound like it ’d be difficult . ”
“ If by everyone , youA mean Black StarD , then yeah , ” SoulC chuckles , “ heD does n’t really do well on ‘ em ...

bad test - taker . ”
“ Ah , ” theirA facade falls just in time to be replaced by a much more genuine grin .
Of the little theyA ’d spent talking to Black StarD , heD certainly had confidence and skill enough to make up for

the lost exam points given hisD performance in every other grading category .
“ That ... makes sense . ”
“ MakaE ’s always the first one done when it comes to this stuff , sheE practically studies in herE sleep . IC ’m

convinced sheE must be practicing clairvoyance the way sheE burns through essay questions , ” SoulC laughs ,
turning to the meek teenA who gives himC a simple nod in response .

Determined not to let an impending awkward silence fall between themF , SoulC pipes up again , “ So , are youA
staying here for break ? ”

“ Ye - well , IA ... IA think so , ” theyA begin , stuttering , but encouraged to continue by a cock of SoulC ’s head
; a social cue even theyA could read , “ The professorH ... and Miss MarieB G asked if IA ’d like to come and stay
with themG for the time being . ”

“ Oh , huh , SteinH and MarieB G ? Nice , ” hisC brows lift , clearly some varying degree of happy for the otherA .
The optimism is short - lived , observing as CronaA ’s expression falls back to its characteristic expressionless

gaze .
“ It seems like youA ’ve got a good thing going with those twoG . ”
“ IA have n’t decided , yet , if IA should accept the invitation , ” theyA shift a bit where theyA stand .
Never having been the best at reassuring others , even hisC own meisterA , SoulC kept hisC mouth shut to avoid

stuttering while heC searched for the right words a web of thoughts .
“ Y ’A know , IC think it ’s less of an invitation and more of an extended welcome . ”
The otherA raises theirA head , taken aback , “ Oh , ” CronaA mutters , in a poignant tone , “ IA ... never

considered something like that . ”
SoulC does n’t leave much wiggle room for theirA mood to fall any further ( nothing past a flat - lipped frown ) , “

TheyG ’d probably love to have youA , IC bet theyG drive each other nuts sometimes all by themselvesG . ”
Though EvansC wo n’t admit it , heC knows it ’s all too likely SteinH might actually put some more effort into

taking care of himselfH if heH had someone else besides MarieB to look after .
“ IA - IA see , ” theyA exhale with a nod , giving SoulC a hint of affirmation that heC ’d done something to boost

the kidA ’s confidence .
“ IC mean , it ’s got ta be lonely not to mention boring hanging here all summer ... and the weather , ” SoulC

nearly gasps , dramatizing it for added effect , “ Oh , man , IC do n’t know how youA can stay cooped up in that room
of yoursA when it ’s so nice out , ” heC grins .

“ But ... meh . Different strokes . IC ca n’t judge . ”
HisC comments comfort themA , an for a moment theyA forget how this came to be . The cathedral in Italy ,

Lady Medusa I ’s wrath , and the black blood that infected himC . Every moment theyA spent in the presence of
Soul EvansC builds always up to this ; fixation on the memories of theirJ first encounters and all the pain theyA ’ve
caused himC , the pain theyA ’ve caused heC and MakaE K both . As quickly as SoulC had lifted the swordsmanA
’s spirits , theyA ’d weighed themselvesA down once more . It seemed so normal , though . SoulC could n’t bring
himselfC to feel any sense of accomplishment in the coaxing - out of CronaA ’s smile when the return of theirA self
doubt was as certain as the sun in the sky . HisC own stubbornness could n’t let hisC diminished self worth lie .

https://archiveofourown.org/works/14476524
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With another encouraging smile , rows of sharpened incisors appearing oddly charismatic , heC opens hisC mouth
to speak – but finds himselfC cut off before heC can even squeeze a word in .

“ SoulC , IA ’m sorry , ” the meisterA blurts .
Having been pent - up for months , the apology comes forth without inhibition , rolling effortlessly off theirA tongue

.
“ Sorry ... ? For what ? ” EvansC quirks a brow , chuckling .
HeC adjusts hisC stance to face CronaA with the whole of hisC body , maintaining hisC positive demeanor .
“ F - for what ... ? ”
TheyA stammer , shaking theirA head . For all theirA remorse , theyA thought this would have been obvious .
“ For everything , it ’s ... the first time weF dueled , IA was the enemy ! IA - IA almost killed youC , IA - IA ...

IA really , really hurt youC , ” theyA answer , still so sick with guild that even theirA confession of responsibility is
tainted with frustration .

SoulC seems stunned for a moment before harnessing hisC quick wit .
“ Hey , now , youA ca n’t take all the credit like that , RagnarokL did most of the damage , ” heC . . .


