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Abstract

Knowledge Graphs (KG) are multi-relational
graphs consisting of entities as nodes and rela-
tions among them as typed edges. Goal of the
Question Answering over KG (KGQA) task
is to answer natural language queries posed
over the KG. Multi-hop KGQA requires rea-
soning over multiple edges of the KG to ar-
rive at the right answer. KGs are often in-
complete with many missing links, posing ad-
ditional challenges for KGQA, especially for
multi-hop KGQA. Recent research on multi-
hop KGQA has attempted to handle KG spar-
sity using relevant external text, which isn’t al-
ways readily available. In a separate line of
research, KG embedding methods have been
proposed to reduce KG sparsity by perform-
ing missing link prediction. Such KG em-
bedding methods, even though highly relevant,
have not been explored for multi-hop KGQA
so far. We fill this gap in this paper and pro-
pose EmbedKGQA. EmbedKGQA is particu-
larly effective in performing multi-hop KGQA
over sparse KGs. EmbedKGQA also relaxes
the requirement of answer selection from a pre-
specified neighborhood, a sub-optimal con-
straint enforced by previous multi-hop KGQA
methods. Through extensive experiments on
multiple benchmark datasets, we demonstrate
EmbedKGQA’s effectiveness over other state-
of-the-art baselines.

1 Introduction

Knowledge Graphs (KG) are multi-relational
graphs consisting of millions of entities (e.g., San
Jose, California, etc.) and relationships among
them (e.g., San Jose-cityInState-California). Ex-
amples of a few large KGs include Wikidata
(Google, 2013), DBPedia (Lehmann et al., 2015),
Yago (Suchanek et al., 2007), and NELL (Mitchell
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EmbedKGQA’s source code is available at

https://github.com/malllabiisc/EmbedKGQA

Figure 1: Challenges with Multi-hop QA over Knowl-
edge Graphs (KGQA) in sparse and incomplete KGs:
Absence of the edge has genre(Gangster No. 1, Crime)
in the incomplete KG makes it much harder to answer
the input NL question, as the KGQA model potentially
needs to reason over a longer path over the KG (marked
by bold edges). Existing multi-hop KGQA methods
also impose heuristic neighborhood limits (shaded re-
gion in the figure), which often makes the true answer
(Crime in this example) out of reach. EmbedKGQA,
our proposed method, overcomes these limitations by
utilizing embeddings of the input KG during multi-hop
KGQA. For more details, please refer Figure 2 and Sec-
tion 4.

et al., 2018). Question Answering over Knowledge
Graphs (KGQA) has emerged as an important re-
search area over the last few years (Zhang et al.,
2018; Sun et al., 2019a). In KGQA systems, given
a natural language (NL) question and a KG, the
right answer is derived based on analysis of the
question in the context of the KG.

In multi-hop KGQA, the system needs to perform
reasoning over multiple edges of the KG to infer the
right answer. KGs are often incomplete, which cre-
ates additional challenges for KGQA systems, espe-
cially in case of multi-hop KGQA. Recent methods
have used an external text corpus to handle KG
sparsity (Sun et al., 2019a, 2018). For example, the
method proposed in (Sun et al., 2019a) constructs
a question-specific sub-graph from the KG, which
is then augmented with supporting text documents.

https://github.com/malllabiisc/EmbedKGQA
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Figure 2: Overview of EmbedKGQA, our proposed method for Multi-hop QA over Knowledge Graphs (KGQA).
EmbedKGQA has three modules: (1) KG Embedding Module (Section 4.2) learns embeddings for all entities in
the input KG, (2) Question Embedding Module (Section 4.3) learns an embedding for the question, and (3) the An-
swer Selection Module (Section 4.4) selects the final answer by incorporating the question and relation similarity
scores. EmbedKGQA’s use of embeddings makes it more effective in handling KG sparsity. Moreover, since Em-
bedKGQA considers all entities as candidate answers, it doesn’t suffer from the limited neighborhood out-of-reach
issues of existing Multi-hop KGQA methods. Please refer Section 4 for detailed description of EmbedKGQA.

Graph CNN (Kipf and Welling, 2016) is then ap-
plied over this augmented sub-graph to arrive at
the final answer. Unfortunately, availability and
identification of relevant text corpora is a challenge
on its own which limits broad-coverage applicabil-
ity of such methods. Moreover, such methods also
impose pre-specified heuristic neighborhood size
limitation from which the true answer needs to be
selected. This often makes the true answer out of
reach of the model to select from.

In order to illustrate these points, please consider
the example shown in Figure 1. In this example,
Louis Mellis is the head entity in the input NL ques-
tion, and Crime is the true answer we expect the
model to select. If the edge has genre(Gangster No.
1, Crime) were present in the KG, then the question
could have been answered rather easily. However,
since this edge is missing from the KG, as is often
the case with similar incomplete and sparse KGs,
the KGQA model has to potentially reason over a
longer path over the KG (marked by bolded edges
in the graph). Moreover, the KGQA model im-
posed a neighborhood size of 3-hops, which made
the true answer Crime out of reach.

In a separate line of research, there has been a
large body of work that utilizes KG embeddings to
predict missing links in the KG, thereby reducing
KG sparsity (Bordes et al., 2013; Trouillon et al.,

2016; Yang et al., 2014a; Nickel et al., 2011). KG
embedding methods learn high-dimensional em-
beddings for entities and relations in the KG, which
are then used for link prediction. In spite of its high
relevance, KG embedding methods have not been
used for multi-hop KGQA – we fill this gap in this
paper. In particular, we propose EmbedKGQA, a
novel system which leverages KG embeddings to
perform multi-hop KGQA. We make the following
contributions in this paper:

1. We propose EmbedKGQA, a novel method
for the multi-hop KGQA task. To the best
of our knowledge, EmbedKGQA is the first
method to use KG embeddings for this task.
EmbedKGQA is particularly effective in per-
forming multi-hop KGQA over sparse KGs.

2. EmbedKGQA relaxes the requirement of an-
swer selection from a pre-specified local
neighborhood, an undesirable constraint im-
posed by previous methods for this task.

3. Through extensive experiments on multiple
real-world datasets, we demonstrate Embed-
KGQA’s effectiveness over state-of-the-art
baselines.

We have made EmbedKGQA’s source code avail-
able to encourage reproducibility.
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2 Related Work

KGQA: In prior work (Li et al., 2018) TransE,
(Bordes et al., 2013) embeddings have been used to
answer factoid based questions. However, this re-
quires ground truth relation labeling for each ques-
tion and it does not work for multi-hop question
answering. In another line of work (Yih et al., 2015)
and (Bao et al., 2016) proposed extracting a partic-
ular sub-graph to answer the question. The method
presented in (Bordes et al., 2014a), the sub-graph
generated for a head entity is projected in a high
dimensional space for question answering. Mem-
ory Networks have also been used to learn high
dimensional embeddings of the facts present in the
KG to perform QA (Bordes et al., 2015). Methods
like (Bordes et al., 2014b) learn a similarity func-
tion between the question and the corresponding
triple during training, and score the question with
all the candidate triples at the test time. (Yang et al.,
2014b) and (Yang et al., 2015) utilize embedding
based methods to map natural language questions
to logical forms. Methods like (Dai et al., 2016;
Dong et al., 2015; Hao et al., 2017; Lukovnikov
et al., 2017; Yin et al., 2016) utilize neural networks
to learn a scoring functions to rank the candidate an-
swers. Some works like (Mohammed et al., 2017;
Ture and Jojic, 2016) consider each relation as a la-
bel and model QA task as a classification problem.
Extending these kinds of approaches for multi-hop
question answering is non-trivial.

Recently, there has been some work in which
text corpus is incorporated as a knowledge source
in addition to KG to answer complex questions on
KGs (Sun et al., 2018, 2019a). Such approaches
are useful in case the KG is incomplete. However,
this leads to another level of complexity in the
QA system, and text corpora might not always be
available.
KG completion methods: Link prediction in
Knowledge Graphs using KG embeddings has be-
come a popular area of research in recent years.
The general framework is to define a score function
for a set of triples (h, r, t) in a KG and constraining
them in such a way that the score for a correct triple
is higher than the score for an incorrect triple.

RESCAL (Nickel et al., 2011) and DistMult
(Yang et al., 2015) learn a score function contain-
ing a bi-linear product between head entity and
tail entity vectors and a relation matrix. ComplEx
(Trouillon et al., 2016) represents entity vectors
and relation matrices in the complex space. SimplE

(Kazemi and Poole, 2018) and TuckER (Balažević
et al., 2019) are based on Canonical Polyadic (CP)
decomposition (Hitchcock, 1927) and Tucker de-
composition (Tucker, 1966) respectively.

TransE (Bordes et al., 2013) embeds entities in
high dimensional real space and relation as transla-
tion between the head and the tail entities. RotatE
(Sun et al., 2019b) on the other hand projects enti-
ties in complex space and relations are represented
as rotations in the complex plane.

ConvE (Dettmers et al., 2018) utilizes Convolu-
tional Neural Networks to learn a scoring function
between the head entity, tail entity and relation.
InteractE (Vashishth et al., 2019) improves upon
ConvE by increasing feature interaction.

3 Background

In this section, we formally define a Knowledge
Graph(KG) and then describe link prediction task
on incomplete KGs. We then describe KG embed-
dings and explain the ComplEx embedding model.

3.1 Knowledge Graph

Given a set of entities E and relationsR, a Knowl-
edge Graph G is a set of triples K such that K ⊆
E × R × E . A triple is represented as (h, r, t),
with h, t ∈ E denoting subject and object entities
respectively and r ∈ R the relation between them.

3.2 Link Prediction

In link prediction, given an incomplete Knowledge
Graph, the task is to predict which unknown links
are valid. KG Embedding models achieve this
through a scoring function φ that assigns a score
s = φ(h, r, t) ∈ R, which indicates whether a
triple is true, with the goal of being able to score
all missing triples correctly.

3.3 Knowledge Graph Embeddings

For each e ∈ E and r ∈ R, Knowledge Graph
Embedding (KGE) models generate ee ∈ Rde

and er ∈ Rdr , where ee and er are de and dr
dimensional vectors respectively. Each of the
embedding methods also has a scoring function
φ : E ×R×E → R to assign some score φ(h, r, t)
to a possible triple (h, r, t), h, t ∈ E and r ∈ R.
Models are trained in a way such that for every
correct triple (h, r, t) ∈ K and incorrect triple
(h′, r′, t′) 6∈ K the model assign scores such that
φ(h, r, t) > 0 and φ(h′, r′, t′) < 0. A scoring
function is generally a function of (eh, er, et).
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3.3.1 ComplEx Embeddings
ComplEx (Trouillon et al., 2016) is a tensor factor-
ization approach that embeds relations and entities
in complex space. Given h, t ∈ E and r ∈ R,
ComplEx generates eh, er, et ∈ Cd and defines a
scoring function:

φ(h, r, t) = Re(〈eh, er, ēt〉)

= Re(
d∑

k=1

e
(k)
h e(k)

r ēt
(k))

(1)

such that φ(h, r, t) > 0 for all true triples, and
φ(h, r, t) < 0 for false triples. Re denotes the real
part of a complex number.

4 EmbedKGQA: Proposed Method

In this section, we first define the problem of
KGQA and then describe our model.

4.1 Problem Statement
Let E andR be the set of all entities and relations
respectively in a KG G, and K ⊆ E × R × E is
the set of all available KG facts. The problem in
KGQA involves, given a natural language question
q and a topic entity eh ∈ E present in the question,
the task is to extract an entity et ∈ E that correctly
answers the question q.

4.1.1 EmbedKGQA Overview
We work in a setting where there is no fine-
grained annotation present in the dataset, such
as the question type or the exact logic reasoning
steps. For example, co-actor is a combination of
starred actor−1 and starred actor relations, but
our model does not require this annotation.

EmbedKGQA uses Knowledge Graph embed-
dings to answer multi-hop natural language ques-
tions. First it learns a representation of the KG
in an embedding space. Then given a question it
learns a question embedding. Finally it combines
these embedding to predict the answer.

In the following sections, we introduce the Em-
bedKGQA model. It consists of 3 modules:

1. KG Embedding Module creates embeddings
for all entities in the KG.

2. Question Embedding Module finds the em-
bedding of a question

3. Answer Selection Module reduces the set of
candidate answer entities and selects the final
answer

4.2 KG Embedding Module

ComplEx embeddings are trained for all h, t ∈ E
and all r ∈ R in the KG such that eh, er, et ∈
Cd. The entity embeddings are used for learning
a triple scoring function between the head entity,
question, and answer entity. Based on the coverage
of the KG entities in the QA training set, the entity
embeddings learned here are either kept frozen or
allowed to be fine-tuned in the subsequent steps.

4.3 Question Embedding Module

This module embeds the natural language ques-
tion q to a fixed dimension vector eq ∈ Cd. This
is done using a feed-forward neural network that
first embeds the question q using RoBERTa (Liu
et al., 2019) into a 768-dimensional vector. This is
then passed through 4 fully connected linear layers
with ReLU activation and finally projected onto the
complex space Cd.

Given a question q, topic entity h ∈ E and set
of answer entities A ⊆ E , it learns the question
embedding in a way such that

φ(eh, eq, ea) > 0 ∀a ∈ A

φ(eh, eq, eā) < 0 ∀ā /∈ A

where φ is the ComplEx scoring function (1) and
ea, eā are entity embeddings learnt in the previous
step.

For each question, the score φ(.) is calculated
with all the candidate answer entities a′ ∈ E . The
model is learned by minimizing the binary cross-
entropy loss between the sigmoid of the scores and
the target labels, where the target label is 1 for the
correct answers and 0 otherwise. Label smoothing
is done when the total number of entities is large.

4.4 Answer Selection Module

At inference, the model scores the (head, question)
pair against all possible answers a′ ∈ E . For rela-
tively smaller KGs like MetaQA, we simply select
the entity with the highest score.

eans = arg max
a′∈E

φ(eh, eq, ea′)

However if the knowledge graph is large, prun-
ing the candidate entities can significantly improve
the performance of EmbedKGQA. The pruning
strategy is described in the following section.
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Train Dev Test
MetaQA 1-hop 96,106 9,992 9.947
MetaQA 2-hop 118,948 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
WebQSP 2,998 100 1,639

Table 1: Statistics for MetaQA and WebQuestionsSP
datasets. Please refer section 5.1 for more details.

4.4.1 Relation matching
Similar to PullNet (Sun et al., 2019a) we learn
a scoring function S(r, q) which ranks each re-
lation r ∈ R for a given question q. Let
hr be the embedding of a relation r and q′ =
(< s >,w1, .., w|q|, < /s >) be the sequence of
words in question q which are input to RoBERTa.
The scoring function is defined as the sigmoid of
the dot product of the final output of the last hid-
den layer of RoBERTa (hq) and the embedding of
relation r (hr).

hq = RoBERTa(q′)

S(r, q) = sigmoid(hTq hr)

Among all the relations, we select those relations
which have score greater than 0.5 It is denoted
as the set Ra. For each candidate entity a′ that
we have obtained so far (Section 4.4), we find the
relations in the shortest path between head entity
h and a′. Let this set of relations beRa′ . Now the
relation score for each candidate answer entity is
defined as the size of their intersection.

RelScorea′ = |Ra ∩Ra′ |

We use a linear combination of the relation score
and ComplEx score to find the answer entity.

eans = arg max
a′∈Nh

φ(eh, eq, ea′) + γ ∗ RelScorea′

where γ is a tunable hyperparameter.

5 Experimental Details

In this section, we first describe the datasets that
we evaluated our method on, and then explain the
experimental setup and the results.

5.1 Datasets

1. MetaQA (Zhang et al., 2018) dataset is a
large scale multi-hop KGQA dataset with

more than 400k questions in the movie do-
main. It has 1-hop, 2-hop, and 3-hop ques-
tions. In our experiments, we used the
“vanilla” version of the questions. Along with
the QA data, MetaQA also provides a KG with
135k triples, 43k entities, and nine relations.

2. WebQuestionsSP (tau Yih et al., 2016) is a
smaller QA dataset with 4,737 questions. The
questions in this dataset are 1-hop and 2-hop
questions and are answerable through Free-
base KG. For ease of experimentation, we re-
strict the KB to be a subset of Freebase which
contains all facts that are within 2-hops of
any entity mentioned in the questions of We-
bQuestionsSP. We further prune it to contain
only those relations that are mentioned in the
dataset. This smaller KB has 1.8 million enti-
ties and 5.7 million triples.

5.2 Baselines
We compare our model with the Key-Value Mem-
ory Network (Miller et al., 2016), the GraftNet (Sun
et al., 2018) and the Pullnet (Sun et al., 2019a) for
WebQuestionsSP dataset. For MetaQA dataset we
also compare with the VRN (Zhang et al., 2018).
These methods implement multi-hop KGQA, and
except VRN, use additional text corpus to mitigate
the KG sparsity problem.

• VRN (Zhang et al., 2018) uses variational
learning algorithm to perform Multi-Hop QA
over KG.

• Key-Value Memory Network (KVMem)
(Miller et al., 2016) is one of the first mod-
els that attempts to do QA over incomplete
KBs by augmenting it with text. It maintains
a memory table which stores KB facts and text
encoded into key-value pairs and uses this for
retrieval.

• GraftNet (Sun et al., 2018) uses heuristics to
create a question-specific subgraph containing
KG facts, entities and sentences from the text
corpora and then uses a variant of graph CNN
(Kipf and Welling, 2016) to perform reasoning
over it.

• PullNet (Sun et al., 2019a) also creates a
question-specific sub-graph but instead of us-
ing heuristics, it learns to “pull” facts and sen-
tences from the data to create a more relevant
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Model MetaQA KG-Full MetaQA KG-50
1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

VRN 97.5 89.9 62.5 - - -
GraftNet 97.0 94.8 77.7 64.0 (91.5) 52.6 (69.5) 59.2 (66.4)
PullNet 97.0 99.9 91.4 65.1 (92.4) 52.1 (90.4) 59.7 (85.2)
KV-Mem 96.2 82.7 48.9 63.6 (75.7) 41.8 (48.4) 37.6 (35.2)
EmbedKGQA (Ours) 97.5 98.8 94.8 83.9 91.8 70.3

Table 2: Results on MetaQA dataset. All baseline results were taken from Sun et al. (2019a). We have considered
both full KG (MetaQA KG-Full) and 50% KG (MetaQA KG-50) settings. The numbers reported in this table are
hits@1. Numbers in brackets correspond to a setting where text was used to augment the incomplete KG (MetaQA
KG-50). For more details please refer section 5.3.1.

sub-graph. It also uses a graph CNN approach
to perform reasoning.

The complete KG setting is the easiest setting
for QA because the datasets are created in such a
way that the answer always exists in the KG, and
there is no missing link in the path. However, it
is not a realistic setting, and the QA model should
also be able to work on an incomplete KG. So we
simulate an incomplete KB by randomly removing
half of the triples in the KB (we randomly drop a
fact with probability = 0.5). We call this setting
KG-50 and we call full KG setting KG-Full in the
text.

In the next section we will answer the following
questions:
Q1. Can Knowledge Graph embeddings be used
to perform multi-hop KGQA? (Section 5.3)
Q2. Can EmbedKGQA be used to answer ques-
tions when there is no direct path between the head
entity and the answer entity? (Section 5.4)
Q3. How much does the answer selection mod-
ule help in the final performance of our model?
(Section 5.5)

5.3 KGQA results
In this section, we have compared our model with
baseline models on MetaQA and WebQuestionsSP
datasets.

5.3.1 Analysis on MetaQA
MetaQA has different partitions of the dataset for
1-hop, 2-hop, and 3-hop questions. In the full KG
setting (MetaQA KG-Full) our model is compara-
ble to the state-of-the-art for 2-hop questions and
establishes the state-of-the-art for 3-hop questions.
EmbedKGQA performs similar to the state-of-the
in case of 1-hop question which is expected be-
cause the answer node is directly connected to the

head node and it is able to learn the corresponding
relation embedding from the question. On the other
hand performance on 2-hop and 3-hop questions
suggest that EmbedKGQA is able to infer the cor-
rect relation from the neighboring edges because
the KG embeddings can model composition of rela-
tions. Pullnet and GraftNet also perform similarly
well because the answer entity lies in the question
sub-graph most of the times.

We have also tested our method on the incom-
plete KG setting, as explained in the previous sec-
tion. Here we find that the accuracy of all baselines
decreases significantly compared to the full KG set-
ting, while EmbedKGQA achieves state-of-the-art
performance. This is because MetaQA KG is fairly
sparse, with only 135k triples for 43k entities. So
when 50% of the triples are removed (as is done in
MetaQA KG-50), the graph becomes very sparse
with an average of only 1.66 links per entity node.
This causes many head entity nodes of questions
to have much longer paths (>3) to their answer
node. Hence models that require question-specific
sub-graph construction (GraftNet, PullNet) are un-
able to recall the answer entity in their generated
sub-graph and therefore performs poorly. However,
their performance improves only after including
additional text corpora. On the other hand, Em-
bedKGQA does not limit itself to a sub-graph and
utilizing the link prediction properties the KG em-
beddings, EmbedKGQA is able to infer the relation
on missing links.

5.3.2 Analysis on WebQuestionsSP
WebQuestionsSP has a relatively small number of
training examples but uses a large KG (Freebase)
as background knowledge. This makes multi-hop
KGQA much harder. Since all the entities of the
KG are not covered in the training set, freezing the
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Model WebQSP KG-Full WebQSP KG-50
KV-Mem 46.7 32.7 (31.6)
GraftNet 66.4 48.2 (49.7)
PullNet 68.1 50.1 (51.9)
EmbedKGQA 66.6 53.2

Table 3: Performance on WebQuestionsSP dataset. All
baseline results were taken from Sun et al. (2019a). The
values reported are hits@1. Numbers in brackets corre-
spond to a setting where text was used to augment the
incomplete KG (WebQSP KG-50). For more details
please refer Section 5.3.2.

entity embeddings after learning them during KG
embedding learning phase (Section 4.2) is neces-
sary. Results on WebQuestionsSP (Table 3) high-
light the fact that, even with a small number of
training examples EmbedKGQA can learn good
question embeddings that can infer the multi-hop
path required to answer the questions.

Our method on WebQSP KG-50 outperforms all
baselines including PullNet, which uses extra tex-
tual information and is the state-of-the-art model.
Even though WebQuestionsSP has fewer questions,
EmbedKGQA is able to learn good question em-
beddings that can infer mission links in KG. This
can be attributed to the fact that relevant and nec-
essary information is being captured through KG
embeddings, implicitly.

5.4 QA on KG with missing links

State-of-the-art KGQA models like PullNet and
GraftNet require a path between the head entity and
the answer entity to be present in the Knowledge
Graph to answer the question. For example, in
PullNet, the answer is restricted to be one of the
entities present in the extracted question subgraph.
For the incomplete KG case where only 50% of
the original triples are present, PullNet (Sun et al.,
2019a) reports a recall of 0.544 on the MetaQA 1-
hop dataset. This means that only for 54.4 percent
of questions, all the answer entities are present in
the extracted question subgraph, and this puts a
hard limit on how many questions the model can
answer in this setting.

EmbedKGQA, on the other hand, uses Knowl-
edge Graph Embeddings rather than a localized
sub-graph to answer the question. It uses the head
embedding and question embedding, which implic-
itly captures the knowledge of all observed and
unobserved links around the head node. This is
possible because of the link prediction property of

Model Accuracy
ComplEx 20.1
EmbedKGQA 29.9

Table 4: QA results on MetaQA 1-hop for the experi-
ments in which there is no link between head entity and
answer entity. We have compared the results with the
KG completion methods in which gold relation of the
question is known. The details are provided in Section
5.4.

Model WebQSP
KG-Full

WebQSP
KG-50

EmbedKGQA 66.6 53.2
{+ 2-hop filtering} 72.5 51.8{

+ 2-hop filtering,
– Relation matching

}
58.7 48.5

{– Relation matching} 48.1 47.4

Table 5: This table show the importance of relation
matching module (Section 4.4.1) and effect of neigh-
bourhood based filtering on EmbedKGQA in the We-
bQuestionsSP dataset. EmbedKGQA in itself contains
the relation matching module. Here we try to see the
effect of ablating the relation matching module and
adding a 2-hop neighbourhood filtering during answer
selection. Please refer Section 5.5 for more details.

Knowledge Graph Embeddings.
So unlike other QA systems, even if there is

no path between the head and answer entity, our
model should be able to answer the question if
there is sufficient information in the KG to be able
to predict that path (See Fig. 1).

We design an experiment to test this capabil-
ity of our model. For all questions in the vali-
dation set of the MetaQA 1-hop dataset, we re-
moved all the triples from the Knowledge Graph
that can be directly used to answer the question.
For example, given the question ‘what language
is [PK] in’ in the validation set, we removed the
triple (PK, in language,Hindi) from the KG.
The dataset also contains paraphrases of the same
question, for, e.g., ‘what language is the movie
[PK] in’ and ‘what is the language spoken in the
movie [PK]’. We also removed all paraphrases of
validation set questions from the training dataset
since we only want to evaluate the KG completion
property of our model and not a linguistic general-
ization.

In such a setting, we expect models that rely
only on sub-graph retrieval to achieve 0 hits@1.
However, our model delivers a significantly better
29.9 hits@1 in this setting. This shows that our
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model can capture the KG completion property
of ComplEx embeddings and apply it to answer
questions which was otherwise impossible.

Further, if we know the relation corresponding
to each question, then the problem of 1-hop KG
QA is the same as KG completion in an incomplete
Knowledge Graph. Using the same training KG as
above and using the removed triples as the test set,
we do tail prediction using KG embeddings. Here
we obtain 20.1 hits@1. The lesser score can be
attributed to the fact that ComplEx embedding uses
only the KG while our model uses the QA data as
well - which in itself represents knowledge. Our
model is first trained on the KG and then uses these
embeddings to train the QA model, and thus it can
leverage the knowledge present in both the KG and
QA data.

5.5 Effect of Answer Selection Module

We analyse the effect of the answer selection mod-
ule (Section 4.4) on EmbedKGQA in the WebQues-
tionsSP dataset by ablating the relation matching
module. Furthermore, in order to compare with
other methods that restrict the answer to a neigh-
bourhood in the KG (Sun et al. (2019a), Sun et al.
(2018)), we experimented with restricting the candi-
date set of answer entities to only the 2-hop neigh-
bourhood of the head entity. The results can be
seen in Table 5. As we can see, relation matching
has a significant impact on the performance of Em-
bedKGQA on both WebQSP KG-full and WebQSP
KG-50 settings.

Also, as mentioned earlier, WebQSP KG (Free-
base subset) has an order of magnitude more enti-
ties than MetaQA (1.8M versus 134k in MetaQA)
and the number of possible answers is large. So re-
ducing the set of answers to a 2-hop neighbourhood
of the head entity showed improved performance
in the case of WebQSP KG-Full. However, this
caused a degradation in performance on WebQSP
KG-50. This is because restricting the answer to
a 2-hop neighbourhood on an incomplete KG may
cause the answer to not be present in the candidates
(Please refer figure 1).

In summary, we find that relation matching is
an important part of EmbedKGQA. Morever, we
suggest that n-hop filtering during answer selection
may be included on top of EmbedKGQA for KGs
which are reasonably complete.

6 Conclusion

In this paper, we propose EmbedKGQA, a novel
method for Multi-hop KGQA. KGs are often in-
complete and sparse which poses additional chal-
lenges for multi-hop KGQA methods. Recent re-
cent for this problem have tried to address the in-
completeness problem by utilizing an additional
text corpus. However, the availability of a rele-
vant text corpus is often limited, thereby reducing
broad-coverage applicability of such methods. In
a separate line of research, KG embedding meth-
ods have been proposed to reduce KG sparsity by
performing missing link prediction. EmbedKGQA
utilizes the link prediction properties of KG embed-
dings to mitigate the KG incompleteness problem
without using any additional data. It trains the KG
entity embeddings and uses it to learn question
embeddings, and during the evaluation, it scores
(head entity, question) pair again all entities, and
the highest-scoring entity is selected as an answer.
EmbedKGQA also overcomes the shortcomings
due to limited neighborhood size constraint im-
posed by existing multi-hop KGQA methods. Em-
bedKGQA achieves state-of-the-art performance in
multiple KGQA settings, suggesting that the link
prediction properties of KG embeddings can be uti-
lized to mitigate the KG incompleteness problem
in Multi-hop KGQA.
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