
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 403–413
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

403

Location Attention for Extrapolation to Longer Sequences

Yann Dubois
University of Cambridge

yanndubois96@gmail.com

Gautier Dagan
University of Amsterdam

gautier.dagan@gmail.com

Dieuwke Hupkes∗
ILLC, University of Amsterdam

d.hupkes@uva.nl

Elia Bruni*

Universitat Pompeu Fabra
elia.bruni@gmail.com

Abstract

Neural networks are surprisingly good at inter-
polating and perform remarkably well when
the training set examples resemble those in
the test set. However, they are often unable
to extrapolate patterns beyond the seen data,
even when the abstractions required for such
patterns are simple. In this paper, we first re-
view the notion of extrapolation, why it is im-
portant, and how one could hope to tackle it.
We then focus on a specific type of extrapola-
tion, which is especially useful for natural lan-
guage processing: generalization to sequences
longer than those seen during training. We hy-
pothesize that models with a separate content-
and location-based attention are more likely
to extrapolate than those with common atten-
tion mechanisms. We empirically support our
claim for recurrent seq2seq models with our
proposed attention on variants of the Lookup
Table task. This sheds light on some striking
failures of neural models for sequences and on
possible methods to approaching such issues.

1 Introduction

It is indisputable that, in recent years, neural net-
work research has made stunning progress on a
wide variety of tasks that require to process sequen-
tial inputs, such as machine translation (Sutskever
et al., 2014) and speech recognition (Graves et al.,
2013). However, many researchers have questioned
the forms of generalization that neural networks ex-
hibit, which significantly diverges from human-like
generalization (Lake and Baroni, 2017; Geirhos
et al., 2018). This discrepancy with human-like
generalization is particularly true when it comes to
extrapolating “outside” the training space (DeLosh
et al., 1997; Marcus, 1998).

As neural networks are powerful memorizers
(Zhang et al., 2017) and easily learn superficial
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statistical cues (Jo and Bengio, 2017), testing ex-
trapolation and generalization to samples from the
long tails of a distribution might be the only way
of quantifying their capacity of abstract reasoning
(Santoro et al., 2018).

Despite this benefit, little work has been done
in extrapolation. A possible explanation is that the
probability of encountering a test example in the
extrapolation setting seems low when the training
set D is large.1 However, such an argument fails
to consider the high cost of error in extrapolation
settings, and this can be a barrier for real-world
scenarios (e.g., self-driving cars).

In this paper, we focus on extrapolation in
sequences. More precisely, how to generalize
sequence-to-sequence predictors to inputs of length
n∗ > nD, where nD denotes the length of the
longest sequence in the training set. Such extrap-
olation is crucial for language acquisition, where
humans have limited learning resources to account
for the unbounded nature of language. To suc-
cessfully generalize, a language learner needs to
process new and potentially longer sentences than
previously encountered ones (Chomsky, 1956).

Accounting for this unbounded nature of lan-
guage is challenging for neural networks. This
issue has recently been uncovered for seq2seq mod-
els by looking at simple artificial tasks (Lake and
Baroni, 2018; Liska et al., 2018; Weber et al., 2018).
Liska et al. (2018) find that seq2seq architectures
can converge to local minima that generalize, but
rarely do. This suggests that neural networks could
generalize but lack inductive biases that favor ex-
trapolatable behavior.

In the following sections, we review the concepts
of attention and extrapolation. We then argue that

1Extrapolation is still prevalent in practical scenarios as
high-dimensional problems would typically require an expo-
nentially large D to be representative, and the underlying
distribution may vary over time (Hooker, 2004).
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current attention mechanisms, which are mainly re-
sponsible for recent successes in natural language
processing (NLP), are unlikely to extrapolate as
they depend on the content of trained embeddings.
This leads us to introduce a novel location-based
attention that is loosely inspired by human visual at-
tention. To avoid gaining extrapolation capabilities
at the cost of expressivity, we introduce an attention
mixer that combines content- and position-based
attentions. Finally, we show that recurrent models
equipped with this new attention mechanism can
extrapolate to longer sequences.

2 Extrapolation

Extrapolation is often used but rarely formally de-
fined. Ebert et al. (2014) have found that when
extrapolation is explicitly defined, it often refers to
points outside a hull delimited by the training set.
E.g., rectangular hull, concave hull, or convex hull.
In this work we use the rectangle hull definition
(Brooks et al., 1988), as any model which is extrap-
olatable for this region would also be extrapolatable
for the convex and concave definition.

Given any finite training dataset D :=
{x(n)}Nn=1 ⊂ Rd, we define the interpolation do-
main to be the d-dimensional interval Iinter :=∏d
i=1[minn x

(n)
i ,maxn x

(n)
i ] and the extrapola-

tion domain its complement Iextra := Rd \ Iinter.
In other words, we define a test example x∗ to be
in the extrapolation setting if at least one of its
features x∗j is larger or smaller than any values it
took during training (Figure 1).

Figure 1: Schematic extrapolation setting for d = 2.

Throughout this paper, we assume that neu-
ral networks with inputs or temporary represen-
tations in Iextra will break. Indeed, for a given
target function t : Rd → R to approximate, there
is an infinite amount of predictors that satisfy
f(x) = t(x), ∀x ∈ Iinter ⊂ Rd. Without any

additional constraints, it is thus extremely unlikely
that f(x) = t(x), ∀x ∈ Rd. This could explain
why neural networks have empirically been found
to break in extrapolation settings (Lohninger, 1999;
Hettiarachchi et al., 2005; Mitchell et al., 2018).

The rest of the paper discusses how to constrain
representations used by our neural models 2 to be
in Iinter regardless of the source sentence length,
without decreasing their expressivity.

3 Desiderata

First and foremost, we would like a model that can
extrapolate to sequences longer than the longest
training one nD (Extrapolation Constraint). As
previously discussed, models with inputs or tempo-
rary representations in Iextra will very likely break.
To satisfy the extrapolation constraint, neural mod-
els should thus not depend on features that take
values in Iextra for sequences longer than nD.

Second, our model should be able to learn very
complex positional attention patterns (Positional
Patterns Constraint). Finally, although the position
of words in a sentence is important, many tasks
depend on their semantics. The model should thus
still be able to learn content-based attention pat-
terns (Content Patterns Constraint).

In the following section, we review previously
proposed attention-mechanism and discuss why
they do not fulfill the three aforementioned desired
properties.

4 Attention Mechanisms

An attention mechanism (or attender) takes as in-
put a matrix of keys K := {kTs }ns

s=1 ∈ Rns×d and
a query qt ∈ Rd, and outputs a probability mass
function αααt ∈ Rns that will weight a set of values
V := {vTs }

ns
s=1 ∈ Rns×dv to generate a glimpse

vector gt ∈ Rdv used for downstream tasks. Fol-
lowing Graves et al. (2014), it is useful to think of
the attender as a memory access module, αααt as the
soft address and gt as the accessed vector.

gt :=

ns∑
s=1

vsattender(ks,qt) = Vαααt (1)

Figure 2 illustrates attention in a recurrent
seq2seq (Cho et al., 2014), which we will use
for our experiments. Both the keys and the val-
ues correspond to the set of encoder hidden states

2Although the sentence length is a scalar, the temporary
representations (outputs of a hidden layer) are high dimen-
sional.
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K = V = E := {eTs }
ns
s=1, while the query corre-

sponds to the current decoder hidden state qt = dt.

Figure 2: Attender in a recurrent seq2seq.

4.1 Content Attention
Most attention mechanisms compute “content-
based addressing” (associative memory) that de-
pend on (partial) matches of the key and query.
They take as input K and qt and output a semantic-
based attention γγγt ∈ Rns . For example, if you
wanted to translate a scientific paper, you could
understand the main point of the text without re-
membering the specific technical terms that were
used. When translating, you would go back to the
text and translate the jargon by knowing what to
look for.

A number of content-based have been proposed,
they usually differ in a score that quantifies the
match between ks,qt through multinomial logits:

γγγt := {softmax(score(ks,qt))}ns−1
s=0 (2)

score(ks,qt) :=
uT tanh([k̃s; q̃t]) Additive Bahdanau et al. (2015)

kTs q̃t Multiplicative Luong et al. (2015)

kT
s qt√
d

S. Dot Prod. Vaswani et al. (2017)

(3)

Where x̃ is a shorthand for Wx.

4.2 Location Attention
A location (or position) attention mechanism com-
putes “location-based addressing” (random access
memory) that depend on the index of the key. It
takes as input qt and outputs a location attention
λλλt ∈ Rns . Intuitively, it decides which value to
retrieve based on its index. For example, in Ger-
man sentences, the verb goes at the end of the

sentence, after a subordinate clause. When trans-
lating from German to English, it might thus make
sense to directly attend to the last word in the Ger-
man source sentence after encoding a subordinate
clause. There are many other cases where attend-
ing to words based on their positions seems im-
portant. E.g. translating from subject-object-verb
to subject-verb-object languages, or understanding
the emphasis in some languages.

Despite the importance of word ordering in nat-
ural language, location-based attention is not com-
mon in seq2seq frameworks. This is probably be-
cause content-based attention can emulate location-
based attention in the usual interpolation setting.
Indeed, it can learn to encode a positional embed-
ding in the hidden states of the encoder through
some internal “counter”. This counter is unlikely
to work in the extrapolation regime,3 we, therefore,
investigate other types of location-attention that
could satisfy the extrapolation constraint.

Luong et al. (2015) proposed a location-based
attention by using Equation 2 with a score that
is independent of the key score(ks,qt) = wTqt.
They restrict themselves to sequences of the same
length, which is not of interest to our work. Such
a mechanism could be extended to sequences of
varying lengths but would still lack extrapolation
capacity as the model still has to learn to embed
the location of the index it wants to retrieve.

The Neural Turing Machine (Graves et al., 2014),
post-processes the content attention by shifting its
location by a predicted number of steps. We use a
similar mechanism, which is extrapolatable due to
the independence of the sequence length. Neverthe-
less, on its own, it does not allow positional-only
patterns in variable-length sentences. For exam-
ple, it cannot attend to the ith word irrespective
of the sentence length. The same argument holds
for other location-based attention developed for ar-
chitectures with an external memory (Sukhbaatar
et al., 2015).

More recently, many location-based attention
have been proposed in self-attention mechanism.
These methods are usually based on sinusoidal en-
codings (SE), which have been proposed to take
into account the word positions while bypassing
the need for recurrences in encoder-decoder frame-
works. In this paper, we will consider the trans-
former and transformerXL (relative SE) attention,

3This assumption can depend on the architecture and the
inductive bias it provides (Weiss et al., 2018). For our task,
we found that the assumption held for both LSTM and GRU.
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which are computed as follows.

score(ks,qt) :=
(ks+ps)T (qt+pt)√

d
Transformer (Vaswani et al., 2017)

(k̃s+p̃s−t)T (q̃t+b)√
d

TransformerXL (Dai et al., 2019)

(4)
Where pt is a positional encoding with sinu-

soidals of different frequencies at every dimension.
Although powerful, the sinusoidal encoding and its
variants (Shaw et al., 2018; Dai et al., 2019) lack
the ability to model location patterns that depend
on general word position such as “look at the ith

word (after ...)” in the extrapolation setting. Indeed,
the sinusoidal encoding for any fixed offset pt+k
is linear in pt but not in k.

Location-based processing of attention has also
been proposed as a way of constraining content-
based attention to some (soft) window. Yang et al.
(2018) achieve it by multiplying the content at-
tention by the weights of a predicted Gaussian
such that the model has an inductive bias towards
attending to words that are close to each other.
Sukhbaatar et al. (2019) use a piece-wise window
to decrease the computational complexity of the
model. These methods nevertheless solve a fun-
damentally different problem and do not allow
location-only extrapolatable patterns of attention.

5 Model

In this section, we propose a location attender that
can satisfy the extrapolation and positional patterns
constraint. We then discuss how to incorporate
content attention to satisfy the content patterns con-
straint.

5.1 Location Attender

We would like our position attention to be loosely
reminiscent of human attention, whereby we se-
quentially focus on a single area of the input (e.g.,
words or pixels) but vaguely perceive neighboring
inputs due to the eccentricity effect (Carrasco et al.,
1995). The visual acuity of humans is uni-modal,
symmetric, and spikes at the fovea, which corre-
sponds to a 0◦ retinal eccentricity. We model this
visual acuity using a Gaussian Probability Density
Function (PDF) similarly to Mnih et al. (2014).4

4Visual acuity is distributed in a Laplace-like distribution,
but initial experiments were more encouraging using a Gaus-
sian.

I.e. for each step, the Location Attender models a
Gaussian attention over the relative word positions.

Specifically, it generates a mean µt and standard
deviation σt, which are used to compute the loca-
tion attention given the values of the PDFs at the
relative indices rs := s

ns−1 of the keys:

λλλt := {PDFµt,σt(rs)}ns−1
s=0

Using relative indices rs instead of the abso-
lute ones s is crucial such that the generated µt is
bounded (in [0, 1]), thereby satisfying the extrapo-
lation constraint.

This model, unfortunately, fails to satisfy the
positional patterns constraint, as it only allows
patterns of attention based on percentile positions.
E.g., it can decide to attend to the 10%-percentile
word but not to the 2nd word. This incapacity to
satisfy the position pattern constraint is a general
issue with commonly used attention mechanisms
(including sinusoidal-based) that only becomes ap-
parent when dealing with complex extrapolation
patterns.

To have a general attention mechanism, we need
a µt that can: i) attend to locations based on abso-
lute positions; ii) attend to locations based on per-
centile positions; iii) attend to positions based on
the previous attention. We achieve this by defining
one building block for each of those requirements
(bt) such that their weighted average forms µt, and
the weights ρρρt are bounded outputs of the model.
The three building blocks are:

• The step size 1
ns−1 between words allows the

attention mechanism to depend on absolute
positions. The generated weight is an integer,
which dictates the additional number of steps
to take.

• The bias term 1 enables the model to use per-
centile positions. The generated weight gates
it (on or off).

• The average position of the previous attention
ᾱααt−1 that is gated by the generated weight.
This ensures that the model can attend using
absolute positions to words at indices not seen
during training. E.g., attending to index nD +
5 by first attending to nD then ᾱααt−1 + 5.

The weights ρρρt are generated using a Gated
Recurrent Unit (GRU) (Cho et al., 2014). µt is
clamped to [0, 1] by a linear function to yield in-
terpretable and extrapolatable behaviour. We also
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Figure 3: Proposed Location Attender. Given a resized
query, the Weighter outputs the standard deviation σt
and ρρρt which will weight the building blocks bt to com-
pute the mean µt. µt and σt parametrize a Gaussian
PDF used to compute the location attention λλλt.

force σt > minσ and normalize it by ns which
respectively avoids division by 0 and makes σt
comparable regardless of ns. A graphical overview
of the Location Attender can be seen in Figure 3.
Formally:

ωωωt := GRU
(

ReLU
(

W(resize)qt

))
σt :=

ReLU(W(σ)ωωωt) +minσ
ns

ρρρt := a(W(ρ)ωωωt)

bt := {ᾱααt−1;
1

ns − 1
; 1}

µt := clamp(ρρρTt bt)

λst :=
1√

2πσ2t
exp

(
−( s

ns−1 − µt)
2

2σ2t

)
Where clamp is a leaky clamping (2 leaky ReLUs)
and minσ = 0.27. a is the activation function that
forces each of the three dimensions of ρρρt to take
on the desired values. Namely a sigmoid activation
for the gates, and the following “soft-staircase” 5

to force the weights of the step size to be approxi-
mately integers (Figure 4):

softstair(x) := bxc+sigmoid(20(x−0.5−bxc))

5.2 Mix Attender
We enforce the content patterns constraint, by us-
ing a convex combination of content and location
attention (Figure 5):

αααt := %
(λ)
t λλλt + (1−%

(λ)
t )γγγt

%
(λ)
t := sigmoid(W(%)qt)

5Straight-through estimators (Bengio et al., 2013) and
Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017)
performed slightly worst and required predefining the maxi-
mum number of steps.

Figure 4: Soft staircase activation function.

Figure 5: Mix Attender. The output αααt is a convex
combination of the content and location attention.

6 Experiments

6.1 Datasets

The fact that humans generate and understand un-
bounded sentences with a finite experience is often
used as proof of the principle of compositionality
(Szab, 2017). Following this argument, methods
that can extrapolate to longer sequences should
exhibit some compositionality.

Based on this observation, we evaluate on a
compositionality-specific artificial task, lookup ta-
bles (Liska et al., 2018), but extend it to better
quantify extrapolation. 6 This task is especially
interesting to us, as there is a clear notion of what
a good attention pattern should look like, making
it easy to qualitatively and quantitatively analyze
attentive models. It is a well-controlled task, which
allows us to uncover challenges that prevent models
from extrapolating on real-world data.

6.1.1 Long Lookup Tables
The lookup tables task consists in sequentially ap-
plying k pre-defined lookup table functions. The
lookup tables are bijective mappings on the set of

6 The extended datasets as well as scripts to gener-
ate them can be found at https://github.com/
i-machine-think/machine-tasks/tree/
master/LongLookupTables

https://github.com/i-machine-think/machine-tasks/tree/master/LongLookupTables
https://github.com/i-machine-think/machine-tasks/tree/master/LongLookupTables
https://github.com/i-machine-think/machine-tasks/tree/master/LongLookupTables
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Input Target Target Attention
000 t1 . 000 110 <eos> 0 1 2
110 t1 . 110 110 <eos> 0 1 2
110 t2 . 110 100 <eos> 0 1 2

000 t1 t1 t2 . 000 110 110 100 <eos> 0 1 2 3 4

Table 1: Long lookup table examples.

all 3-bit strings ti : {0, 1}3 → {0, 1}3. For ex-
ample, if t1(000) = 110 and t2(110) = 100 then
t2(t1(000)) = t2(110) = 100. Following Hup-
kes et al. (2018), we write the operations from left
to right, as well as add the inputs and temporary
steps to the targets. E.g. the previous example cor-
responds to the input 000 t1 t2 and the target
000 110 100.

General extrapolatable seq2seq models should
be able to terminate by outputting an end of sen-
tence token <eos>. We thus append <eos> to the
targets and a full stop . to the inputs. 7

At each decoding step, the target only depends
on the previous output and the current lookup table.
E.g. the last decoding step of 000 t1 t2, only
depends on the previous output 110 = t1(000) and
the current table t2. The network thus has to learn
the lookup table mappings and use the correct one
at each step. The gold standard attention, therefore,
corresponds to the position of the current lookup
table. Table 1 illustrates a longer example and its
correct attention.

The various train and test sets are generated by
composing 6 random lookup tables t1, . . . , t6 that
have as input and output one of the 23 = 8 possi-
ble 3-bit strings. Specifically, we use k = 1 . . . 4
composed tables in the training set, k = 2 . . . 4 for
the interpolation test sets, and k = 5 . . . 9 for the
extrapolation test sets.

There are 5 different extrapolation test sets, de-
pending on their additional lengths compared to the
maximum training examples (long 1, . . . , long
5). We randomly select only 5000 possible exam-
ples for each of these test sets.

For the interpolation test sets, we select 3000
examples from all possible input-output pairs.

The training set contains all other possible input-
output pairs, approximately 10000 examples.

6.1.2 Reversed Lookup Tables
To test whether the attention can generate more
complex patterns (investigating the Positional Pat-
terns Constraint), we also introduce a dataset which

7This makes the task harder than the one in Hupkes et al.
(2018), who force termination after the right amount of steps.

reverses the order of the inputs in the previous
dataset. E.g. the last example in Table 1, would be
written as t2 t1 t1 000 ., the target would
not change, and the attention pattern should be 3
2 1 0 4 (attend to . when outputting <eos>).
Although the change seems minor, we hypothesize
that such a setting will be much more complicated
as the attention pattern is not monotonic and does
not follow the encoding nor the decoding steps. In-
deed, in the previous task, the model only needs to
learn to match the ith decoding step with the ith

encoding step.

6.1.3 Lookup Tables with Noisy Start

Input Target Target Attention
000 t2 ! t1 . 000 110 <eos> 0 2 3 4

110 t5 t3 t1 ! t1 . 110 110 <eos> 0 4 5 6
110 ! t2 . 110 100 <eos> 0 2 3

000 t6 t3 ! t1 t1 t2 . 000 110 110 100 <eos> 0 3 4 5 6 7

Table 2: Lookup tables with noisy start examples

Finally, we introduce another variant that also re-
quires content attention (investigating the Content
Patterns Constraint). To do so, we augment each
training example with a start token “!” between
the input and the tables in the source sequence. We
then add m ∼ U{0, 10} tables ti before the start
token. The target outputs were not modified and
are thus independent of the added tables. Solving
this task requires to first attend to the input, then
to the token which follows “!” (content attention)
and finally proceed with incremental location at-
tention. Examples of the training data are given in
Table 2.

6.2 Metrics

The main metric is sequence accuracy (seqAcc),
which corresponds to the accuracy of predicting
the entire sequence correctly (including its length).
To get insights about how the model works, we will
also use two other losses.

Sequence Accuracy Before Eos (seqAccBE),
which only evaluates the accuracy of the sub-
sequence before the model generated a <eos>.

Attention Loss (attnLoss), which quantifies the
quality of the attention pattern before <eos>. It
is computed as the mean squared error between
the predicted and gold standard attention. 8 The
attention loss gives an indication of how far the

8The loss is overly simplistic as it is symmetric around ᾱααt

even though errors in the temporal direction are less serious
as the embeddings contain past information.
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model is to the ideal attention patterns required to
solve the sequence.

6.3 Architecture and Baselines

Concerning baselines, we use three content atten-
tion: additive, multiplicative, scaled dot product
(Eq.3). We also have two mixed content-location at-
tention baselines: Transformer and TransformerXL
(Eq.4).

To focus on the attention mechanisms, our model
and the baselines all use a smaller version of the
best performing recurrent seq2seq architecture on
the lookup table task (Hupkes et al., 2018). The
model has never been modified during our exper-
imentation and is schematized in Figure 2. The
embeddings are of dimension 64, the recurrent net-
work is a GRU (Cho et al., 2014) with a hidden
size of 128, 50% dropout (Srivastava et al., 2014)
is applied on the encoder-decoder bottleneck, and
a residual connection is used between the inputs
(embeddings) and outputs of the encoder. Training
consists of 50 epochs with the Adam (Kingma and
Ba, 2015) optimizer.

7 Results

7.1 Interpolation

For sanity check, we tested all the baselines and
our models (with and without attention mix) on
the interpolation setting of the three tasks. Our
models and the best baseline (transformer attention)
achieved 100% sequence accuracy (seqAcc).

7.2 Extrapolation Constraint

The major desired property of our model is to be
able to extrapolate. We tested the extrapolation
capacity of our location attender by evaluating its
seqAcc on the long lookup table extrapolation test
sets. Figure 6 shows the seqAcc of the location
attender against the strongest baseline (transformer
attention).

As hypothesized, the transformer attention has
some extrapolation capacity, but our location at-
tender substantially outperforms it in this simple
task. Importantly, the loss in performance in the
extrapolation setting for the best baseline is abrupt
and goes from 100% to 0% by adding only three
tokens to the inputs. This suggests that commonly
used models are brittle and cannot even extrapolate
by a small amount.

Although the previous results are encouraging,
we would like to understand what is holding back

Figure 6: SeqAcc for the Location Attender and best
baseline on the Long Lookup Tables task (10 runs).

our model from perfectly extrapolating (Figure 6).

Figure 7: SeqAccBE for the Location Attender and best
baseline on the Long Lookup Tables task (10 runs).

To do so, we computed the sequence accuracy
before <eos> (SeqAccBE). Figure 7 shows that
the model outputs are always correct but that it of-
ten terminates decoding too soon, which we will
refer to as the <eos> problem. This suggests that
the decoder keeps an internal “counter” to increase
the probability of outputting <eos> when the de-
coding step is greater than the ones seen at train-
ing time. The model learns this heuristic, which
is always correct during training time and can be
thought of as a metric hacking. Importantly, it is
not a “hard” boundary: the model is often able
to extrapolate a couple of steps but usually stops
before the correct number of steps.

7.3 Positional and Content Patterns
Constraint

Having shown that our model can extrapolate well
on a simple task, we would like to investigate
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whether it can do so for tasks that require more
complicated attention patterns such as the reversed
and noisy task.

Although the Mix Attender, outperformed all
baselines on both tasks, it was not able to get more
than 40% and 5% sequence accuracy for long 1
and long 2 respectively.

Figure 8: SeqAccBE (5 runs) for the Mix Attender and
best baseline on the reversed lookup tables (reverse)
and lookup tables with noisy start (noisy).

Figure 8 shows that when considering seqAccBE,
the Mix Attender is able to extrapolate well in the
noisy setting and a little in the reverse setting. This
suggests that it is not able to extrapolate well when
considering sequence accuracy because it strongly
suffers from the <eos> problem. This is a recur-
rent problem in our experiments and is more likely
to happen in harder tasks and larger models.

7.4 Attention Pattern

As previously discussed, variants of the lookup
table task are especially interesting as we know
the gold standard attention pattern. This enables
evaluation of attention patterns through the MSE
attention loss (attnLoss).

Table 3 shows the attention loss averaged over
the three tasks. Although not perfect, the Mix At-
tender performs on average the best across all set-

Attention Interp. Long 1 Long 2 Long 3 Long 4 Long 5
Scaled Dot 5.3 6.3 8.1 10.2 12.6 15.4

Multiplicative 3.1 4.6 6.3 7.9 9.9 12.4
Additive 3.1 8.4 15.6 22.2 28.7 34.8

Transformer 2.8 3.5 6.1 9.1 11.7 13.9
TransformerXL 3.0 3.9 5.3 7.1 9.1 11.4
Mix Attention 2.1 2.2 2.9 4.1 5.3 6.7

Table 3: AttnLoss for various attention models aver-
aged over the three datasets and 5 runs.

tings. 9 Crucially, it performs similarly in an in-
terpolation setting and simple extrapolation setting
(long 1), while all other baselines perform signif-
icantly worse after adding a single token. Even in
long 2, it is competitive with all other attention
mechanisms in their interpolation domain. This in-
dicates that the model is indeed able to extrapolate
by being more precise with its attention pattern.

7.5 Qualitative Analysis

In addition to enabling extrapolation, the temporary
variables such as the weight given to each building
block are very helpful for debugging the model and
improving interpretability.

Figure 9 shows the output of a Mix Attender for
the lookup tables with noisy start task. The input
was sampled from the Long 4 test set. The top-
left image shows the final attention. The top-right
table shows the value of some interpretable vari-
ables at every decoding step. The bottom images
correspond to the content and location attention.

The first decoding step uses location attention
to attend to the first input. For the next three steps,
the model outputs a mixing weight %(λ) ≈ 0 to
focus on content attention. The content attention
successfully finds the first non-noisy table (after
!). 10 It then goes back to using the location
attention with ρ(α) = 1 and ρ(1/n) = 1 to generate
a diagonal attention. Finally, it predicts <eos>
when attending to the end of the input “.”.

At each step, σ = minσ as it does not need
to attend to neighboring words for this task. %(λ)

is never exactly 0 or 1, such that the model can
easily learn to switch between content and location
attention as it does not collapse to using a single
form of attention.

9Some baselines outperformed it in the interpolation set-
tings of specific tasks. Namely, the additive attention in the
reversed task and transformer in the noisy task.

10A single step of content attention should be sufficient, but
the model seems to consistently use three steps.
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Figure 9: Example output by the attention-mixer for the lookup tables with noisy start task (Long 4 test set).

8 Discussion

In this paper, we focused on one type of extrapola-
tion, which is especially important in NLP: gener-
alization to longer sequences. We propose a new
location-based attention, and show that it can ex-
trapolate better than previous models while learn-
ing various attention patterns.

Despite promising initial results, our model is
still unable to extrapolate perfectly for harder tasks.
By analyzing its behavior, we uncovered an inter-
esting heuristic used by seq2seq models, namely
that they keep track of a decoding “counter” to
know when to output the <eos> token. This is
a bottleneck for extrapolation, suggesting that re-
moving this heuristic is key to reaching perfect
extrapolation and should be investigated in future
work.

Once the <eos> problem is solved, we could
test the model on real-world datasets. It would also
be interesting to test such attention mechanisms in
self-attentive seq2seq models without recurrence.
Finally, as the location attender is not model depen-
dent, it could be pretrained on complex location
patterns and incorporated as a plug-and-play mod-
ule to get extrapolatable position attention.

Taking a step back, we have shown that current

deep learning models with common attention mech-
anisms are unable to extrapolate well on seemingly
straightforward tasks. This tends to be overlooked
by the field due to standard benchmarks that can
be solved using only interpolation. We hope that
this paper acts as a reminder that extrapolation is a
hard setting that has not been much investigated by
the machine learning community. As current meth-
ods that memorize and learn superficial cues are
unable to extrapolate while humans are, we believe
that such a setting might help (and force) the field
to come up with more human-like computational
models that are capable of abstract reasoning.
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