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Abstract

Multi-task Learning methods have achieved

significant progress in text classification. How-

ever, existing methods assume that multi-task

text classification problems are convex multi-

objective optimization problems, which is un-

realistic in real-world applications. To ad-

dress this issue, this paper presents a novel

Tchebycheff procedure to optimize the multi-

task classification problems without any con-

vex assumption. The extensive experiments

back up our theoretical analysis and validate

the superiority of our proposals.

1 Introduction

Multi-task Learning (MTL) aims to learn multi-

ple related tasks simultaneously, and obtain better

performance than learning each task independently

by setting inductive bias across tasks. (Caruana,

1993; Bakker and Heskes, 2003; Ben-David and

Schuller, 2003; Ando and Zhang, 2005). It has

achieved great success in various applications rang-

ing from computer vision (Kendall et al., 2018)

to text classification (Liu et al., 2016, 2017; Xiao

et al., 2018).

Existing MTL methods for text classification,

usually set up the inductive bias across tasks by

designing a parameterized hypothesis class that

shares some parameters across tasks (e.g. shares

some hidden layers in a Neural Network), and cast

the multi-task text classification problem as a multi-

objective optimization problem. L1-metric method

is one of the most popular strategies for solving the

multi-objective optimization problem. Specifically,

it learns the parameters by minimizing a weighted

linear combination of per-task losses. And this

method is able to find an arbitrary Pareto optimal

solution in the Pareto set if the problem is con-

vex. Unfortunately, for a non-convex problem, this
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(b) Non-convex case.

Figure 1: Graphical interpretation of Pareto optimiza-

tion for weighted linear combination based MTL. The

points of tangency between the line of linear combina-

tion and Pareto front are Pareto optimal points. (a).

in the convex case, all the Pareto optimal points are

achievable; (b). in the non-convex case, the Pareto op-

timal points located at the concave part of the Pareto

front are unachievable.

method excludes many Pareto optimal solutions

from its search scope. To illustrate the issue, it

is instructive to consider a 2-tasks learning case

shown as Figure 1. From Figure 1, we can see

that for a non-convex problem, the Pareto points

located at the concave part of the Pareto front are

unachievable. According to the uniform conver-

gence properties of MTL (Baxter, 2000), the exclu-

sion of Pareto optimal solutions may degenerate

the generalization performance of multi-task text

classification.

To address the non-convexity problems, this pa-

per proposes a novel Tchebycheff procedure to

improve the performance of multi-task text classifi-

cation. To validate the superiority of the proposed

method, we conduct the experiments on two classi-

cal text classification problems: sentiment analysis

on reviews (Blitzer et al., 2007) and topic classifi-

cation on news (Lang, 1995). The results show that

our proposed method can converge and outperform

several state-of-the-art multi-task text classification

methods.
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2 Related Works

The family of Pareto optimality methods, includ-

ing L1-metric methods (weighted sum methods)

(Maurer et al., 2016; Chen et al., 2018; Kendall

et al., 2018) and multiple-gradient descent algo-

rithm (MGDA) (Sener and Koltun, 2018), have

become one of the most prevalent Multi-task Learn-

ing (MTL) strategies. In multi-task text classifica-

tion, L1-metric methods are widely used (Liu et al.,

2016, 2017; Xiao et al., 2018; Yadav et al., 2018).

However, for non-convex problems, the L1-metric

methods are likely to exclude the optimal hypothe-

sis from the hypothesis class.

To handle the non-convex case, MGDA lever-

ages the Karush-Kuhn-Tucker conditions and pro-

vides Pareto stationary points as solutions. How-

ever, the solutions are not sufficient to be Pareto

optimal. A novel MTL method, which can achieve

Pareto optimal without any convex assumption,

is necessary to compensate for disadvantages in

the L1-metric and MGDA. In this paper, a novel

Tchebycheff procedure is proposed to achieve

Pareto optimal without any convex assumption.

3 MTL as Multi-objective Optimization

Consider a multi-task learning problem with T
tasks over an input space X and a collection of task

spaces {Yt}Tt=1. There is also a parametric hypoth-

esis h = {f t}Tt=1 ◦ g = {f t(g(x, θsh), θt)}Tt=1 :

X → {Yt}Tt=1 for each task, where θsh represents

the parameters shared between tasks, θt represents

the task-specific parameters, g(·, θsh) : X → R
K

is the feature map used across different tasks. K is

the dimension of the representation space. The

functions g(·, θsh) : X → R
K and f t(·, θt) :

X → Yt are chosen from respective hypothe-

sis classes G and F . h is in hypothesis classes

H. The choice of representation and specialized

predictors is based on the data observed for all

the tasks. The data takes the form of a multi-

sample D = {Dt}Tt=1, with Dt = (Xt, Y t) and

(Xt, Y t) = {xti, yti}nt

i=1 ∼ Pnt
t .

The task-specific training loss is de-

noted by Lt(f t(g(Xt, θ
sh), θt), Y t) :

Yt × Yt → R
+. Correspondingly, the

empirical loss of the task t is defined as

L̂t(θsh, θt)= 1
nt

∑nt
i=1 Lt(f t(g(xti, θ

sh), θt), yti) .

We also denote the transpose of the vector/matrix

by superscript ′ , the logarithms to base 2 by log.
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Figure 2: Comparison between L1 and L∞ metric. L1

metric cannot achieve Pareto optimal points lying on

the concave part while L∞ metric can. L∞ metric finds

the set of weak Pareto optimal points, which includes

the set of Pareto optimal points.

3.1 Multi-objective Optimization
MTL can be formulated as a multi-objective op-

timization problem that optimizes a collection of

possibly conflicting objectives (Sener and Koltun,

2018). We formulate the optimization objective of

MTL as a vector-valued loss L:

min
θsh;θ1,...,θt

L(θsh; θ1, ..., θT ), (1)

where L(θsh; θ1, ..., θT )=(L̂1(θsh, θ1), ..., L̂T (θsh, θT ))
′

. The goal of multi-objective optimization is to

achieve the (weak) Pareto optimality.

Definition 1 (Pareto optimality for MTL). The
Pareto optimality for MTL is defined as:

(i) A solution θ dominates a solution θ if
L̂t(θsh, θt) ≤ L̂t(θ

sh
, θ

t
) for all tasks t and

L(θsh; θ1, ..., θt) �= L(θsh; θ1, ..., θt).

(ii) A solution θ∗ is called Pareto optimal if there
exists no solution θ that dominates θ∗.

Definition 2 (Weak Pareto optimality for MTL). A
solution θ is weakly Pareto optimal if there does
not exist another solution θ such that L̂t(θ

sh
, θ

t
) <

L̂t(θsh, θt) for all tasks t.

The set of (weak) Pareto optimal solutions are

different trade-offs between tasks. The Pareto op-

timal set is a subset of the weakly Pareto optimal

set.

3.2 Method of the Global Criterion
Global criterion is a standard technique for finding

(weak) Pareto optimality, which optimizes all tasks
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Figure 3: An original hard parameter sharing network

model.

together by minimizing a weighted Lp-objective

shown as (2).

min
θsh;θ1,...,θt

||(w1L̄1, ..., wT L̄T )||p, (2)

where 1 ≤ p ≤ ∞, L̄t = |L̂t(θsh, θt)−l∗t |, wt ≥ 0
and

∑T
t=1wt = 1. l∗t is the ideal empirical loss

of training task t. p = 1, 2 or ∞ are widely used

choices. The L∞ is a Tchebycheff metric. The

state-of-the-art multi-task text classification meth-

ods use the L1 metric.

3.3 L1-metric versus L∞-metric
Non-convex Multi-objective Optimization: L∞
metric can find every Pareto optimal solution with-

out convex assumption. By contrast, the L1 metric

excludes some Pareto optimal solutions when the

problem is non-convex (Miettinen, 1998). It can

be interpreted geometrically in a two-dimensional

case shown as Figure 2. From Figure 2, we can see

that a Pareto optimality is achieved at the point of

tangency between the Pareto front and the surface

formulated by Lp metric. L1 metric cannot be tan-

gency to the Pareto optimal points located at the

concave part of the Pareto front.

In practice, most of the multi-task text classifica-

tion problems are non-convex multi-objective prob-

lems, especially when the Deep Neural Network

involved. According to the uniform convergence

properties of MTL (Baxter, 2000), the exclusion

of Pareto optimal solutions will lead to the degen-

erated performance. Therefore, we use the L∞
metric to boost the performance.

Weak Pareto optimality: The solution of a L∞-

metric objective is weakly Pareto optimal. Figure 2

provides geometrical interpretation. Empirical risk

combinations formulate the upper bound of the gen-

eralization error of MTL (Baxter, 2000). Weakly

Pareto optimal set, which contains more candidate

…
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…
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Figure 4: An adversarial hard parameter sharing net-

work model.

empirical risk combinations than the Pareto opti-

mal set, can achieve a lower generalization error

than Pareto optimal set.

Therefore, this paper presents to use L∞-metric

to improve the performance of multi-task text clas-

sification.

4 Tchebycheff Procedure for Multi-task
Text Classification

Many multi-task neural network models can be

used in multi-task text classification, such as hard

parameter sharing networks (Caruana, 1997) and

soft parameter sharing networks (Liu et al., 2017;

Xiao et al., 2018). This paper adopts a hard pa-

rameter sharing network model, because it has the

lowest computational cost among the models.

4.1 Hard Parameter Sharing Network
Original hard parameter sharing network: A

hard parameter sharing network learns multiple

related tasks simultaneously by sharing the hidden

layers across all tasks, while keeping task-specific

output layers for each task shown as Figure 3.

The shared layers can be formulated by any

feature extractor (e.g. long short-term mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997),

TextCNN (Kim, 2014)), while the task-specific out-

put layers are task dependent. In multi-task clas-

sification, the task-specific layers are usually for-

mulated by fully connected layers ending with a

softmax function.

Adversarial hard parameter sharing net-
work: Cutting edge work (Liu et al., 2017) shows

that adding an adversarial module to a MTL model

can improve the performance. We extend the origi-

nal hard parameter sharing network with an adver-

sarial module shown as Figure 4. The adversarial

module is essentially a task discriminator in the

representation space, which discriminates which
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Algorithm 1: Tchebycheff Procedure

Input: data Dt = (Xt, Y t), the number of

training epochs Ne.

Initialization: Train each task t indepen-

dently, get lt (the loss corresponding to the

highest verification accuracy) and initialize

θsh0 with the hidden layers of task 1.

for i = 1 to Ne do
t̂ = argmaxt{minθ1 w1L̂1(θshi−1, θ

1), ...}
θshi , θti = argminθsh,θt̂ L̂t̂(θsh, θt̂)

end for
for t = 1 to T do

θtNe
= argminθt L̂t(θshNe

, θt)
end for
return θshNe

, θ1Ne
, ..., θTNe

task a sample x belongs to and can be formulated

as (3).

D(x;W, b) = softmax(W
′
g(x, θsh) + b), (3)

where W ∈ R
K×K and b ∈ R

K .

4.2 Tchebycheff Loss
To boost the performance in non-convex problems,

we use the Tchebycheff (L∞) metric to formulate

the optimization objective.

The scales of empirical risks for different tasks

can vary significantly. To normalize the scales, we

divide each empirical risk in the MTL model with

the empirical risk of learning the corresponding

task independently, which typically have similar

scale. That is, we define the weight wt in (2) as (4).

wt =
1

lt
∑T

i=1
1

li

, (4)

where lt is the empirical risk of learning task t in-

dependently. In practice, we set lt to be the training

loss of training task t independently and achieving

the highest accuracy in verification.

In the ERM (Empirical Risk Minimization)

paradigm, it is reasonable to assume that the mini-

mum empirical loss of each task equals 0. That is,

l∗t = 0 in (2). Further more, the empirical losses

are non-negative. This paper present the Tcheby-

cheff Loss for multi-task text classification as (5).

L̂cheb = max
t

{w1L̂1(θsh, θ1), ..., wT L̂T (θsh, θT )},
(5)

where wt is defined in (4).

Algorithm 2: Adv Tchebycheff Procedure

Input: data Dt = (Xt, Y t), the number of

training epochs Ne, α.

Initialization: Train each task t indepen-

dently, get lt (the loss corresponding to the

highest verification accuracy) and initialize

θsh0 with the hidden layers of task 1.

for i = 1 to Ne do
Train the discriminator with θshi−1 and get

L̂i
D

if L̂i
D ≤ α then

t̂=argmaxt{minθ1 w1L̂1(θshi−1, θ
1),...}

θshi , θti = argminθsh,θt̂ L̂t̂(θsh, θt̂)
else

θshi = argminθsh L̂D

end if
end for
for t = 1 to T do

θtNe
= argminθt L̂t(θshNe

, θt)
end for
return θshNe

, θ1Ne
, ..., θTNe

4.3 Tchebycheff Loss for Adversarial MTL
The empirical loss of the discriminator can be for-

mulated as (6).

L̂D = max
W,b

T∑

t=1

1

nt

nt∑

i=1

�yi=t logD(xti;W, b),

(6)

where �yi=t is the indicator function which equals

to 1 when yi = t otherwise 0.

In the adversarial MTL setting, we add the loss

of the discriminator into the Tchebycheff loss. In

the Tchebycheff procedure, we optimize θsh with

the discriminator when L̂D > α, where α is a

hyper parameter. (7) is the Tchebycheff loss for

Adversarial MTL.

L̂chebAdv = max{�L̂D≤αL̂cheb,�L̂D>αL̂D},
(7)

4.4 Tchebycheff Procedure
By minimizing the Tchebycheff loss (5) or (7), we

can learn a (adversarial) hard parameter sharing net-

work model. The training process of the model is

defined as an (adversarial) Tchebycheff procedure,

which is formulated as Algorithm 1 ( Algorithm 2

for the adversarial model).

The networks are trained with backpropagation.

In the adversarial Tchebycheff procedure, the dis-
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criminator is trained by using a gradient reversal

layer (Ganin and Lempitsky, 2015).

The computational cost of training a hard pa-

rameter sharing network model with Tchebycheff

procedure is higher than training it with a L1 metric.

The extra cost comes from the process of selecting

the task with maximum loss. However, it can be

easily reduced by parallelly computing loss of each

task.

5 Experiments

In this section, firstly, we conduct a synthetic ex-

periment to validate our theory analysis. Then, we

perform experimental studies on two real-world

applications: sentiment analysis and topic classifi-

cation. The implementation is based on PyTorch

(Paszke et al., 2019). The code can be found in the

supplementary materials.

5.1 Synthetic Experiment

In this section, two 2-objective optimization prob-

lems, problem 1 and 2 , are introduced to evalu-

ate the performance of the L1 metric method and

the L∞ metric method. Problem 1 is a convex 2-

objective optimization problem, while problem 2

is a non-convex 2-objective optimization problem.

Problem 1.

min
x1,x2

(x1, x2)
′

s.t. x2 ≥ 1/x1

x1 ≥ 0, x2 ≥ 0 .

Problem 2.

min
x1,x2

(x1, x2)
′

s.t. x2 ≥ 1/x1 + 5/(e(x1−1)2 + 1)

x1 ≥ 0, x2 ≥ 0 .

Let w1 ∈ {0.01, 0.02, 0.03, ..., 0.99, 1} and

w2 = 1−w1. We solve problem 1 by using the L1

metric method (minimizing w1x1+w2x2) and L∞
metric method (minimizing max(w1x1, w2x2)) re-

spectively. The results are shown in Figure 5. Then,

we compare the L1 metric method with the L∞
metric method in solving the non-convex problem

2. Figure 6 shows the results. Experimental results

verify the superiority of the L∞ metric method at

handling non-convex case.

5.2 Real World Applications
5.2.1 Datasets
Sentiment Analysis 1. We evaluate our algorithm

on product reviews from Amazon. The dataset

(Blitzer et al., 2007) contains product reviews from

14 domains: apparel, baby, books, camera photo,

DVDs, electronics, health personal care, kitchen

appliances, magazines, music, software, sports out-

doors, toys, games and video. We consider each

domain as a binary classification task. Reviews

with rating > 3 are labeled positive, those with rat-

ing < 3 are labeled negative. Reviews with rating

= 3 are discarded as the sentiments are ambiguous

and hard to predict. The training/testing/validation

partition is randomly split into 70% training, 10%

testing, and 20% validation.

Topic Classification 2. We select 16 news-

groups from the 20 Newsgroup dataset, which is

a collection of approximately 20,000 newsgroup

documents. We formulate the 16 newsgroups into

four 4-class classification tasks (shown as Table

1). The training/testing/validation partition is ran-

domly split into 60% training, 20% testing, and

20% validation.

Table 1: Data Allocation for Topic Classification Tasks.

TASKS NEWSGROUPS

COMP
OS.MS-WINDOWS.MISC, GRAPHICS,
SYS.MAC.HARDWARE, WINDOWS.X .

REC
SPORT.BASEBALL, SPORT.HOCKEY

AUTOS, MOTORCYCLES .

SCI
CRYPT, ELECTRONICS,
MED, SPACE .

TALK
POLITICS.MIDEAST, RELIGION.MISC,
POLITICS.MISC, POLITICS.GUNS.

5.2.2 Network Model
We implement our (adversarial) Tchebycheff Proce-

dure via a deep MTL network with hard parameter

sharing strategy (Caruana, 1997). As shown in

Figures 3 and 4, all tasks have task-specific out-

put layers and share the feature map layers. In the

adversarial Tchebycheff Procedure, an extra adver-

sarial module is added in the deep MTL network.

In our experiments, TextCNN (Kim, 2014) is

used to build feature extraction module. The

TextCNN is structured with 3 parallel convolutional

layers with kernels size of 3, 5, 7, respectively.

1https://www.cs.jhu.edu/~mdredze/
datasets/sentiment/

2http://qwone.com/~jason/20Newsgroups/
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Figure 5: Convex case. (a) shows the Pareto front of problem 1. (b) shows the Pareto optimal points that the L1

metric method achieves with different w1 and w2. (c) shows the Pareto optimal points that the L∞ metric method

achieves with different w1 and w2. Both the L1 and L∞ metric method can find all Pareto optimal points.

Figure 6: Non-convex case.(a) shows the Pareto front of problem 2. (b) shows the Pareto optimal points that the

L1 metric method achieves with different w1 and w2. (c) shows the Pareto optimal points that the L∞ metric

method achieves with different w1 and w2. The L1 metric method excludes the Pareto optimal points located at

the concave part, while the L∞ metric method can find all Pareto optimal points.

The extracted feature representations are then con-

catenated and classified by the task-specific output

module, which has one fully-connected layer.

The adversarial module is built with one fully

connected layer whose output size equals to the

number of the tasks. It is noteworthy that the ad-

versarial module connects to the shared layers via

a gradient reversal layer (Ganin and Lempitsky,

2015). The gradient reversal layer multiplies the

gradient by −1 during the backpropagation, which

optimizes the adversarial loss function (6).

5.2.3 Training Parameters
We train the deep MTL network model according

to Algorithms 1 and 2 respectively. We set α be 2.5
and 1 for sentiment analysis and topic classification

respectively. The learning rates are 1e − 4 and

3e−4 for sentiment analysis and topic classification

respectively. We use Adam optimizer (Kingma and

Ba, 2015) and train 3000 epochs for both sentiment

analysis and topic classification. The batch size

is 256. We use dropout with a probability of 0.5

for both adversarial modules and all task-specific

output modules.

5.2.4 Results and Analysis
Classification Accuracy
We compare our proposed methods with baselines

and some state-of-the-art methods: (i) Single Task:
solving tasks independently, (ii) Uniform Scaling:
minimizing a uniformly weighted sum of loss func-

tions, (iii) MGDA: using the MGDA-UB method

proposed by (Sener and Koltun, 2018). (iv) Adver-
sarial MTRL: using the adversarial MTL frame-

work proposed by (Liu et al., 2017).

We report results over 10 runs by plotting clas-

sification accuracy of each classification task for

sentiment analysis and topic classification in Fig-

ures 7 and 8 respectively. Figures 7 and 8 visually

compare the classification accuracy performances

between all the methods. The numerical results val-

idate that the proposed (adversarial) Tchebycheff

procedure outperforms the state-of-the-art meth-

ods.
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Figure 7: Classification accuracy of Single Task Learning (single), Uniform Scaling (uniform), MGDA (mgda), Ad-

versarial MTRL (mtrl_adv), Tchebycheff procedure (tchebycheff) and adversarial Tchebycheff procedure (tcheby-

cheff_adv) on sentiment analysis dataset. Each colored cluster shows the classification accuracy performance of

a method over 10 runs. Adversarial Tchebycheff procedure has a better average performance than Tchebycheff

procedure. Our proposed methods outperform Single Task Learning in all tasks and outperform Uniform Scaling,

MGDA, Adversarial MTRL in most tasks. (Adversarial) Tchebycheff procedure’s average performance dominates

the state-of-the-art methods.

Figure 8: Classification accuracy of Single Task Learning (single), Uniform Scaling (uniform), MGDA (mgda), Ad-

versarial MTRL (mtrl_adv), Tchebycheff procedure (tchebycheff) and adversarial Tchebycheff procedure (tcheby-

cheff_adv) on topic classification dataset. Each colored cluster shows the classification accuracy performance of

a method over 10 runs. Adversarial Tchebycheff procedure has a better average performance than Tchebycheff

procedure. Our proposed methods outperform Single Task Learning in comp, sci, talk and outperform Uniform

Scaling, MGDA, Adversarial MTRL in sci, talk. (Adversarial) Tchebycheff procedure’s average performance

dominates the state-of-the-art methods.

Convergence
To verify the convergence of the proposed (adver-

sarial) Tchebycheff procedure, we plot curves of

training loss for each task and discriminator in

Figure 9 for topic classification. The (adversar-

ial) Tchebycheff procedure obtains similar conver-

gence curves in sentiment analysis. The results

verify that our method converges rapidly. From
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Figure 9: Convergence curve of task specific loss achieved by adversarial Tchebycheff procedure for topic clas-

sification. The empirical loss decreases rapidly in the first 500 epochs and then tend towards convergence. The

absolute value of loss of the discriminator is higher than α after 500 epochs

Figure 10: Color map for the Tchebycheff procedure in the training process for sentiment analysis. In the first 500

epoch, all tasks appear evenly. Then, the frequency of occurrence of each task is various.

Figure 11: Color map for adversarial Tchebycheff procedure in the training process for topic analysis. The adver-

sarial module only appears in the first 500 epoch.

Figure 9, we can see that the adversarial module

only works in the first 500 epochs.

Tchebycheff Procedure Visualization

We visualize the Tchebycheff procedure and ad-

versarial Tchebycheff procedure with color maps

as shown in Figures 10 and 11. In the color maps,

each task has a specific color and each epoch is

colored by the task with the maximum loss. Here,

we display the color maps for sentiment analysis.

Figures 10 and 11 show that the (adversarial)

Tchebycheff procedure is a dynamic procedure,
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Table 2: Average training time (second/epoch) comparsion between Uniform Scaling method (uniform), MGDA

(Sener and Koltun, 2018), Adversarial MTRL (adv MTRL) (Liu et al., 2017), Tchebycheff procedure (TP), ad-

versarial Tchebycheff procedure (adv TP), Multi-processing Tchebycheff procedure (MTP-TP) and adversarial

Multi-processing Tchebycheff procedure (adv MTP-TP).

LEARNING TASK UNIFORM MGDA ADV MTRL TP MTP-TP ADV TP ADV MTP-TP

SENTIMENT ANALYSIS 1.5 3.3 2.8 3.1 2.3 3.1 2.3
TOPIC CLASSIFICATION 0.7 1.4 1.3 1.5 1.3 1.5 1.3

which changes optimization objective according

to its strategy (L∞ metric) in each epoch and fi-

nally achieves better performance. The procedure

is totally different from existing methods, which

optimize all tasks together.

Training Time
We run the code on a server with a 2.2GHz Intel

CPU and a single NVIDIA GeForce RTX 2080Ti

GPU. The results of the average training time for

each epoch in (adversarial) Tchebycheff procedure

(TP) are shown in Table 2. From Table 2, we can

see that the (Adversarial) Tchebycheff procedure

is slower than the Uniform Scaling method and

Adversarial MTRL (Liu et al., 2017).

In an adversarial Tchebycheff procedure, opti-

mizing the adversarial task (4.5s per epoch for sen-

timent analysis and 2.1s per epoch for topic classi-

fication) is more time-consuming than optimizing

a single task (3.5s per epoch for sentiment analysis

and 1.5s per epoch for topic classification). How-

ever, optimizing the adversarial module appears

less than 100 epochs. The extra computational

cost resulted from the adversarial training can be

ignored.

We are able to accelerate the (adversarial)

Tchebycheff procedure with Multi-processing. In

Multi-processing (adversarial) Tchebycheff proce-

dure, we accelerate the procedure of selecting the

task by computing the loss of each task in different

processes. We implement the code by using the

multiprocessing package in PyTorch. From Table

2, we can see that Multi-processing (adversarial)

Tchebycheff procedure outperforms MGDA and

Adversarial MTRL.

6 Conclusion

Most of multi-task text classification problems

are non-convex multi-objective optimization prob-

lems. However, existing methods ignore the non-

convexity and solve the problems using convex

optimization methods. To address this issue, this

paper presents an (adversarial) Tchebycheff proce-

dure for multi-task text classification without any

convex assumption. Numerical experiments show

that our proposed methods can converge and out-

perform state-of-the-art methods.

In the Tchebycheff Procedure, we choose the

weight for each task according to the empirical risk

of learning the corresponding task independently.

Obtaining the empirical risk is a little laborious. In

the future, it would be fruitful to develop a novel

weighting strategy for the Tchebycheff Procedure.
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