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Abstract

Incremental syntactic parsing has been an ac-
tive research area both for cognitive scientists
trying to model human sentence processing
and for NLP researchers attempting to com-
bine incremental parsing with language mod-
elling for ASR and MT. Most effort has been
directed at designing the right transition mech-
anism, but less has been done to answer the
question of what a probabilistic model for
those transition parsers should look like.

A very incremental transition mechanism of a
recently proposed CCG parser when trained in
straightforward locally normalised discrimina-
tive fashion produces very bad results on En-
glish CCGbank. We identify three biases as
the causes of this problem: label bias, expo-
sure bias and imbalanced probabilities bias.

While known techniques for tackling these bi-
ases improve results, they still do not make the
parser state of the art. Instead, we tackle all
of these three biases at the same time using
an improved version of beam search optimisa-
tion that minimises all beam search violations
instead of minimising only the biggest viola-
tion. The new incremental parser gives better
results than all previously published incremen-
tal CCG parsers, and outperforms even some
widely used non-incremental CCG parsers.

1 Introduction

It has been known for a long time that human sen-
tence processing is highly incremental (Marslen-
Wilson, 1973), with early formation of semantic
representations. A parser that is able to form rep-
resentation early must have some notion of partial
structure such as “S missing an object NP”. Also,
such parser needs to be able to combine partial
structures into bigger partial structures. These two
properties are at the core of Combinatory Catego-
rial Grammar (CCG) (Ades and Steedman, 1982;

Steedman, 2000). CCG represents partial con-
stituents using complex categories. For example
S/NP is the category of a transitive sentential pre-
fix such as I like or I think I like requiring an object
NP on its right. Such prefix categories are con-
structed using combinatory rules such as function
composition. In this way we can form (mostly)
left-branching derivation trees that can be parsed
incrementally even with simple transition mecha-
nisms such as shift-reduce parsers.

Still, left branching structures are not sufficient
to solve all the problems of incremental sentence
processing. Right adjuncts are particularly prob-
lematic. They appear on the right of the head
that they modify which means that they need to
be predicted, but at the same time they are op-
tional which makes it impossible to predict them
with confidence. Stanojević and Steedman (2019)
tackle this issue by using incremental tree-rotation
and revealing operations that allow adjuncts not to
be predicted, but still be easy to attach to the head
in case they appear. They show great improvement
in the incrementality of this approach as measured
by connectedness (the average stack size).

However, Stanojević and Steedman (2019)
parser is not fully incremental because its ora-
cle (the function that decides which transition to
take in case of non-determinism)1 is a probabilistic
model that looks at the whole sentence. It does so
using bi-directional ELMo embeddings with the
addition of bi-directional LSTMs. The present pa-
per describes a fully incremental version of Stano-
jević and Steedman (2019) parser using an incre-
mental oracle that does not look at the words that
are not yet processed.

We should note that by a fully incremental pars-
ing model we do not mean a parser that has all
the partial trees on the stack fully connected at ev-

1Note that this sense of a psycholinguistic term oracle is
not the same as the one used in dependency parsing literature.
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ery point in time. This is a property of extremely
predictive top-down parsers, while the parser that
we use is a CCG bottom-up parser. This choice is
intentional—even though there is clear evidence
that human sentence processing is highly incre-
mental, we argue below that there is no unequivo-
cal evidence that it is more incremental than would
be allowed under the Strict Competence Hypothe-
sis (SCH) which states that the parser cannot con-
struct any structure that is not licensed by the com-
petence grammar, given CCG’s generalized notion
of constituency (Steedman, 1989).

Most research in incremental parsing has been
directed at finding the right parsing algorithm (Ab-
ney and Johnson, 1991; Resnik, 1992; Hale, 2014;
Stanojević and Stabler, 2018) or grammar formal-
ism (Steedman, 1989; Stabler, 1991; Sturt and
Lombardo, 2005; Demberg et al., 2013; Stano-
jević et al., 2020), but not much has been done
in addressing the issue of finding the right ora-
cle. Early approaches to this problem were late-
closure and minimal-attachment heuristics (Fra-
zier, 1979; Pereira, 1985) which do not appear
to be language universal (Cuetos and Mitchell,
1988). Altmann and Steedman (1988) have shown
that these heuristics are overruled by human parser
if the context gives evidence for a particular in-
terpretation, in itself further evidence for process-
ing incrementality at all levels. It seems natural
to model the non-deterministic decision by using a
probabilistic model which will condition on words
and possibly on the context. Oracles of the mod-
ern broad coverage incremental parsers are with-
out exception statistical in nature.

The most typical statistical oracle is a locally
normalised generative model ether in the form of
simple PCFG (Stolcke, 1995; Hale, 2001), feature
based (Roark and Johnson, 1999; Roark, 2001)
or neural model (Dyer et al., 2016; Hale et al.,
2018). RNNG (Dyer et al., 2016) is the main con-
temporary representative of this approach. RNNG
is a top-down parser which in its first version
used a non-incremental discriminative locally-
normalised model. To make the parser fully in-
cremental Dyer et al. (2016) exchanged the dis-
criminative model for a generative one. This was
not enough to get a working single-model incre-
mental parser. Stern et al. (2017) added a couple
more modifications to the search, namely word-
synchronous beams with a very large number of
hypotheses, that gave good results.

Could we just apply these same techniques
to the CCG parser of Stanojević and Steedman
(2019) and replace non-incremental probabilistic
model with an incremental one? The short an-
swer is no. As it will be shown later, a straightfor-
ward adaptation of the beam search and switching
to a generative model does indeed improve accu-
racy over the model that does not do that, but not
enough to make the incremental parser competi-
tive. We provide an explanation for these results
and offer an alternative approach.

We identify the problem for building incremen-
tal parsing models in terms of three biases: (1)
label-bias, (2) exposure-bias and (3) imbalanced
probability search bias. These biases are well
known from the machine learning literature in
structured prediction, but they do not usually have
the extreme effect that is seen in the case of incre-
mental parsing. The techniques used in RNNG ad-
dress some of these biases individually but none of
the techniques addresses all three together. Instead
of using a collection of techniques for each bias,
we replace them all with a single solution in the
form of a global unnormalized model trained with
beam-search optimization that minimises all mar-
gin violations in the beam simultaneously. This
single technique addresses all of the mentioned bi-
ases and gives results that outperform all previous
incremental parsing models even with a relatively
small beam. This is not to say that all unwanted
biases are removed—for instance, beam search is
still a biased search. However, the biases that re-
main do not have the drastic effect on performance
of the three identified above.

2 Baseline model

The parser of Stanojević and Steedman (2019)
already offers a fully incremental transition sys-
tem with a non-incremental probabilistic model
that gives state of the art accuracy in recovering
predicate-argument dependencies. The parser en-
codes words using ELMo (Peters et al., 2018) and
BiLSTM (Graves et al., 2005), sub-trees with tree
encoders and the stack with Stack-LSTM (Dyer
et al., 2015). This provides the encoding of the
whole configuration together with the buffer, be-
cause the buffer is implicitly encoded via ELMo
and Bi-LSTM, which look at the whole sentence.
Given the hidden vector representation of the con-
figuration, the parser uses a feed-forward network
to determine the probability of the next action.
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There are three main types of transitions:
• Parsing actions: shift and reduce(X) where X

is a unary or binary combinatory rule;
• Supertagging actions: tag(X) where X is one

of the lexical supertags from English CCG-
bank (Hockenmaier and Steedman, 2007);
• Right-adjunction actions: adjoin(X) where X

is one of the nodes to which the adjunct can
be adjoined.

We refer the reader to (Stanojević and Steed-
man, 2019) for more detail on the original neural
model and transition system, which are not of par-
ticular relevance here. What matters is only that
(1) the number of tagging actions is much big-
ger than the number of possible parsing actions
and (2) that the buffer is implicitly encoded with
ELMo and Bi-LSTM. To make the parsing model
fully incremental first we modify ELMo embed-
dings: instead of using full ELMo embeddings we
use only the forward LSTM part of ELMo. This
decreases performance by only two points on the
dev set F1 score from 89.5 to 87.5. Finally, we
replace Bi-LSTM with normal LSTM (Hochreiter
and Schmidhuber, 1997). This causes a significant
drop in performance to 60.9.

We take the fully incremental model with 60.9
F1 as our baseline, and show how it can be im-
proved, to come as close as possible to the non-
incremental version that uses the same embed-
dings, which has accuracy 87.5 F1, changing only
the method of training, keeping the network archi-
tecture and embeddings the same.

3 Three sources of bias

3.1 Label bias
Label bias is a frequent bias present in some types
of locally normalised models. It was first recog-
nised by Bottou (1991), but became more widely
known with the publication of CRFs (Lafferty
et al., 2001). Here we give an explanation of label-
bias in incremental parsing context. For a more
formal treatment see Andor et al. (2016).

In a general non-incremental setting, a discrim-
inative parsing model assigns a probability to the
whole transition sequence as p(y|x) where y =
[y0, y1, . . . , ym] is sequence of parsing actions and
x = [x0, x1, . . . , xn] is a sequence of words.
Since the model is locally normalised we can ex-
press this conditional probability as the product
of conditional probabilities of each parsing action:
p(y|x) =

∏
i p(yi|y<i, x). In the non-incremental

version of the parser there are no independence as-
sumptions, so every parsing action can condition
on the whole sequence of words x. However, in the
incremental version we can condition only on the
k(i) words that have been observed (have shifted
from the buffer to the stack) in first i transitions.
This makes the new model of the whole transition
sequence be p(y|x) =

∏
i p(yi|y<i, x<k(i)).

This small change has big consequences on
parsing. Imagine the situation in which the incre-
mental parser has processed a prefix x<k(i). This
prefix may be genuinely ambiguous making the
parser have two derivations in the beam, one in
state A and the other in state B, both equally good
up until that point in the sentence. After process-
ing some more words, the parser might find a word
that resolves the ambiguity and provides evidence
that the state A was correct. A good incremental
parser would then give a higher score to all deriva-
tions that originated in state A and a lower score to
derivations that originated in state B. However, the
locally-normalised model cannot do that. Because
the model is locally normalised, the probability of
all transitions leaving any state must sum to 1, so
even if all transitions are bad (they come from a
bad state) they cannot all be penalised.

What this means is that parser cannot recover
from garden-paths even with an unboundedly
large beam.2 This is a deficiency of the probabilis-
tic model because of the introduced independence
assumption that the parsing action depends only
on the processed prefix. This makes the model ef-
fectively ignore its input in some situations.

When we are parsing with greedy search the
label-bias will have no influence, because there
will be no two states that compete with each other
while having a different history. Label-bias is
harmful only in the case of beam search.

3.2 Exposure bias

The usual way of training any sequence prediction
model is to train the prediction of the next action
based on the gold history in the data. But at test
time the model will have a predicted history rather
than a gold history. On occasions when that pre-
dicted history is wrong, the model may not assign
good probabilities to the future actions because it
has not been exposed to this erroneous history in

2We use the term garden-path in a more general sense
than in psycholinguistic literature to mean taking any transi-
tion path that may end up being wrong.
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its training data. This problem is often referred to
as exposure bias.

This is again specifically relevant for incremen-
tal parsing. Let’s say that the parser did enter
into a garden-path, and that there are still some
words left in the suffix. There will still be many
transition sequences that the parser could choose
from, before it finishes parsing the whole sentence.
Even though they are all bad, because we are in a
garden-path, they are not all equally bad. We want
the parser to choose the transition sequence that
would make the most out of this bad situation.

The exposure-bias, unlike the label-bias, influ-
ences greedy search too. In fact, exposure-bias is
particularly important for greedy models because
they are more likely to fall into a garden-path.

3.3 Imbalanced probability search bias

Incremental parsing models that condition on
the whole history cannot carry out exact search,
and have to use approximate methods like beam
search. Beam search is a biased search because it
searches only in the local neighbourhoods of the
locally most probable derivations. This locality is
proportional to the size of the beam. If the beam
were unbounded then search would be exact, but
often we use a small beam that is only a small re-
laxation of greedy search.

The fact that the beam search is biased is well
known and often accepted as a necessary evil,
but it has been recognised by Stern et al. (2017)
that for some parsing models the issue is particu-
larly bad because of imbalanced probability bias.
In their case, an incremental RNNG model had
actions for parsing and actions for generation of
words. The number of parsing actions was many
orders of magnitude smaller than the number of
word generation actions. This made the probabil-
ity of word generation very small. The expensive
action of word generation happens in all deriva-
tions an equal number of times but it happens in
different time steps. Beam search may accord-
ingly discard a good hypothesis too early because
that hypothesis has used expensive actions early.

The imbalanced probability bias implicitly
prefers states with low entropy. Bias for the low
entropy states is often associated with label-bias,
however the reasons and situations when this hap-
pens are different from imbalanced probability
search bias. Label-bias is a deficiency of the prob-
abilistic model, while imbalanced probability is a

deficiency of the search method. This is visible in
the context of search with an unboundedly large
beam: the model with label-bias would still prefer
states with low entropy while imbalanced proba-
bility bias would not be present—search would be
exact so it would not matter at which point in time
expensive actions were applied.

4 Eliminating biases

Some of these biases are well known in the lit-
erature of structure prediction and various pro-
posals have been made for reducing their effect.
However, most of these techniques usually address
only one of the biases, and the combination of
these techniques is not always straightforward.

As mentioned before, label-bias is caused by
model being (i) discriminative, (ii) locally nor-
malised and (iii) having independence assump-
tions about future input not influencing current ac-
tions. We could remove label-bias by removing
one of these properties from the model. Clearly,
we cannot remove property (iii) because we want
an incremental model. The simplest solution is to
change property (i) and make the model genera-
tive. The generative model would give us prob-
ability p(x, y) instead of p(y|x). This is done by
having an additional action for generation of a
word following a shift action. Here the model can-
not ignore the input because it is forced to generate
it. It can also recognise garden-paths: if we are in
a state that cannot generate the following word that
means we are in a garden-path and will punish all
transitions from that state. However, this solution
introduces imbalanced probability search bias be-
cause we will introduce word-generation actions
that have much higher entropy.

Lafferty et al. (2001) advocated dropping the
property (ii) by making the model globally nor-
malised. This would allow transitions to have lo-
cal weights instead of local probabilities. If all
transitions from some state are bad, the model
is able to give low weight to all of them be-
cause weights do not have to sum to one. Laf-
ferty et al. (2001) advocated using conditional
random fields (CRF), which are globally nor-
malised probabilistic models, but margin-based
alternatives like Max-Margin Markov Networks
(M3N) (Taskar et al., 2004) and Structured SVM
(Tsochantaridis et al., 2004) could be used in the
same way. These particular solutions are not appli-
cable here because they require (implicitly) enu-
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merating all possible derivations which is not pos-
sible with a model like ours that makes only few
independence assumptions.

Exposure bias happens because model is not ex-
posed to its errors during training time. With dy-
namic oracle (Goldberg and Nivre, 2012) parser is
trained on its own prediced history instead of the
gold sequence of actions (static oracle). When-
ever the model is in some sampled state (which is
not necessarily a good state), we train the model
to pick the transition that is a beginning of a path
that would lead the parser to the ending state with
the highest achievable metric score from that state.
Finding such a transition is not trivial for all sys-
tems and all metrics (Cross and Huang, 2016). To
this date there have been no proposals for a dy-
namic oracle for CCG parsing with F1 metric over
CCG dependency structures and it is not even clear
if there is a polynomial solution to this problem.
Therefore this is not an option that we can use.

An alternative is to use a reinforcement learning
algorithm REINFORCE (Williams, 1992). REIN-
FORCE samples derivations for training just like
dynamic-oracle, but does not require design of a
task-specific oracle extraction algorithm. Instead,
it implicitly minimises the expected error of the
desired metric. Fried and Klein (2018) have shown
that in some circumstances REINFORCE can give
results almost as good as dynamic oracle, but it
requires using additional techniques to compen-
sate for high variance of the training method. The
method of applying REINFORCE to the discrim-
inative parser is straightforward because sampling
trees from the discriminative parser is easy. How-
ever, that is not the case for the generative model
from which we have to sample both trees and sen-
tences at the same time. That is why we will apply
REINFORCE only to the discriminative model.

Imbalanced probability causes a search bias
so the way it was addressed by Stern et al.
(2017) is to modify the search itself. Stern
et al. (2017) introduced a word synchronous beam
search (WordSync) in which all the hypotheses
that are competing with each other are guaranteed
to have the same number of expensive actions.

Most of these methods are either not applicable
(exact CRF, exact M3N, dynamic oracle), or they
solve only some subset of the previously men-
tioned biases. However, we can resort to some ap-
proximate methods to global models. For instance,
instead of enumerating all hypotheses to compute

normalization we could use a beam search as an
approximation. This was done for CRF objec-
tive in (Zhou et al., 2015; Andor et al., 2016) and
for (single-violation) M3N objective in (Wiseman
and Rush, 2016). They all need to compare in
some way the gold hypothesis to the rest of the
beam, but the issue arises when the gold hypothe-
sis falls out of the beam. For that situation they use
different heuristics. CRF approximation of Zhou
et al. (2015) and Andor et al. (2016) uses Early
update of Collins and Roark (2004). During train-
ing with Early update, the beam search is stopped
when the gold hypothesis falls out of the beam and
the parameter update is performed. In the Beam-
Search Optimization (BSO) method of Wiseman
and Rush (2016) an alternative heuristic is used
from Daumé III and Marcu (2005) called LaSO.
LaSO does the update at the same point as Early
but, unlike Early, it continues decoding by remov-
ing all elements of the beam except for the gold
one. This will potentially result in another update
for the same training instance.

We have implemented most of these methods
in attempt to improve incremental CCG parsing.
However, even though many of them gave some
improvements over the baseline, none of them was
good enough to give a reasonably good parser. To
further improve the model we propose two novel
approaches: Gen-Rescaling and BSO-*-All where
* stands for both Early and LaSO heuristics.

4.1 New method I: Rescaling

Word Synchronous beam search did solve the im-
balanced probabilities issue for RNNG models,
but its improvements do not transfer to CCG. Here
we take a different approach: instead of adapting
the search to the model, we adapt the model to the
search. Since probabilities are imbalanced a pos-
sible way to solve that issue is to balance them
by exponentiating them with some weight. We
use the Beam Search Optimisation (BSO) LaSO
method from the previous section to train only
3 new parameters: one for supertagging actions,
one for word generation actions and one for re-
duce actions. These three numbers will be used to
exponentiate the probability of the respective ac-
tions and by that put them on the same scale. This
method is applied to a generative model and there-
fore addresses label-bias and imbalanced probabil-
ity bias, but it does not address exposure-bias.

After training the rescaled generative model
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scores every new transition sequence with:
p(a)2.17p(t)1.08p(w)1.00 where a, t and w are
parsing, tagging and word generation actions re-
spectively, while the numbers are the three learned
parameters that put probabilities in the same scale.

4.2 New method II: BSO-*-All

To address all biases together using only a sin-
gle techniques we modified margin approaches to
minimize all margin violations in the beam instead
of just the single one. When gold hypothesis falls
out of the beam BSO-Early and BSO-LaSO use
only the most violated hypothesis to update the pa-
rameters. However, there is no good reason not to
update against all violations present in the beam.
LeCun et al. (2006) argue that the good property of
CRF models is that they simultaneously decrease
weight of all bad hypotheses simultaneously. Our
BSO-*-All approach can be seen as an approxima-
tion of this idea using a beam. This small modifi-
cation does not slow down training in any signif-
icant manner (we already have a forward pass for
all the additional hypotheses because they are in
the beam) and it gives significant improvements in
parsing accuracy.

5 Experiments

We have conducted experiments on English CCG-
bank (Hockenmaier and Steedman, 2007). For
evaluation we use F1 score over labelled-directed
and unlabelled-undirected dependencies. The
parser is implemented in Scala and uses DyNet
(Neubig et al., 2017) for the neural computation.
The code is available on github.3

There are two dependency types often used
in CCG parsing research: first one from (Clark
et al., 2002) which is much closer to the typi-
cal CCG notion of dependencies and the second
one from (Clark and Curran, 2007) which is more
formalism-neutral but less expressive. The only
implementation of the second method is the one in
C&C parser and is not able to handle all the cate-
gories that come from CCGbank. This is the rea-
son why most previous work on incremental CCG
parsing has used the dependencies of Clark et al.
(2002). In order to be able to compare to them we
use the same dependencies.

3https://github.com/stanojevic/
Rotating-CCG/tree/incremental_max_margin

5.1 Models tested

We have tested the following methods:

Disc Incremental discriminative model (the base-
line).

Disc-REINFORCE Discriminative model
trained using REINFORCE to maximise
the expected reward (F1 score of CCG
dependencies).

Gen Generative model that additionally has word
generation transitions.

Gen-WordSync Same generative model but de-
coded with word-synchronous beam with
main beam size 100, word-beam size 10 and
no fast-tracking.

Gen-Rescaled Generative model that uses addi-
tional three weights to put the probabilities
of all actions on the same scale.

BSO-Early-Single and BSO-LaSO-Single
Un-normalised model trained with Early and
LaSO updates but only with single violation
per update as proposed in Wiseman and Rush
(2016).

BSO-Early-All and BSO-LaSO-All Same as
above but with minimizing all violations
present in the beam. We refer to them
together as BSO-*-All.

CRF-Early Globally normalized model with
Early update as proposed in (Zhou et al.,
2015; Andor et al., 2016).

CRF-LaSO Same as above but modified to use
LaSO instead of Early update.

All beam approximation methods used beam of
size 32. The number of samples in REINFORCE
is 32 and it includes a gold hypothesis for stability
as suggested by Fried and Klein (2018).

CRF-Early achieved accuracy of 36.9%, BSO-
Early-Single of 51.7% and Gen-WordSync of
58.1% which are all way below the baseline.
CRF-Early and BSO-Early-Single update meth-
ods probably gave bad results because the train-
ing is too unstable with Early heuristic that often
does not get to learn from the whole transition se-
quence. We are not sure why Gen-WordSync gave
bad results. It could be that word-synchronous de-
coding while addressing the imbalanced probabil-
ity search bias introduces some other search bias
that is even more harmful. Another reason could

https://github.com/stanojevic/Rotating-CCG/tree/incremental_max_margin
https://github.com/stanojevic/Rotating-CCG/tree/incremental_max_margin
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Figure 1: Reranking 100 samples of dev set sentences
generated by discriminative non-incremental model.

be that, unlike RNNG, we have introduced an ad-
ditional bottleneck of supertagging transitions that
would require additional modifications. We will
not consider these methods in the rest of the paper.

5.2 Results: Incremental Beam Search

Figure 2 shows the results for all the other methods
with different beam sizes. REINFORCE training
does improve the robustness of the discriminative
model. It improved greedy decoding by 10% more
than any other method, but due to label-bias it can-
not exploit the benefits of a larger beam.

The generative model addresses the label bias
which is evident from relatively good results with
a bigger beam. When on top of the generative
model we add Rescaling parameters the model
gets even more benefit as the beam gets larger.

The BSO-LaSO-Single model that addresses all
three biases at the same time gets very good results
and is outperformed by Gen-Rescaled model only
in the context of a very large beam. Gen-Rescaled
and BSO-LaSO-Single get close to 80% but do
not go above it. Our BSO-*-All modification to
beam search optimisations gives significantly bet-
ter results already with a very small beam. With
beam of size 8 BSO-LaSO-All crosses the bor-
der of 80% and it improves all the way to 82.7%.
This is only 4.8% lower than the upper bound set
by the non-incremental model. BSO-LaSO-All is
a small modification over BSO-LaSO-Single but
is responsible for more than 5% of improvement
over it. The importance of updating for all viola-
tions is particularly striking with the case of BSO-
Early where the accuracy increases by 29%.

CRF-Early already has the property of updating

against all bad hypotheses in the beam but it differs
from our best method in the type of loss (logis-
tic vs max-margin) and the update heuristic (Early
vs LaSO). We have also tried modifying the CRF
method to use LaSO (CRF-LaSO) which made the
model significantly better than the original CRF-
Early but still much lower than BSO-*-All.

5.3 Results: Reranking

Is the gap between non-incremental models and
incremental models due to the imperfect search or
to the imperfect prediction models? To test that we
have conducted an experiment where the models
need only to rerank a list of 100 derivations sam-
pled from non-incremental model for each sen-
tence in the development set. This puts beam
search out of the equation and tests only how good
are the models as discriminators between good and
bad trees. The samples have trees of mixed qual-
ity: the worst score a parser could get by reranking
the trees is 67.8 F1 while the best is 95.8 F1.

The results in Figure 1 show that the gap be-
tween incremental and non-incremental models
is around one point of F1-score. This is much
smaller than the results with beam search would
lead us to expect. Also here the generative model
outperforms BSO-LaSO-All. This means that the
primary reason for success of BSO-LaSO-All over
Gen in beam search is probably due to its incre-
mental scoring (a property that was also noticed
by Goyal et al. (2019) for similar models) and/or
lack of imbalanced probability bias.

We have also conducted reranking using
Minimum-Bayes Risk (MBR) method (Kumar and
Byrne, 2004) which finds the hypothesis that
would minimise the expected loss under some
metric. In the parsing context that means finding
the tree with the best expected F1-score (Good-
man, 1996; Titov and Henderson, 2006; Stano-
jević and Sima’an, 2015). MBR is defined only
for probabilistic models, but as Titov and Hen-
derson (2006) show it could also be adapted and
applied to non-probabilistic models, such as our
BSO-LaSO-All model.

Figure 1 shows that while MBR does not make
any significant difference for the non-incremental
model, it makes a huge difference for the incre-
mental models. With MBR they all manage to
outperform the non-incremental model. However,
we should not credit this right away to the quality
of the incremental models. As Fried et al. (2017)
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Figure 2: Influence of beam size on the dev results.

point out, improvements in reranking with a differ-
ent model could be a result of model ensembling.

5.4 Results: Test set performance
Table 1 compares our strongest method on the test
set against all the previously published incremen-
tal CCG models. The results show that it outper-
forms all the previous incremental models when
using beams of the same size. The improvement is
even bigger with the larger beam. Even thought
our primary goal is not to compete with non-
incremental parsers, our incremental model out-
performs some widely used non-incremental CCG
parsers such as EasyCCG (Lewis and Steedman,
2014). The result is particularly good for unla-
belled dependencies.

We also report the results of applying MBR
reranking using incremental model over the sam-
ples generated by the non-incremental model.
This model outperforms other incremental and
non-incremental models on all metrics.

6 Other relevant work

The incremental CCG parser of Ambati (2016)
uses the linear model trained with a structured per-
ceptron objective and the early update heuristic.
Given the simplicity of that model, it performs sur-
prisingly well. The reason is the fact that the struc-
tured perceptron addresses all the biases identified
in our paper. Our work has been an attempt to
bring these benefits to more modern neural mod-
els.

Another interesting approach to tackle label-
bias while keeping the probabilistic interpretation
is the error-states model of Vaswani and Sagae

Tag UF LF

In
cr

em
en

ta
l

Hassan et al. (2008) beam= 1 — 59.0 —
Ambati (2016) beam= 1 74.6 67.5 57.5
this work beam= 1 78.8 69.9 55.8
Goyal et al. (2019) beam= 5 85.5 — —
this work beam= 5 90.1 92.2 82.1
Ambati (2016) beam=16 90.8 88.3 80.8
this work beam=16 91.4 91.5 82.3
this work beam=64 92.0 92.3 83.4

N
on

-I
nc

re
m

en
ta

l Lewis and Steedman (2014) 93.0 88.6 81.3
Ambati et al. (2015) 91.2 89.0 81.4
Hockenmaier (2003) 92.2 92.0 84.4
Zhang and Clark (2011) 93.1 — 85.5
Clark and Curran (2007) 94.3 93.0 87.6
Stanojević and Steedman (2019) 95.4 95.8 90.2
this work MBR reranking 95.6 95.9 90.6

Table 1: Results on the test set. The results of Non-
Incremental parsers are shown only as a reference.

(2016). This model in its original formulation
would not be computationally efficient in our set-
ting because there are too many instances of error-
states to be trained on in CCG parsing caused by
large number of transitions. Possibly some modi-
fication based on sampling could remedy this.

There has also been some recent work on reduc-
ing the imbalanced probability bias. Mabona et al.
(2019) propose an algorithmic solution for organ-
ising beam search into buckets that have the same
number of expensive transitions. Crabbé et al.
(2019) propose a sampling based approach with
the same motivation of controlling which hypothe-
ses are being compared.

Of relevance for the CCG incrementality are
Sturt and Lombardo (2005) and Demberg et al.
(2013) who claimed that human sentence process-
ing is more incremental than CCG allows under
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SCH for sentences like:
The pilot embarrassed Mary and put
herself in a very awkward situation.

Here a male gender-biased interpretation of the
antecedent “the pilot” conflicts with a feminine
bound reflexive “herself”. The eye-movements
show processing difficulty as soon as “put herself”
is read, rather than being delayed until the com-
pletion of the VP by the PP. This allows subject
binding to be established by VP coordination.

Stanojević et al. (2020) argue that Sturt and
Lombardo’s result is explained by the fact that
the category for “put” is predictive of a future PP,
allowing establishment of binding in advance of
parsing without strict incrementality or compro-
mising SCH.

7 Conclusion and Future work

The methods discussed here have been applied to
the task of incremental CCG parsing, but they are
not limited to CCG or even to parsing as a task. In
principle, they could be applied to any task involv-
ing sequential structure prediction. We see this as
the most interesting use case not only for the BSO-
*-All training method but also for having an incre-
mental CCG parser. Such parsers can potentially
make much more informed decisions about the
next word, compared to the models based on mere
sequence of words prefix, by including semantic
and referential meaning (Altmann and Steedman,
1988), as well as syntax.
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