
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4100–4110
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4100

Exact yet Efficient Graph Parsing, Bi-directional Locality and
the Constructivist Hypothesis

Yajie Ye1 and Weiwei Sun12

1Wangxuan Institute of Computer Technology
1The MOE Key Laboratory of Computational Linguistics

2Center for Chinese Linguistics
Peking University

{yeyajie,ws}@pku.edu.cn

Abstract

A key problem in processing graph-based
meaning representations is graph parsing, i.e.
computing all possible derivations of a given
graph according to a (competence) grammar.
We demonstrate, for the first time, that exact
graph parsing can be efficient for large graphs
and with large Hyperedge Replacement Gram-
mars (HRGs). The advance is achieved by
exploiting locality as terminal edge-adjacency
in HRG rules. In particular, we highlight the
importance of 1) a terminal edge-first pars-
ing strategy, 2) a categorization of a subclass
of HRG, i.e. what we call Weakly Regular
Graph Grammar, and 3) distributing argument-
structures to both lexical and phrasal rules.

1 Introduction

Language production, though as important as lan-
guage understanding, has received very limited
theoretical and empirical research attention. A
fundamental problem in modeling language pro-
duction is parsing meaning representations, i.e.
computing all possible analyses of a given mean-
ing representation (MR) according to a (compe-
tence) grammar. In theory, the worst-case com-
plexities of existing algorithms are exponential or
high-degree polynomial w.r.t. grammar size and
input length. In practice, there are few systems
that can parse large but frequent MRs with a realis-
tic, wide-coverage grammar in a reasonable time.

The major contribution of this paper is an ex-
act yet efficient method to parse MRs in the
framework of graph-based semantic representa-
tions (Koller et al., 2019) and Hyperedge Replace-
ment Grammar (Drewes et al., 1997). The abil-
ity to enumerate all possible analyses of a graph
facilitates surface realization, grammar induction,
recursive graph embedding, etc. The advance in
efficiency is from exploiting locality of HRG rules
from the rarely discussed perspective of language

production, a reversed direction to language under-
standing. We discuss locality in a sense of termi-
nal edge-adjacency and develop a locality-centric
complexity analysis of the de facto algorithm in-
troduced by Chiang et al. (2013). Our analysis
motivates (1) a terminal edge-first parsing strategy,
(2) a categorization of a subclass of HRG, i.e. what
we call Weakly Regular Graph Grammar, and (3) a
computational support in the constructivist hypoth-
esis in theoretical linguistics. Altogether, our anal-
ysis leads to a substantial improvement in practical
graph parsing. An MR with the number of concep-
tual nodes ranging from 5 to 50 corresponding to
a Wall Street Journal sentence can receive a full-
forest analysis in 0.089 second on average with a
large-scale comprehensive grammar; Even seman-
tic graphs with c.a. 80 conceptual nodes can be
processed in less than 0.5 second.

2 A Graph-Structured Syntax-Semantics
Interface

Linguistically-informed graph parsing needs a pre-
cise model of the syntax-semantics interface. To
this end, we need to precisely describe elementary
structures corresponding to linguistic units at (mor-
phological,) lexical and phrasal levels, and pre-
cisely describe the MERGE operation of two lin-
guistic units. Under the umbrella of graph-based
MRs, we employ hypergraphs and HRGs (Drewes
et al., 1997) to achieve the two goals.

Throughout this paper, we define an edge-
labeled, ordered hypergraph over finite alphabet
Σ as a tuple G = (V,E, ℓ), where V is a finite set
of nodes, E ⊆ V + is a finite set of hyperedges,
and ℓ : E 7→ Σ is a labeling function. A hyper-
edge can connect to more than two nodes or a sin-
gle node. Labels can be associated to edges but not
nodes. The set of nodes connected by edge e are
denoted by V (e) and the set of edges connected to

4101

ABCD
proncareseemreally

arg1 arg1 arg1S

ABCD
careseemreally

arg1 arg1 arg1VP

ABC
careseem

arg1 arg1VRP

B A
arg1care

VPC B
arg1seem

VD C
really arg1

ADVA
pron

NP

=⇒ γ1

⇐=γ4

⇐=γ5

1
NP VP−→S

γ1
2 3

1

Y1

2

3

4
X−→Z

γ2

arg1 arg1

arg1

1
pron−→NP

γ3 2

1
ADV VRP−→VP

γ4

1 2

3
V VP−→VRP

γ5 2 1
really arg1−→ADV

γ6

1 2
seem arg1−→V

γ7 1 2
care arg1−→VP

γ8

1 2

3want

arg1

arg2−→V

γ9

1

23
V

1

2

3
VP−→VCP

γ10

Figure 1: An HRG-based syntactico-semantic derivation for He really seems to care. The right part are examples
of HRG rules. Throughout this paper, we use filled black nodes to indicate external nodes, arrows to indicate
single-node edges and directed arcs to indicate edges connected to two nodes. The edge labeled as Y in rule γ2
connects more than two nodes whose orders are indicated by tiny numbers around lines. Nodes in an HRG rule
and subgraphs of an input graph are mentioned with numbers and characters respectively. Since nodes receive no
informative labels, we use single-node edges with underlined terminal labels to represent concepts, e.g. “pron.”
Others terminal labels, e.g. “arg1,” express semantic roles.

node v are denoted by E(v). We use graph and hy-
pergraph interchangeably, and similarly for edge
and hyperedge.

Fig. 1 presents an example that contains a rais-
ing construction. The graph associated to the sen-
tence (indicated by S) is derived along with a syn-
tactic tree, in which the leaves and internal nodes
are associated with graphs (indicated by x) as lex-
ical and phrasal interpretations.

The key operation in semantic composition is
to glue two graphs, say G1 and G2. It is obvious
that not every node in G1 is visible to G2 and vice
versa. To emphasize on this point, we augment
the representation of a hypergraph (V,E, ℓ) with a
list of ordered external nodes Vx ∈ V + and get
a hypergraph fragment H = (V,E, ℓ, Vx). The
number of external nodes is denoted by rank(H).

Graph gluing can be manipulated by an
HRG G = (N , T ,P, S), where N and T are two fi-
nite disjoint alphabets of nonterminal and terminal
symbols respectively, S ∈ N is the start symbol,
and P is the finite collection of rewriting rules in
the form of A → R. The left hand side (LHS) A
belongs to N , and the right hand side (RHS) R is
a hypergraph fragment over N ∪ T . See γ1 to γ10
in Fig. 1 for example.

A carefully designed HRG can be linguistically
elegant, in that its rules are consistent with state-
of-the-art linguistic analysis. For instance, rais-
ing and control constructions receive principled

analysis with rules in Fig.1. HRG can be compa-
rable to other popular grammar formalisms, such
as Combinatory Categorial Grammar (CCG; Steed-
man, 1996, 2000). See Fig. 2 for an illustration.

(S\NPy)/NPx

λx.λy.like(y, x)
1 2 3

like

arg1

arg2

Figure 2: A comparison of CCG and HRG. The external
nodes 1 , 2 and 3 corresponds to S, NPy and NPx in
the syntactic category respectively.

3 Graph Parsing with a General HRG

In the framework of graph-based MRs, a key prob-
lem is graph parsing: computing all possible anal-
yses of a given semantic graph according to a
grammar. Fig. 3 demonstrates the target structure
of graph parsing — derivation forest. A deriva-
tion forest allows us to efficiently enumerate every
derivation. Coupled with a local score function
that evaluates the goodness of a rule application, a
graph parser can further tell the goodness of a par-
ticular derivation tree or the full forest as a whole.

Though essential, graph parsing is only partially
understood. In this section, we summarize the
state-of-the-art algorithm for graph parsing with
HRGs (Chiang et al., 2013), and then evaluate its
efficiency with a wide-coverage grammar.

4102

ABCD
proncareseemreally

arg1 arg1 arg1

ABCD
careseemreally

arg1 arg1 arg1

GRtGLt

Gt

2

1
ADV VRP

γ4

1

2 3 4 5:t

6 7 8 9 10 1112 Lt Rt

Figure 3: Graph parsing with an HRG. The context-freeness of HRG allows us to represent a derivation as a tree,
and sets of derivations as a derivation forest, which is the output structure of graph parsing. In the derivation forest,
a dashed rectangle (node) corresponds to a subgraph, which may be immediately built with different HRG rules.
Each rule application is separately represented as a box. Necessary and sufficient information includes the BRs of
Gt, GLt

as well as GRt
and the rule itself.

3.1 A Dynamic Programming Algorithm

Chiang et al.’s algorithm is a dynamic program-
ming algorithm, in which a collection of in-
process subgraphs are iteratively recognized as so-
lutions to subproblems. Two key techniques are
introduced concerning (1) how to pack a subgraph
and (2) how to expand recognized subgraphs.

A subgraph is compactly encoded by boundary
representation (BR) defined as follows. Assume
I is a subgraph of a graph H . A boundary node
of I is an external node of H or it is incident to an
edge that is not in I . A boundary edge of I is an
edge in I which connects to a boundary node. Let
m be an arbitrarily chosen marker node in H . The
BR of I is the tuple b(I) = ⟨bn(I), be(I),m ∈ I⟩,
where bn(I) is the set of I’s boundary nodes, be(I)
is the set of I’s boundary edges, and (m ∈ I) is a
boolean value indicating whether m is in I . Take
P1 in Fig. 5 for example. The dotted box shows
a subgraph that has been recognized. bn(Y) =
{ CA F }, and D and G are irrelevant to further
recognition.

Now consider combining two subgraphs recog-
nized as nonterminal X and Y according to γ2
in Fig. 5. As to incrementally match elements
of a rule, e.g. γ2, in an edge-by-edge way, Chi-
ang et al. proposes to leverage a tree decompo-
sition1 TR of the RHS of an HRG rule A → R

1A tree decomposition T of a graph fragment H =
⟨V,E, ℓ, Vx⟩ is a tree that every node η in T is associated with
a tuple ⟨Vη, Eη⟩. T must satisfy the following properties: (1)
for each v ∈ V , there is a node η such that v ∈ Vη; (2) for
each e ∈ E, there is exactly one node η such that e ∈ Eη and
V (e) ⊆ Vη; (3) for each v ∈ V , all nodes in T that cover v
are connected; (4) for the root of T ηr , Vx ⊆ Vηr .

2 3

1

Y
1

2

3

4
X−→Z

γ2

arg1
arg1

arg1

4
X

4
2 3

2

3

4
arg1

34
arg1

2 3

14

Y1
2

3

14
arg1

4
X

2 3

14

Y1
2

3

14

23
arg1

14

2arg1

14
arg1

η

η1
η2

η3

ηr

η′

η′
1

(T1)
(T2)

2 3

14

Y1

2

3

arg1

R⊵η1

4 3

2arg1

arg1

R⊵η2

Figure 4: T1 and T2 are two nice tree decompositions
of RHS of γ2. Both are of width 3.

(R = ⟨V,E, ℓ, Vx⟩). A tree decomposition TR is
nice, if every node of TR must be one of: (1) a
leaf node associated to empty graph; (2) a unary
node which introduces exactly one edge; (3) a bi-
nary node which introduces no edges. Throughout,
for convenience, let η denote a node from TR and
R⊵η denote the subgraph of R whose edges are in-
duced by nodes in the subtree rooted by η. If η is
binary, its children are denoted by η1 and η2. If
η is unary, the edge introduced by it and its only
child are denoted by e and η1 respectively.

Oriented by the fundamental architecture of
chart parsing/generation (Kay, 1996), TR are used
to define active/passive items and inference rules
that process such items. A passive item is of

4103

(R0)
[A→ R, ηr, J, ψ]

[A, J, ψ(XR)]
(R1)

[A→ R, η, ∅, ∅]
(R3)

[A→ R, η1, I, φ1][A→ R, η2, J, φ2]

[A→ R, η, I ∪ J, φ1 ∪ φ2]

(R2.T)
[A→ R, η1, I, φ1]

[A→ R, η, I ∪ e∗, φ1 ∪ {e 7→ e∗}]
(R2.NT)

[A→ R, η1, I, φ1][ℓ(e), J,X]

[A→ R, η, I ∪ J, φ1 ∪ {e 7→ X}]

P2 :

X,
E B

X
arg1 , (E)

 A3 :

γ2, η2,
AE

F
arg1

arg1
,


2 7→ A

3 7→ F

4 7→ E


 A1 :

[
γ2, η3, E C

arg1
,

{
1 7→ C

4 7→ E

}]

P1 :

Y,
A

C D

F G

cjt-l

cjt-r cjt-l

cjt-r

Y

, (A C F)

 A2 :

γ2, η1,
A

C D

FE G

cjt-l

cjt-r cjt-l

cjt-r

arg1 ,


2 7→ A

3 7→ F

4 7→ E


 A4 :

γ2, η,
A

C D

FE G

cjt-l

cjt-r cjt-l

cjt-r

arg1

arg1

arg1

, { 4 7→ E }



P3 :

Z,
A

C D

FE G

Z
cjt-l

cjt-r cjt-l

cjt-r

arg1

arg1

arg1

, (E)


A

CB D

E F

Input Graph

G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

P2

A3
P1 A1

A2
(R2.NT)

A4
(R3)

P3
(R2.NT) + (R0)

Target Derivation

Figure 5: A sketch of the inference rules and how Chiang et al.’s algorithm works as chart parsing.

the form [A, J,Bx] where J is a subgraph of G
which can be derived initially from some rule with
A as LHS (A ⇒∗ J) and Bx is an explicit or-
dering of bn(J). An active item is of the form
[A→ R, η, I, φ] where η is in TR, I is a subgraph
of G which derives from R⊵η and φ is the bijec-
tion from bn(R⊵η) to bn(I). A small number of in-
ference rules (as shown in Fig. 5) are sufficient to
control merging the chart items. R0 is applied on
the root node of TR. R1, R2.T, R2.NT and R3 are
applied on leaf nodes, unary nodes that introduce
a terminal edge, unary nodes that introduce a non-
terminal edge and binary nodes respectively. e∗ is
an edge of G such that ℓ(e) = ℓ(e∗). {e 7→ e∗} or
{e 7→ X} reprensets the mapping that sends each
node of e to the corresponding node of e∗ or X .
ψ(XR) denotes a list generated by applying ψ on
each node of XR in order. Refer to the original
paper for a complete description of the algorithm.
See the bottom part of Fig. 5 for a partial recogni-
tion along with T1 in Fig. 4.

3.2 Treewidth-centric Complexity Analysis
It is an advantage of using tree decomposition that
the treewidth of a grammar leads to a bound on the
number of boundary nodes which we must keep
track of during parsing. When applying an infer-
ence rule at η, all mentioned boundary nodes are
called active nodes and denoted as A(η). A(η) =
bn(R⊵η1) ∪ bn(R⊵η2) if η is binary, and A(η) =
bn(R⊵η1)∪V (e) otherwise. Let k be the treewidth
of a grammar and d be the maximum degree of any
node in the input graph. The number of rule instan-

tiations at η is actually in O(n|Aη |3d|Aη |). The first
part n|Aη | is the number of ways of mappings be-
tween active nodes in a rule and nodes in an input
graph. The second part 3d|Aη | is an upper bound
of realizations for boundary edges. Chiang et al.
proves that A(η) ⊆ Vη, implying that k + 1 is an
upper bound of |A(η)|. Therefore, the time com-
plexity is in O((3dn)k+1). The space complexity
is in O((2dn)k+1) by a parallel analysis.

3.3 Measuring Practical Performance

Successful integration of two chart items accord-
ing to an inference rule requires that the items are
disjoint and can make up a new bijection. When
two chart items pass the check, the following suc-
cessful integration is viewed as a successful rule
instantiation, and in this case, the operation cost
is taken into account. When two chart items fail
to pass the check, there will be no successful rule
instantiation, and in this case, the operation cost
for this failed integration is overlooked by the
treewidth-centric complexity analysis. The cost to
figure out an integation is impossible is actually
comparable to that of a successful integation.

Measuring practical performance with respect
to both successful and failed integration operations
is a necessary complement to the theoretical anal-
ysis, especially when the number of failed integra-
tions is prominent. In the following experiments,
we will report the exact numbers for successful (in-
dicated as #Succ) and total (=successful+failed; in-
dicated as #Total) integrations.

4104

3.4 Evaluation with a Realistic Grammar

To profile the parsing algorithm, we conduct ex-
periments on the Elementary Dependency Struc-
ture (EDS; Oepen and Lønning, 2006) graphs pro-
vided by DeepBank v1.1 (Flickinger et al., 2012).
The data is separated into training, development
and test sets according to standard setup for string
parsing. We get a wide-coverage linguistically-
meaningful grammar2 by applying the grammar
extraction algorithm described in Chen et al.
(2018). The grammar is lexicalized (LxG), in that
argument-structures are lexically encoded, like al-
most all popular deep grammars used in NLP. Tab.
1 shows the statistics of the rules.

LxG #Rule Treewidth #Node #Terminal

Lexical 46,101
avg. 1.07 2.15 2.47
max. 4 10 18

Phrasal 8,594
avg. 1.62 2.94 0.79
max. 6 7 10

Table 1: Basic properties of our lexicalized grammar.
#Node and #Terminal indicate the numbers of nodes
and terminal-edges in a single rule.

Referring to Bolinas3, we re-implement the al-
gorithm in C++ and test its efficiency on 4500
EDS graphs that are randomly selected from the
training set with the size in the range of 5 to
50. By size of a graph, we mean the number of
its nodes. If the number of total subgraphs allo-
cated during parsing is larger than 2.6 × 107, the
parser will throw an out-of-memory error (OOM).
In all the following tables, all statistics are the av-
erage values over instances which successfully re-
ceive derivation forests. The platform for all ex-
periments is x86 64 GNU/Linux with one Intel(R)
Core(TM) i7-5930K CPU at 3.50GHz.

Tab. 2 summarizes the results. For small graphs,
the algorithm achieves a promising speed. For
larger graphs, most of parsing time is wasted on
the failed integrations. Fig. 6 represents the num-
bers of successful and total integrations. We can
clearly see that the difference between the two
types of integrations increase very quickly when

2We only consider rules the RHS of which are connected.
A few graphs that are not connected and thus removed. A
very small portion of DeepBank graphs result in disconnected
rules. These graphs contain arguable annotations related to
(1) distributive readings of coordination, (2) quantifier of bare
NPs, and/or (3) small clauses. We leave appropriate analysis
of these phenomena for future investigation.

3www.isi.edu/licensed-sw/bolinas/

#Node Time(s) #Succ/#Total OOM #Graph

All 21.64 0.21% 305 4500

<10 0.02 12.55% 0 500
10∼20 0.45 1.42% 0 1000
20∼30 9.36 0.34% 4 1000
30∼50 47.68 0.19% 301 2000

Table 2: Performance of our implementation of Chiang
et al. (2013). First column is the size of input graphs.
Last column is the number of graphs in given range.

an input graph is enlarged. In §4.5 we will discuss
how to reduce failed integrations.

10 20 30 40 50

104

105

106

107

108

109

1010

#Node

#I
nt

eg
at

io
ns

#Succ
#Total

Figure 6: The numbers of successful/total integrations
relative to the size of graph. All data points are the
average value of multiple graphs of the same size.

4 Speeding Up by Exploiting Locality

4.1 Locality as Edge-Adjacency
Some notion of locality is conceptually necessary
for studying complex structures. Adjacency is a
key perspective to express locality in some linguis-
tic theories, such as CCG (Steedman, 2000, p. 54):

(1) The Principle of (String-)Adjacency
Combinatory rules may only apply to finitely
many phonologically realized and string-
adjacent entities.

Almost all string parsing algorithms benefit from
this string-adjacency. Now let us picture string-
adjacency using a graph language. Fig. 7 gives a
visualization of the linear chain structure of a word
sequence. The terminal edge labeled as next
in γ11 explicitly displays a local relation: 2 and
3 being able to be recognized almost simultane-

ously. String-adjacency turns to be terminal edge-
adjacency from a graph-theoretic view.

www.isi.edu/licensed-sw/bolinas/

4105

The boy

next

really

next

seems

next

to

next

care

next

γ11 1 2 3 4
NP VPnext

Figure 7: A graph-based view of string-adjacency.

What does terminal edge-adjacency actually
mean? From a semiotic perspective of a language
system, being either natural or artificial, a key
property is form-meaning connection. A particu-
lar form triggers a particular meaning. What can
be observed can be directly recognized, and then
makes other things recognizable. Considering lan-
guage production, the input is an MR, and in the
graph-based framework, it is terminal edges that
are directly observable. In this way a terminal
edge makes nodes connected to it co-recognizable.

The existing algorithms, including Chiang et al.
(2013) and Groschwitz et al. (2015), do not con-
sider terminal edge-adjacency. We will show that
capturing locality in this sense is beneficial, just
like what successful string parsing algorithms do.

4.2 Locality-centric Complexity Analysis

Some active nodes are not independent with each
other if we take terminal edge-adjacency into con-
sideration. We call a graph consisting of only ter-
minal edges a terminal graph. For a graph frag-
ment H , we use term(H) to denote the subgraph
of H that is induced from all and only terminal
edges. We informally illustrate the idea of depen-
dency between nodes in a rule, and then present a
precise analysis. Fig 8 is a prototype of a binary
node in TR. 46 9 5 are active nodes of η. But
if one of these nodes is identified in an input graph,
the possible positions of the other three nodes are
highly restricted.

4

5

6

8
7

1
2

X
1

2
3

9

3
Y

1

2

3

4

R⊵η1
R⊵η2

R⊵η

Figure 8: A prototypical case for recognizing a binary
node η in TR. The area in blue represents term(R⊵η1

)
and the red one represents term(R⊵η2). Boundary
nodes of each area are placed on the border. The nodes
in black are the boundary nodes of R⊵η .

Proposition 1. Consider a graphG and connected
terminal graph Rt. If there is a node v1 in Rt that
is tied to a node v∗1 in G, then finding all isomor-
phisms of Rt in G can be completed in O(dmt)
time, where mt is the number of edges in Rt and
d is the maximum degree of any node in G.

Proof. We perform a depth-first search over Rt

starting at v1 and arranging all edges of Rt as a
sequence according to the order in which they are
visited. Let the edge sequence be e1, e2, ..., emt .
We match edges in this sequence one by one.
When we handle ej(1 ≤ j ≤ mt), there must
be a node v ∈ V (ej) such that v = v1 or v ∈
V (ek)(1 ≤ k < j). In other words, v is already
tied to a node v∗ ∈ G. As a result, the number of
possible mappings of ej is at most d, because the
degree of v∗ is at most d. Therefore, the number of
isomorphisms of Rt is in O(dmt). As a result, all
isomorphisms can be found in O(dmt) time.

When l active nodes locate in a connected com-
ponent of term(R⊵η), these nodes are somewhat
dependent. By Proposition 1, the number of valid
node mappings of these l nodes is bounded by
O(ndmt) rather than O(nl).

Definition 1. For any node η in TR, δ(η) de-
notes the size of a maximal subset of A(η) such
that all nodes in this subset is independent with
each other. We use S(η) to denote one of such
maximal subsets. Similar to treewidth, we define
δ(TR) = maxη in TR

δ(η) and δ(R) as the mini-
mum δ of any tree decomposition of R.

In Fig. 8, we have δ(η) = 4 and { 32 1 6 }
is a maximal subset of A(η) as required.

Proposition 2. For any graph fragmentR, δ(R) ≤
k + 1 where k is the treewidth of R.

Proof. This proposition is trivial. For any η, we
have δ(η) ≤ |Aη| ≤ |Vη| ≤ k+1 (Proposition 3 in
Chiang et al.). By the definition of δ(R), we have
δ(R) ≤ δ(TR) = maxη in TR

δ(η) ≤ k + 1.

Proposition 3. The number of ways of instantia-
tions of any inference rule is in O(nδ

∗
dmg3dng),

where ng/mg is the maximum count of
nodes/terminal-edges of any RHS in G and
δ∗ is the maximum δ of any RHS in G.

Proof. When applying an inference rule on η, we
first select the mappings for nodes in S(η) inde-
pendently. According to the definition of S(η),
for an active node v /∈ S(η), there must be a node

4106

u ∈ S(η) such that u and v belong to the same con-
nected component c of term(R⊵η). Because u is
already bounded, the number of isomorphisms of
c is in O(dmc) wheremc is the number of edges in
c. By enumerating nodes like v, we can get a set of
connected components consisting of only terminal
edges. The number of isomorphisms of all these
components is in O(

∏
c d

mc) ≤ O(dmg). There-
fore, the number of possible mappings for all ac-
tive nodes is in O(n|S(η)|dmg) ≤ O(nδ

∗
dmg). The

analysis for boundary edges is similar to Chiang
et al.’s. The only difference is that the tree decom-
position which minimizes δ may not minimize the
treewidth k. Since k ≤ ng−1, the number of ways
of boundary edges is in O(3dng).

We can conclude from Proposition 2 and 3
that our locality-centric analysis is tighter than
the treewidth-centric one, and the upper bound of
time complexity may decrease for some restricted
HRGs. In Fig. 4, the treewidth of T2 is 3, but
δ(T2) = 1. So the number of rule instantiations
that can be applied along with T2 is in O(n) in-
stead of O(n4). In §4.3, we will introduce Weakly
Regular Graph Grammar (WRGG), a new subclass
of HRG, the δ of which is more intuitively under-
standable.

4.3 Weakly Regular Graph Grammar

We discuss prototypes of HRG rules, investigating
their key properties in a linguistic context. We
then formally define WRGG that reflects the linguis-
tic emphasis and also show that WRGG is actually
a very expressive subclass of HRG.

Firstly, the HRG rule under discussion allows
at most two non-terminals at RHS. Computation-
ally speaking, we can transform a multi-branching
rule into multiple binary rules without loss of
expressiveness, as we are able to get a CFG in
Chomsky Normal Form for any CFG. Linguisti-
cally speaking, multi-branching rules have been re-
moved from generative linguistic theories, since at
least Minimalist Program (Chomsky, 1995). Fig.
9 presents four prototypes with the binary constric-
tion. γ3, γ6, γ7, γ8 and γ9 in Fig. 1 are of T0, γ1,
γ4, γ5 and γ10 are of T1, and γ2 is of T3. Sec-
ondly, for a lexicalized grammar, most rules are of
T0 or T1, since constructions barely take seman-
tic materials. If a rule introduces heavy construc-
tional meaning, it may affect one of its interme-
diate constituents (T2) or bridge the meanings be-
tween both of its intermediate constituents (T3),

1 2
=⇒Z

(T0) 2
X

1

2 3

3Y1

2

3

=⇒Z

(T1)

1

2
X

1

2 3

3

4

Y
1

2

3
=⇒Z

(T2)

1

2
X

1

2 3

3Y1

2

3=⇒Z

(T3)

Figure 9: Prototypes of binary HRG rules: (T0) lexical
rules, (T1) rules without terminal edges, (T2) only one
nonterminal edge of the rules contains non-free nodes,
and (T3) both nonterminal edges of the rules contain
non-free nodes. The area in blue represents all terminal
edges. Dashed edges indicate optionality.

and hardly affect its intermediate constituent sep-
arately. Even though a rule has multiple terminal
components, we can replace it with several rules
of T0-T3. Thirdly, a node that is only connected
to a nonterminal edge is a kind of placeholder, in
that it does not affect current semantic composi-
tion but will be used in future. Otherwise it has
been removed in a previous step. Finally, we do
not consider disconnected RHS because it yields
disconnected graphs.

Definition 2. A node v in an edge-labeled graphG
is free, if E(v) contains only nonterminal edge(s).
The number of those nodes is denoted by f(G).

In Fig. 8, 21 3 are free nodes of R⊵η.

Definition 3. A weakly regular rule A → R satis-
fies the following conditions: (1) R is connected;
(2) term(R) is an empty graph or a connected
graph; (3) if a free node of R is incident to only
one edge, it is also an external node.

Definition 4. An HRG is weakly regular, if all of
its rules are weakly regular.

Proposition 4. If A → R is binary and weakly
regular, then δ(R) = f(R) or f(R) + 1.

The proofs of this proposition can be found in
the appendix. The tree shown in Fig. 10 is a valid
nice tree decomposition of R and the δ of the tree
is f(R) or f(R) + 1. We argue that for parsing
with a binary WRGG, the number of free nodes is
more meaningful and we can use the tree decom-
position shown in Fig. 10 rather than a tree decom-
position with minimum treewidth.

Courcelle (1991) introduces Regular Graph
Grammar (RGG). It is provable that RGG is a sub-
class of WRGG. There are no free nodes in RGG
and graph parsing with an RGG can be finished in
linear time by applying Chiang et al.’s algorithm.

4107

η0

e1

η1

e2

η2

... el

ηl

el+1

ηl+1

el+2

ηl+2

Figure 10: A terminal edge-first tree decomposition
of a binary and weakly regular rule. For every node
ηi(1 ≤ i ≤ l + 2), Vηi = bn(R⊵ηi) ∪ V (ei) and
Eηi = {ei}. e1, . . . , el are terminal edges ordered by
visiting time of a depth-first traversal. el+1, el+2 are
nonterminal edges arranged in order such that R⊵ηl+1

is also a connected graph.

This result is comparable to another algorithm pro-
posed by Gilroy et al. (2017). However, the strong
restrictions of RGG make it too weak to model lin-
guistic structures. WRGG is much more linguisti-
cally adequate.

4.4 Distributed Argument-Structure

We value the trigger role played by terminal edges
in an HRG rule. Now let us revisit the derivation
governed by a lexicalized grammar. It is obvious
that lexical rules try to use up all terminal edges
at the initial stage of syntactico-semantic compo-
sition. If we can distribute terminal edges to all
rules, both lexical and phrasal, we are able to get
a reduced number of free nodes on average and
in exactly this way improve graph parsing remark-
ably. The idea to distribute argument-structures
exhibits a constructivist perspective, which is a
competing hypothesis to lexicalism that dominates
our field for dozens of years, since at least Bres-
nan and Kaplan (1982). The constructivist ap-
proaches to argument structures have been re-
cently discussed by different theoretical linguistic
theories, including but not limited to Distributed
Morphology (Halle and Marantz, 1993, 1994) and
Sign-Based Construction Grammar (Boas and Sag,
2012). The emphasis on the advantage of Dis-
tributed Argument-Structure under the considera-
tion of language production is a computational
support for many constructivist approaches.

Fig. 11 demonstrates a derivation with a con-
struction grammar. Compare γ12 to γ4 and γ13
to γ5, we can clearly see that δ is significantly re-
duced. A comparison of lexical rules also confirms
the importance of distributed argument-structure.

4.5 Fast Accessing of Chart Items

We will complete our discussion on locality by
considering the edge-zero case, i.e. unifying
nodes. In Fig. 8, when we try to integrate R⊵η1

and R⊵η2 , we must make sure that the three nodes

BCD

careseemreally
arg1 arg1

VP

BC

careseem
arg1

VRP

B
care

VPC
seem
VD

really
ADV

12
VRPADV

arg1γ12

1 2
V VP

arg1γ13

Figure 11: Semantic composition with a CxG.

on the boundary, viz. 2 , 4 and 5 , are identical
in terms of mappings relative to η1 and η2 respec-
tively. Otherwise, a failure occurs. In both cases,
trying to unify them causes a bottleneck for graph
parsing, as conceptually suggested in §3.3 and em-
pirically confirmed by Tab. 2.

Considering the above problem in the frame-
work of chart parsing, we would like to construct
a data structure to efficiently access all chart items.
In particular, when partial information is provided,
this data structure can quickly find all compatible
chart items. In this paper, we use a map, with the
keys being partial information for quiry and the
values being sets of chart items. The implemen-
tation used in §3.4 follows the method proposed
by Chiang et al. (2013), only mentioning ℓ(e) or η
for indexing, which is not efficient in practice. We
propose to build a more comprehensive map. See
Tab. 3 for an example of our map.

Indexing key(s) Item

⟨Y, 3, {⟨1, A ⟩, ⟨2, C ⟩, ⟨3, F ⟩}⟩

P1
⟨Y, 3, {⟨1, A ⟩, ⟨3, F ⟩}⟩ ⟨Y, 3, {⟨2, C ⟩, ⟨3, F ⟩}⟩
⟨Y, 3, {⟨1, A ⟩}⟩ ⟨Y, 3, {⟨2, C ⟩}⟩
⟨Y, 3, {⟨1, A ⟩, ⟨2, C ⟩}⟩ ⟨Y, 3, {⟨3, F ⟩}⟩

⟨X, 1, {⟨1, E ⟩}⟩ P2, A4

⟨η, {⟨ 2 , A ⟩, ⟨ 3 , F ⟩, ⟨ 4 , E ⟩}⟩ A2, A3

Table 3: Examples for indexing chart items in Fig. 5.
P1 has multiple keys.

During recognizing η, the set of nodes
which connect branching subgraph(s) C(η)
is bn(R⊵η1) ∩ bn(R⊵η2) for binary case,
and bn(R⊵η1) ∩ V (e) for unary case. Let
e = (v1, ..., v|V (e)|) denote a hyperedge and
index(e, vi) = i denote an indexing func-
tion. For a list of nodes B, B[i] denotes its
i-th node. A passive item [A, J,Bx] has mul-

4108

tiple indexing keys. For a non-empty set of
positive integers mask ⊆ {1, 2, ..., |bn(J)|},
⟨A, |bn(J)|, {⟨i, Bx[i]⟩|i ∈ mask}⟩ is a plausible
key. For active item [∗, η1, I, φ], let η be the
parent of η1. If η is binary, the item should
be indexed by ⟨η1, {⟨v, φ(v)⟩|v ∈ C(η)}⟩.
Otherwise η is unary and introduces some
edge e. The item should be indexed by
⟨ℓ(e), |V (e)|, {⟨index(e, v), φ(v)⟩|v ∈ C(η)}⟩.
During parsing, two items will be integrated only
when they have the same key.

Note that the number of possible mask’s for a
passive item grows exponentially w.r.t. the number
of the corresponding external nodes. However a
significant number of mask’s are not used by any
tree decomposition of any rule. And such mask’s
can be found by processing a grammar before pars-
ing. For all HRGs used for experiments, the maxi-
mum number of useful mask’s for a passive item
is 15.

4.6 Empirical Evaluation
A construction grammar (CxG) is automatically
induced in a similar way to the experiments in
§3.4. Note that our grammar extraction procedure
makes sure that this grammar is weakly regular.
As shown in Tab. 4, the average number of free
nodes in CxG is much smaller. We conduct new
experiments using the improvements mentioned in
previous sections. We re-run the improved parser
on 4195 EDS graphs, which can successfully re-
ceive derivation forests from the original parser.
Tab. 5 and Fig. 12 show the effectiveness of our
improvements. The terminal-first tree decompo-
sition (as illustrated in Fig. 10) is able to signif-
icantly reduce the number of integrations. Our
indexing method can effectively reduce the num-
ber of failed integrations. For the CxG, using the
terminal-edge first strategy is more effective than
the indexing strategy. Note that the cost to build a
map for indexing chart items is not ignorable.

#Rule Treewidth δ #Free

CxG
Lexical 34,348

avg. 0.36 — —
max. 4 — —

Phrasal 7,978
avg. 1.68 1.59 0.59
max. 7 7 6

LxG Phrasal 8,594
avg. 1.62 2.51 2.27
max. 6 7 7

Table 4: Statistics of the CxG. #Free means the num-
ber of free nodes in HRG rules.

Time(s) #Succ #Total #Succ/#Total

LxG

original 21.64 303.6 146535 0.21%

+terminal-first 21.02 174.9 145320 0.12%
+index 1.93 303.6 7165 4.24%
+both 1.51 174.9 6923 2.53%

CxG

original 0.41 61.4 1082 5.67%

+terminal-first 0.12 9.0 406 2.23%
+index 0.32 61.4 190 32.34%
+both 0.07 9.0 31 29.34 %

large (+both) 0.45 50.1 485 10.34 %
305 (+both) 0.32 35.5 379 9.40 %

Table 5: Performance of our implementation with im-
provements. The unit of integrations is 104 in the
table. terminal-first means the terminal-first tree de-
composition; index means the method proposed in §4.5;
both means to use both terminal-first and index. large
means to test the algorithm on 189 graphs with the size
in the range of 70 to 90. 305 means to test the algo-
rithm on the 305 graphs which receives an OOM error
in previous experiment (§3.4).

10 20 30 40 50

104

105

106

107

108

109

1010

#Node

#T
ot

al
In

te
ga

tio
ns

LxG original
LxG +both
CxG original
CxG +terminal-first
CxG +both

Figure 12: The number of total integrations relative to
size of input graphs. All data points in the plot are the
average value on test samples of a given size.

5 Conclusion

We introduce several locality-centric refinements
to advance graph parsing and empirically evaluate
their effectiveness. We show that exact graph pars-
ing can be efficient even for large graphs and with
large graph grammars.

Acknowledgments

This work is supported in part by the Na-
tional Hi-Tech R&D Program of China (No.
2018YFC0831900). Weiwei Sun is the corre-
sponding author.

4109

References
Hans Christian Boas and Ivan A Sag. 2012. Sign-based

construction grammar. CSLI Publications/Center
for the Study of Language and Information.

Joan Bresnan and Ronald M. Kaplan. 1982. Introduc-
tion: Grammars as mental representations of lan-
guage. In J. Bresnan, editor, The Mental Representa-
tion of Grammatical Relations, pages xvii–lii. MIT
Press, Cambridge, MA.

Yufei Chen, Weiwei Sun, and Xiaojun Wan. 2018. Ac-
curate shrg-based semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 408–418. Association for Computational Lin-
guistics.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with Hyperedge
Replacement Grammars. In Proceedings of the
51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 924–932, Sofia, Bulgaria. Association for
Computational Linguistics.

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, MA.

Bruno Courcelle. 1991. The monadic second-order
logic of graphs v: On closing the gap between de-
finability and recognizability. Theoretical Computer
Science, 80(2):153–202.

F. Drewes, H.-J. Kreowski, and A. Habel. 1997. Hyper-
edge Replacement Graph Grammars. In Grzegorz
Rozenberg, editor, Handbook of Graph Grammars
and Computing by Graph Transformation, pages 95–
162. World Scientific Publishing Co., Inc., River
Edge, NJ, USA.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank: A dynamically annotated treebank of the
wall street journal. In Proceedings of the Eleventh
International Workshop on Treebanks and Linguistic
Theories, pages 85–96.

Sorcha Gilroy, Adam Lopez, and Sebastian Maneth.
2017. Parsing graphs with regular graph grammars.
In Proceedings of the 6th Joint Conference on Lex-
ical and Computational Semantics (* SEM 2017),
pages 199–208.

Jonas Groschwitz, Alexander Koller, and Christoph Te-
ichmann. 2015. Graph parsing with s-graph gram-
mars. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1481–1490.

M Halle and Alec Marantz. 1993. Distributed morphol-
ogy and the pieces of inflection, pages 111–176. The
MIT Press.

Morris Halle and Alec Marantz. 1994. Some key fea-
tures of distributed morphology. MIT working pa-
pers in linguistics, 21(275):88.

Martin Kay. 1996. Chart generation. In 34th Annual
Meeting of the Association for Computational Lin-
guistics, pages 200–204.

Alexander Koller, Stephan Oepen, and Weiwei Sun.
2019. Graph-based meaning representations: De-
sign and processing. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, pages 6–11, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based mrs banking. In Proceedings
of the Fifth International Conference on Language
Resources and Evaluation (LREC-2006), Genoa,
Italy. European Language Resources Association
(ELRA). ACL Anthology Identifier: L06-1214.

Mark Steedman. 1996. Surface Structure and Interpre-
tation. Linguistic Inquiry Monographs. Mit Press.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

http://aclweb.org/anthology/P18-1038
http://aclweb.org/anthology/P18-1038
http://www.aclweb.org/anthology/P13-1091
http://www.aclweb.org/anthology/P13-1091
http://dl.acm.org/citation.cfm?id=278918.278927
http://dl.acm.org/citation.cfm?id=278918.278927
https://www.aclweb.org/anthology/P19-4002
https://www.aclweb.org/anthology/P19-4002
http://books.google.ca/books?id=Mh1vQgAACAAJ
http://books.google.ca/books?id=Mh1vQgAACAAJ

4110

A Proof for Proposition 4

We provide the proof for R with two nonterminal
edges: eX and eY .

Firstly, we prove δ(R) ≥ f(R). For any nice
tree decomposition TR of R, let ηm be the node
with minimum height such that R⊵ηm contains
both eX and eY .

[1] ηm is binary. Let η1, η2 be the two children
of ηm. Without loss of generality, we assume
R⊵η1 contains eX and R⊵η2 contains eY .

[2] ηm is unary. Let η1 be the only child of ηm.
In this case, ηm introduces either eX or eY .
Without loss of generality, we assume ηm in-
troduces eX .

Let v be a free node of R.

Case 1 v is incident to only one of eX and eY . By
property (3) of weakly regularity, v is an ex-
ternal node of R. Therefore, v ∈ bn(R) ⊂
bn(R⊵η1) ⊂ A(ηm).

Case 2 v is incident to both eX and eY . When
ηm is binary ([1]), we have v ∈ bn(R⊵η1) ∩
bn(R⊵η2) ⊂ A(ηm). When ηm is unary ([2]),
we have v ∈ V (eX) ⊂ A(ηm).

By the above discussion, we conclude that all
free nodes of R are active nodes of ηm and it is ob-
vious that free nodes are independent. As as result,
we have δ(TR) ≥ δ(ηm) ≥ f(R). The arbitrari-
ness of TR ensures that δ(R) ≥ f(R).

Secondly, we prove that δ(R) ≥ f(R) + 1 for
prototype T3. If the rule is type T3, then there
exist two nodes v, u such that v is incident with
eX , u is incident with eY and u, v are in term(R).

Case 1 u = v. We have u ∈ bn(R⊵η1) ∩
bn(R⊵η2) ⊂ A(ηm).

Case 2 u ̸= v and ηm is unary ([2]). We have
v ∈ V (eX) ⊂ A(ηm).

Case 3 u ̸= v and ηm is binary ([1]). Accord-
ing to the property (2) of weakly regularity,
term(R) is connected. So there exists a path
e1, e2, ..., es(s ≥ 1) in term(R) such that
u ∈ V (e1) and v ∈ V (es). Let i be the
minimum index such that ei is not in R⊵η1 .
If i = 1, then u has an edge e1 which is
not in R⊵η1 . Therefore, u ∈ bn(R⊵η1) ⊆

A(ηm). If s ≥ i > 1, then all nodes in-
side V (ei−1) ∩ V (ei) are boundary nodes of
R⊵η1 . Therefore these nodes all belong to
A(ηm). If i does not exist, then v has an
edge es which is not in R⊵η2 . Therefore,
v ∈ bn(R⊵η2) ⊆ A(ηm).

By the above discussion, there is at least one
active node which is not a free node. It is trivial
that the node is independent with any free nodes.
Therefore, δ(TR) ≥ δ(ηm) ≥ f(R) + 1. The arbi-
trariness of TR ensures that δ(R) ≥ f(R) + 1.

Thirdly, we prove that the equality can be
achieved. It is trivial to prove that the tree T
shown in Fig. 10 is a valid nice tree decomposition
by going through the properties of tree decomposi-
tion. Since R⊵ηi (1 ≤ i ≤ l) is a connected termi-
nal graph, we have δ(ηi) = 1. By going through
the four possible prototypes of current rule shown
in Fig. 9, we conclude that δ(ηj) ≤ f(R) + 1, for
l + 1 ≤ j ≤ l + 2. Therefore, δ(R) ≤ δ(T) =
maxηinT δ(η) ≤ f(R) + 1.

In summary, we have f(R) ≤ δ(R) ≤ f(R) +
1.

