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Abstract

Knowing the Most Frequent Sense (MFS) of
a word has been proved to help Word Sense
Disambiguation (WSD) models significantly.
However, the scarcity of sense-annotated data
makes it difficult to induce a reliable and high-
coverage distribution of the meanings in a lan-
guage vocabulary. To address this issue, in this
paper we present CluBERT, an automatic and
multilingual approach for inducing the distri-
butions of word senses from a corpus of raw
sentences. Our experiments show that Clu-
BERT learns distributions over English senses
that are of higher quality than those extracted
by alternative approaches. When used to in-
duce the MFS of a lemma, CluBERT attains
state-of-the-art results on the English Word
Sense Disambiguation tasks and helps to im-
prove the disambiguation performance of two
off-the-shelf WSD models. Moreover, our dis-
tributions also prove to be effective in other
languages, beating all their alternatives for
computing the MFS on the multilingual WSD
tasks. We release our sense distributions in
five different languages at https://github.
com/SapienzaNLP/clubert.

1 Introduction

Word Sense Disambiguation (WSD) is the task
of associating a word in context with a meaning
from a given inventory of senses (Navigli, 2009).
It resides at the core of Natural Language Pro-
cessing and has been proved to be beneficial to
different downstream tasks, e.g., Information Ex-
traction (Delli Bovi et al., 2015) and Machine
Translation (Pu et al., 2018). Current approaches
to WSD can mainly be divided into supervised
and knowledge-based methods. While the former
leverage manually-annotated data to train statisti-
cal models, the latter exploit the knowledge en-
closed within a semantic network to identify the
most appropriate meaning of a word in context.

Both kinds of approach, however, suffer from the
knowledge acquisition bottleneck problem (Gale
et al., 1992; Pasini, 2020). In fact, since words
and senses follow a Zipfian distribution (McCarthy
et al., 2004a), information on rare words and mean-
ings is scarce in both semantically-annotated data
and knowledge bases. This undermines the ability
of supervised and knowledge-based approaches to
deal with words unseen at training time, or that
have only a few connections within a semantic net-
work. To overcome this limitation, the Most Fre-
quent Sense (MFS) backoff strategy, i.e., tagging a
word with its meaning that has been manually anno-
tated as the most frequent one, is employed by both
approaches. Nevertheless, while the MFS proved to
be a strong baseline in the general-domain setting
of WSD, it does not scale over specific domains
(Pasini and Navigli, 2020) and its applicability is
limited to languages where annotated data are avail-
able, i.e., English. Furthermore, the way words and
meanings are used changes over time, hence mak-
ing old annotations unreliable. This is the case
with WordNet (Miller et al., 1990), i.e., the most
used electronic English dictionary in WSD. Word-
Net provides information about sense frequency
that is either manually-annotated or derived from
SemCor (Miller et al., 1993), i.e., a corpus where
words are manually tagged with WordNet mean-
ings. However, neither WordNet nor SemCor have
been updated in the past 10 years, thus making their
information about sense frequency outdated. For
example, the WordNet most frequent sense for the
noun pipe is its smoking device meaning, although,
nowadays, one would expect the metal pipe sense
to appear more often in general.

To overcome some of the aforementioned limi-
tations, different approaches to automatically ex-
tracting the distribution of senses have been pro-
posed (Pasini and Navigli, 2018; Hauer et al., 2019).
However, these fail to match the WordNet MFS
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performance and are either dependent on bilingual
corpora (Hauer et al., 2019), or limited to nouns
only (Pasini and Navigli, 2018).

In this paper, we present CluBERT, a multilin-
gual cluster-based approach that automatically in-
duces the distribution of word senses from a cor-
pus of raw sentences without relying on manually-
annotated data. By exploiting the assumption that
similar meanings appear in similar contexts (Reif
et al., 2019) and the representational power of
BERT (Devlin et al., 2019), CluBERT can learn
distributions that are of better quality – according
to both intrinsic and extrinsic evaluation – than
those extracted either by its competitors, or from
manually-curated resources. Furthermore, our ap-
proach outperforms its alternatives in all multilin-
gual and most domain-specific WSD test sets. Fi-
nally, when used as backoff strategy of a WSD ar-
chitecture, our automatically-induced distributions
are shown to lead the underlying model to higher
results than when using the standard manually-
curated distributions of WordNet, hence placing
themselves as a better and more flexible alterna-
tive.

2 Related Work

Word Sense Disambiguation (WSD) is a long-
standing problem in Natural Language Processing
which was first formulated to address the ambi-
guity of words in the context of Machine Trans-
lation (Weaver, 1949). Nowadays, WSD models
can be mainly divided in two groups: knowledge-
based and supervised. Knowledge-based methods
(Agirre et al., 2014; Moro et al., 2014; Tripodi
and Pelillo, 2015) rely on the information enclosed
within a semantic network such as WordNet (Miller
et al., 1990), a manually-curated resource organ-
ised in a graph structure where nodes are con-
cepts and edges are semantic relations between
them, or BabelNet (Navigli and Ponzetto, 2010,
2012), a large multilingual knowledge base where
synsets are lexicalised in more than 250 languages.
Since knowledge-based approaches do not rely on
semantically-annotated corpora, they can easily
scale over different languages as long as their un-
derlying semantic network supports them (Scarlini
et al., 2020; Maru et al., 2019; Scozzafava et al.,
2020). Nevertheless, these approaches struggle to
remain competitive on English when compared to
supervised methods.

Supervised approaches, instead, take advantage

of sense-annotated data and frame the WSD task
as a classification problem, where each word has
its own set of labels, i.e., its possible meanings ac-
cording to a given sense inventory. Ranging from
word-based approaches, where a single SVM classi-
fier is specialised in disambiguating only one word
in a sentence (Zhong and Ng, 2010; Iacobacci et al.,
2016; Yuan et al., 2016), to more general neural ar-
chitectures that classify all the words together (Ra-
ganato et al., 2017a; Vial et al., 2019; Hadiwinoto
et al., 2019; Bevilacqua and Navigli, 2020), su-
pervised methods have proved to outperform their
knowledge-based counterparts whenever annotated
data are available (Scarlini et al., 2019).

Despite the progress and the increment in the
overall performance, both kinds of approach still
rely, most of the time, on the Most Frequent Sense
heuristic whenever a word does not appear tagged
in the training set, or the confidence score of its
disambiguation is lower than a threshold. The MFS
baseline, in fact, has proved to be very competitive
(McCarthy et al., 2004a), yet, it is limited to words
and senses comprised in a manually-annotated cor-
pus such as SemCor (Miller et al., 1993). To cope
with this limitation, several works have been pro-
posed over the years to automatically learn the
Most Frequent Sense of a word. A seminal work in
this direction was that of McCarthy et al. (2004b),
where a thesaurus and the distributional similarity
between words were used to find the predominant
meaning of a given lemma. More recent works,
instead, have focused on inducing the full distri-
bution over the senses of a given word. Bennett
et al. (2016) exploited topic modelling techniques,
whereas Pasini and Navigli (2018) presented two
multilingual approaches that provided full distribu-
tions over nominal senses, not only for English, but
also for words in other languages.

The work we propose in this paper stands out
from previous approaches, exploiting for the first
time, to the best of our knowledge, BERT contex-
tualized embeddings together with a knowledge-
based WSD model to compute the distribution of
word meanings. Our approach is not tied to any
specific language and can potentially be applied to
all languages supported by both BERT (104) and
BabelNet (more than 280).

3 CluBERT

In this Section, we present CluBERT, a multilin-
gual approach for computing the distribution of
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CLUSTER 1

The working of glass requires lower temperatures.
Vitrinite has a shiny appearance resembling glass.
Most of the roof and walls are made out of glass.

CLUSTER 2

He asked for a glass of water.
It is traditionally served in a glass.

He gave him a poison glass to drink from.

Table 1: Excerpt of the sentences of two clusters of the
noun glassn.

word senses from a corpus of raw sentences. Our
approach takes as input a corpus C and a target
lexeme l1 and exploits BERT2, i.e., a pretrained
language model, and BabelNet, i.e., a multilingual
knowledge base. We also define the set of possible
meanings Ml for the lexeme l as the set of all the
synsets3, i.e., sets of synonyms, in BabelNet which
have l among their lexicalizations. CluBERT ex-
tracts the sense distribution for l by applying the
following three steps:

1. Sentence Clustering, which clusters together
the sentences of C in which l appears based
on the similarity of their contexts4.

2. Cluster Disambiguation, which assigns to
each cluster a distribution over the possible
meanings of l in BabelNet by exploiting the
context provided by the cluster itself.

3. Distribution Extraction, which, given the
distributions computed in the previous step,
finally derives the general distribution of the
senses of l across the corpus C.

3.1 Sentence Clustering
The first step relies on the assumption that different
senses of l tend to appear in different contexts and
vice versa. Therefore, since BERT has been shown
to capture the subtle distinctions between different
meanings of the same word (Reif et al., 2019), we
employ it to compute the representations of l across
different sentences. We thus cluster BERT embed-
dings in order to group together the occurrences of

1A lemma with a specific Part-Of-Speech tag.
2Across all the experiments we used the multilingual

model of BERT, i.e., bert-base-multilingual-cased.
3We use sense and synset interchangeably.
4As representation for a sentence containing l we use the

contextualized representation of l.

CLUSTER 1 CLUSTER 2

materialn X watern X
metaln X winen X
plasticn X drinkv X

heatn 7 yellowa 7

crystaln 7 thicka 7

Table 2: Excerpt of the most frequent words (top part)
and excluded words (bottom part) for two different clus-
ters of the noun glassn.

l that appear in similar contexts and are hence likely
to express the same meaning. More in detail, we
iterate over all the sentences in Sl ⊂ C, i.e., those
sentences in C where l appears, and project them in
a latent space by means of BERT. We thereby repre-
sent the sentence σ ∈ Sl as vlσ = BERT (σ, l), i.e.,
the representation of l in the sentence σ computed
by BERT.

Once all the sentences in Sl are associated
with a vector, we group contextually-similar sen-
tences together by leveraging the k-means algo-
rithm (Lloyd, 2006). K-means, in fact, creates
internally-cohesive clusters that partition Sl into k
disjoint groups. For example, in Table 1 we show
an excerpt of two clusters extracted for the lexeme
glassn

5. As one can see, the sentences in each set
identify the semantics of the target word, with the
upper cluster grouping all sentences related to the
material meaning of glassn and the bottom one all
those related to its container sense. We note that
no induction of senses is performed at any stage of
our approach.

At the end of this step, the target lexeme l is
associated with the set of its clusters Ul.

3.2 Cluster Disambiguation

The second step computes, for each cluster c of the
lexeme l, a distribution over the possible senses of
l that is specific to c. To this end, by exploiting
the lexical context of c, we build its weighted Bag-
of-Words representation and use it to compute the
cluster-level distribution over the senses in Ml.

BoW construction We are now interested in
finding which of the senses of l best suits the con-
text provided by the sentences in c. To this end, we
extract the Bag of Words of c BoWc by considering
all the content words in c. BoWc, in fact, conflates

5We use the lemmaPOS notation.
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wi
ne
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cheer
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bee
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0.17

CLUSTER 2

bre
ak
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metal
fragile

material
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0.32

CLUSTER 1

glass2n

glass1n

0.68

glass1n

0.83

glass2n

Figure 1: Cluster-level sense distributions for the two
clusters of glassn over its possible meanings in the ref-
erence knowledge base.

the contextual information of all the sentences in c
in a list of unique words ranked by their frequency
within the cluster. We refine BoWc by retaining
only its top n most frequent words, hence filtering
out those that are less informative for determining
the most suitable meaning of l in c and the stop-
words. To showcase the outcome of this step, in
Table 2 we report the three most frequent words
in the BoW for two clusters of glassn (top part)
along with two excluded words (bottom part). As
one can see, the topmost words provide a precise
characterization of the semantics of the clusters.

Cluster-Level Sense Distribution We now pro-
ceed by computing the probability of l expressing a
given sense s ∈Ml within a cluster c. To this end,
we rank the synsets of l according to their relevance
in the BabelNet semantic network with respect to
a given set of nodes MBoWc =

⋃
l′∈BoWc

Ml′ , i.e.,
the set of all the possible meanings of the words in
BoWc. Thus, we follow Agirre et al. (2014) and
employ the PageRank algorithm in its personalised
version (Haveliwala et al., 2002, PPR), which com-
putes the probability of reaching a node in the graph
when starting from a fixed set of nodes. Formally,
we calculate the score of each synset in BabelNet
as follows:

v(t+1) = (1− α)v(0) + αAv(t)

where A is the row-normalised adjacency matrix
of the knowledge base, v(0) is the restart proba-
bility distribution, which is zero in every compo-
nent except for those corresponding to the nodes in
MBoWc , and α is the well-known damping fac-
tor which we set to 0.85. We further exploit

the contexts in BoWc by weighting each synset
s ∈ MBoWc by the sum of the frequencies of its
lexicalizations that appear in BoWc. Finally, after
n iterations of the PPR algorithm, we extract the
scores for each s ∈ Ml from vn and normalise
them to build the cluster-level sense distribution dcl
for the lemma l in the cluster c. As shown in Figure
1, the two clusters of glassn are now associated
with two different distributions over glassn’ mean-
ings in BabelNet, i.e., the container sense and the
material sense.

3.3 Distribution Extraction
In this last step, we compute the overall sense dis-
tribution of l with respect to the input corpus C.
To this end, we leverage the cluster-level distribu-
tions and the clusters’ sizes to compute the overall
distribution over the senses of l as follows:

dl =

∑
c∈Ul
|c| dcl∑

c∈Ul
|c|

where dcl is the vector representing the distribution
over l’s synsets in the cluster c and Ul is the set of
clusters of l. For example, considering the clusters
depicted in Figure 1 and their distributions6, we
associate the lexeme glassn with the distribution
dglassn = {glass1n : 0.34, glass2n : 0.66} where
glass1n is the sense 1 of glassn in BabelNet.

We repeat these steps for each lemma of interest
to derive the distribution over its senses in Babel-
Net.

4 Experimental Setup

We now present a battery of experiments to assess
the quality of our induced sense distributions on
both intrinsic and extrinsic evaluation tasks. First,
we set the parameters of the model, namely, the
sense inventory, the corpus, the number of words
to retain in each Bag of Words, and the number
of clusters to create for each lemma. Then, we
evaluate our automatically-induced distributions
intrinsically, by computing their distance in com-
parison to a manually-annotated distribution, and
extrinsically, on the standard English and multilin-
gual Word Sense Disambiguation tasks.

System Parameters As sense inventory, we use
all the synsets in BabelNet that also contain a sense
from WordNet. Concerning the corpus, we use

6We consider |CLUSTER1| = 50 and |CLUSTER2| = 100.



4012

Wikipedia7 since it is freely available and covers
more than 300 languages and most of the semantic
domains. As regards the number of clusters for a
given lemma l, we set the parameter k of the k-
means algorithm to the number of l’s meanings in
BabelNet. Finally, we tune the number of words
n to retain within each cluster’s Bag of Words by
manually evaluating the quality of the disambigua-
tion step (see Section 3.2) when varying n between
5 and 20 with a 5 step and set n = 5.

We compute the distributions for all the lemmas
in English, Italian, Spanish, French and German
which have at least one corresponding synset within
the sense inventory.

Comparison Systems We compare CluBERT
with the most recent and best-performing automatic
and manual approaches for sense-distribution learn-
ing and MFS detection. As regards the automatic
methods for inducing sense distributions, we con-
sider the two knowledge-based and multilingual
approaches proposed by Pasini and Navigli (2018),
i.e., EnDi and DaD, and the topic modelling-based
approach proposed by Bennett et al. (2016), i.e.,
LexSemTM. We also compare against three other
approaches specialised in identifying the MFS of a
word, namely, COMP2SENSE (Hauer et al., 2019),
which exploits the distance between a word and a
sense in a knowledge base, and WCT-VEC (Hauer
et al., 2019) and UMFS-WE (Bhingardive et al.,
2015), which, instead, leverage the distance be-
tween words and sense embeddings.

As for the manually-annotated competitors, we
compare against the sense distributions and the
MFS of WordNet (Miller et al., 1990). These are
both determined by the frequency of the senses
in SemCor (Miller et al., 1993), when possible,
and by manual annotations of the synsets’ ranks,
otherwise.

Concerning the multilingual evaluation, instead,
we compare CluBERT with EnDi, DaD and the
BabelNet MFS, which computes the MFS for a
given lemma by taking its highest ranked sense
according to BabelNet.

5 Intrinsic Evaluation

In this Section we estimate the quality of our
automatically-induced sense distributions by com-
paring them to gold standard ones. We use the
dataset proposed by Bennett et al. (2016) which,

7We used the June 2019 dump.

contains 50 distinct lemmas annotated with a gold
distribution over their senses. Hence, we compare
the distributions for the target lemmas induced by
CluBERT and its competitors with the manually-
annotated ones.

5.1 Evaluation Measures

In order to compare two distributions, we use two
measures: the Jensen-Shannon divergence (JSD)
and the Weighted Overlap (WO) (Pilehvar et al.,
2013). With both metrics, we average all the pair-
wise similarity between the gold distributions and
the ones induced by the systems under comparison.

Jensen-Shannon Divergence The JSD com-
putes a real value expressing the similarity between
the two input distributions, which is 0 when they
are identical, and higher than 0 otherwise. For-
mally, given two input distributions d and d′, the
Jensen-Shannon divergence is defined as follows:

JSD(d, d′) =
D(d,M) +D(d′,M)

2

D(d, d′) =
∑
s

d(s)log

(
d(s)

d′(s)

)

where M = d+d′

2 and D is the Kullback-Leibler
divergence function in which d(s) is the value of
the component corresponding to the synset s in the
distribution d.

Weighted Overlap The WO measure computes
the similarity between two input distributions by
harmonically averaging the ranks of the distribu-
tions’ components when sorted according to their
probabilities. Its output value is 1 when the two
inputs are identical, and 0 otherwise. Formally, let
d and d′ be two input distributions, their Weighted
Overlap is computed as follows:

WO(d, d′) =

|O|∑
i=1

(ri + r′i)
−1

(2i)−1

whereO is the set of common components between
the input distributions and ri and r′i are the ranks
of the i-th component in d and d′, respectively.

5.2 Results

We now report the results of CluBERT and its com-
petitors in terms of JSD and WO in comparison
to the gold distributions provided by Bennett et al.
(2016). As one can see from Table 3, CluBERT
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Method JSD (↓) WO (↑)

CluBERT 0.085 0.958
EnDi 0.099 0.937
DaD 0.204 0.902
LexSemTM 0.116 0.932

WordNet 0.255 0.837

Table 3: Similarity scores on the Bennett et al. (2016)
gold standard in terms of JSD (the lower the better) and
Weighted Overlap (the higher the better). Statistically-
significant differences between CluBERT and EnDi are
underlined.

is the approach that better resembles the human-
annotated distributions, in terms of both JSD and
WO, achieving 0.085 and 0.958, respectively, and
outperforming the previous state of the art on this
dataset, i.e., EnDi. Interestingly enough, WordNet
is the worst approach across the board scoring more
than 0.1 worse than CluBERT on both evaluation
measures. We attribute these modest results to the
fact that WordNet draws its distribution from anno-
tations that are not up to date. Furthermore, we note
that CluBERT results are statistically-significant
(p < 0.1) when compared to the best competitor
systems, i.e., EnDi, on both evaluation measures.

5.3 Error Analysis

By manually inspecting the induced distributions
that were most different to the gold ones, we note
that the vast majority of CluBERT errors are due
to the lack of senses for named entities in our in-
ventory. Indeed, many nouns that are commonly
associated with objects or abstract meanings are
also used for named entities, e.g., the lexeme floran,
which is commonly used to indicate either the liv-
ing organism meaning, or the plant life of a re-
gion meaning, it is often used in compound nouns
used to refer to named entities, such as F.C. Flora8,
William Flora9, etc. These occurrences are there-
fore considered by CluBERT, which, despite being
able to cluster them correctly, fails to disambiguate
the group containing named entities owing to the
fact that the correct meaning is not available within
the sense inventory. As a result, most of the clusters
where floran appears as named entity are disam-
biguated with the living organism meaning, thereby

8https://en.wikipedia.org/wiki/FC_
Flora

9https://en.wikipedia.org/wiki/
William_Flora

contributing to wrongly steering the sense distribu-
tion towards this meaning.

Since most of the errors are of this kind, better
handling of named entities or the use of a larger
sense inventory could further improve the perfor-
mance of CluBERT.

6 Extrinsic Evaluation

In this Section we evaluate CluBERT’s distribu-
tions on the English, domain-specific and multilin-
gual all-words WSD tasks. To this end, we leverage
the sense distributions to extract a lemma’s Most
Frequent Sense (MFS), which is then used to an-
notate each occurrence of the lemma in the test
sets. In addition, we also integrate CluBERT MFS
into two off-the-shelf WSD models and measure
its impact.

Evaluation Datasets We consider all the stan-
dard English all-words WSD test sets contained
in the framework presented by Raganato et al.
(2017b), i.e., Senseval-2 (Edmonds and Cotton,
2001), Senseval-3 (Snyder and Palmer, 2004),
SemEval-2007 (Pradhan et al., 2007), SemEval-
2013 (Navigli et al., 2013), SemEval-2015 (Moro
and Navigli, 2015) and ALL, i.e., the concatena-
tion of all the previous datasets. As regards the
domain-specific evaluation we consider the 6 and 3
domains in SemEval-2013 and SemEval-2015, re-
spectively, and test on each of them separately. As
for the multilingual evaluation, instead, we test on
the Italian, Spanish, French and German datasets
of SemEval-2013 and the Italian and Spanish test
sets of SemEval-2015.

We note that both datasets make use of old ver-
sions of BabelNet (version 1.1.1 and 2.5, respec-
tively). For this reason, previous works used an
in-house mapping between BabelNet versions to
make them up to date. However, in this process,
several gold instances were lost making the datasets
smaller than the original ones. To be fair with
other approaches, we compare CluBERT against
them on the same datasets on which they tested.
Moreover, to encourage future comparisons, we
also report CluBERT’s performance on the newer
versions of both gold standards made available
by the Sapienza NLP group at https://github.
com/SapienzaNLP/mwsd-datasets, which com-
prise more instances than the older datasets and
feature the latest version of BabelNet (4.0.1)10. As

10We used the WordNet split as we can only provide senses
within the WordNet part of BabelNet.

https://en.wikipedia.org/wiki/FC_Flora
https://en.wikipedia.org/wiki/FC_Flora
https://en.wikipedia.org/wiki/William_Flora
https://en.wikipedia.org/wiki/William_Flora
https://github.com/SapienzaNLP/mwsd-datasets
https://github.com/SapienzaNLP/mwsd-datasets
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Method Senseval2 Senseval3 SemEval-2007 SemEval-2013 SemEval-2015 All

CluBERT 68.3 64.6 55.4 69.7 68.0 66.8
UMFS-WE 54.8 52.0 38.2 55.2 54.5 53.1
WCT-VEC 56.4 53.8 40.6 54.9 54.0 54.1
COMP2SENSE 51.5 47.0 37.5 54.2 55.0 50.7

WordNet MFS 67.0 66.0 55.0 63.0 68.0 65.0

Table 4: MFS performance in terms of F1 on all the instances of the test sets in Raganato et al. (2017b).
Statistically-significant differences on the ALL dataset between CluBERT and WordNet MFS are underlined.

Method Precision Recall F1

CluBERT 70.9 70.2 70.6
EnDi 66.0 66.0 66.0
DaD 61.0 61.0 61.0
LexSemTM 51.0 48.0 49.0
WordNet MFS 68.0 68.0 68.0

Table 5: MFS performance in terms of Precision, Re-
call and F1 on the nominal instances of the ALL test
set from Raganato et al. (2017b).

a term of comparison, we also report the results
of the BabelNet MFS on these datasets. In what
follows, we refer to the older versions of the multi-
lingual tasks of SemEval-2013 and SemEval-2015
by juxtaposing the “*” symbol (SemEval-2013*
and SemEval-2015*).

On all the aforementioned datasets we report the
results in terms of F1, i.e., the harmonic mean of
precision and recall.

Most Frequent Sense Strategy We extract the
MFS of a target lemma l from its sense distribution
dl by taking the synset with the highest probability,
i.e., MFS(l) = argmax(dl). Therefore, we use
the MFS of a lemma computed according to each
system under comparison to tag all of l’s occur-
rences within the test sets.

Domain-Specific WSD Setup To assess the abil-
ity of CluBERT to scale over different domains
and hence to extract a distribution that is skewed
towards the topic of the input corpus, we build
8 distinct domain-specific corpora, one for each
domain of SemEval-2013 and SemEval-2015’s En-
glish datasets. For this purpose, we exploit the
34 domain labels (Camacho-Collados and Navigli,
2017) available in BabelNet together with the map-
ping between synsets and Wikipedia pages to re-
trieve those pages that are peculiar to a specific
domain, hence building a corpus Cdom specific for

the domain dom. We then apply CluBERT, EnDi,
DaD and LexSemTM on Cdom and extract their
respective MFS specific for each domain11.

Downstream Task Setup Finally, we test the
benefits brought by CluBERT’s distributions by
including them in a knowledge-based and a super-
vised approach, namely:

• UKB12 (Agirre et al., 2014): an off-the-shelf
state-of-the-art knowledge-based WSD model
based on the Personalised PageRank algo-
rithm. When provided, it makes use of the
given sense distribution to bias its answers
towards the MFS.

• BiLSTM (Raganato et al., 2017a): an end-to-
end neural sequence model which employs
two bidirectional LSTM layers and an atten-
tion mechanism trained on multiple tasks, i.e.,
fine- and coarse-grained WSD and Part-of-
Speech tagging. When provided, it makes
use of the MFS backoff strategy whenever
it comes to disambiguating a lemma unseen
during training.

We compare these two models, firstly, when no
prior knowledge is supplied, and then, when
WordNet (UKBWN , BiLSTMWN ) and CluBERT
(UKBCluBERT , BiLSTMCluBERT ) distributions
are provided.

6.1 English WSD Results

As one can see from Table 4, CluBERT attains the
highest scores across the board, outperforming all
the other automatic approaches by more than 10 F1
points. More interestingly, CluBERT surpasses the
hitherto unbeaten manual baseline of WordNet by

11We do not compare against UMFS-WE, WCT-VEC and
COMP2SENSE inasmuch as code and data are not available.

12Version 3.2 available at http://ixa2.si.ehu.es/
ukb/

http://ixa2.si.ehu.es/ukb/
http://ixa2.si.ehu.es/ukb/
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SemEval-2013 SemEval-2015

Method Biology Climate Finance Politics Social Issue Sport Math&Computer Biomedicine Social Issue

CluBERT 72.9 70.9 69.0 79.2 70.9 61.4 52.3 77.3 75.2
DaD 79.0 63.0 64.0 67.0 68.0 54.0 59.8 63.9 54.3
EnDi 71.0 53.0 60.0 62.0 63.0 57.0 63.0 63.0 55.9
LexSemTM 56.0 47.0 49.0 51.0 52.0 34.0 47.7 63.0 40.7
WordNet MFS 61.0 59.0 52.0 64.0 58.0 56.0 47.2 67.8 62.4

Table 6: MFS performance in terms of F1 on the nominal instances of the different domains in the SemEval-2013
(Navigli et al., 2013) and SemEval-2015 test sets (Moro and Navigli, 2015).

SemEval-2013* SemEval-2015*

Method IT ES DE FR IT ES

CluBERT 71.7 68.7 69.1 67.1 70.4 68.8
DaD 62.9 58.9 65.5 54.3 61.0 58.0
EnDi 46.2 44.6 49.1 54.3 55.0 52.0
BabelNet MFS 52.3 55.6 49.3 55.1 52.0 53.0

Table 7: MFS F1 scores on the nominal instances of
the SemEval-2013* and SemEval-2015* multilingual
datasets. Statistically significant differences (at χ2 test)
with p < 0.01 between CluBERT and the second best
performing model are underlined.

a statistically-significant13 difference (McNemar,
1947) of almost 2 F1 points on the ALL dataset.
In order to set a level playing field with EnDi and
DaD, which cover nouns only, we also carried out
our evaluation on the ALL dataset focusing on its
nominal instances. As shown in Table 5, CluBERT
attains an F1 score of 70.6, surpassing the best
automatic competitor, i.e., DaD, by more than 4 F1
points. More importantly, our induced distributions
also outperform the well-known WordNet MFS
strategy by 2.6 F1 points in this setting too.

This demonstrates that CluBERT’s distributions
are of higher quality than those induced by any of
the other automatic and manual competitors.

6.2 Domain-Specific WSD Results
We now focus on testing our distributions on
the domain-specific documents available in the
SemEval-2013 and SemEval-2015 WSD test sets.
As shown in Table 6, CluBERT outperforms all
the other competitors on 7 out of the 9 domains by
several points, falling behind DaD on the Biology
domain and behind EnDi on the Math&Computer
one. This is mainly due to the fact that the senses
in these two domains are poorly connected in Ba-
belNet, hence making them hard to reach when ap-
plying the PPR algorithm (see Section 3.2). DaD,
which also exploits the BabelNet graph, seems to

13χ2 test for statistical significance with p < 0.05.

be more robust to this event inasmuch as it relies
directly on the connections between domains and
synsets and not only on those between words and
concepts, as CluBERT does. Nevertheless, when
the senses of the target domain are well framed
within the semantic network, our approach proves
to be able to induce a distribution that accurately
reflects the way the meanings of a word are spread
within the input corpus. In fact, CluBERT achieves
the best results on all the other domains, with the
highest improvement of 12.2 F1 points over the
current state of the art on the Politics domain of
SemEval-2013.

WordNet, instead, shows poor performance in
this setting, too. In fact, its MFS information is
designed to work on a general domain setting and
it cannot be customised easily for other scenarios.
All these results further corroborate our findings
in the intrinsic evaluation, and they highlight the
fact that WordNet distributions no longer reflect
the way senses are spread across a corpus.

6.3 Multilingual WSD Results

We now investigate the capabilities of CluBERT
to scale over different languages by evaluating it
on the multilingual Word Sense Disambiguation
tasks of SemEval-2013* and SemEval-2015*. As
can be seen from Table 7, the differences in results
between CluBERT and the other systems under
comparison remain consistent with those reported
for English. Our approach, in fact, achieves on av-
erage a significant improvement of approximately
9 F1 points over the existing state of the art. This
demonstrates that CluBERT makes efficient use of
its two complementary resources, i.e., BabelNet
and BERT, in this way making up for the paucity of
data in non-English languages. Conversely, EnDi
and DaD suffer from this shortcoming and perform
either poorly (EnDi), or not consistently across
languages (DaD). As for the performance on the
newer versions of the datasets (Table 8), we note
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SemEval-2013 SemEval-2015

Method IT ES DE FR IT ES

CluBERT 66.6 69.5 72.3 62.3 62.8 61.5
BabelNet MFS 53.2 60.3 76.6 60.0 54.2 50.1

Table 8: MFS F1 scores on all instances of the Word-
Net split of SemEval-2013 and SemEval-2015 multi-
lingual datasets mapped to the latest BabelNet version
(4.0.1). Data available at https://github.com/

SapienzaNLP/mwsd-datasets.

that CluBERT outperforms the BabelNet MFS on
all languages but German. The drop in performance
on SemEval-2015 when compared to the older ver-
sion of the dataset, is mainly due to the fact that the
datasets now also include all the non-nominal in-
stances which were excluded before to be fair with
the other competitors. As for future comparisons,
we highly encourage the community to consider
the results in Table 8 for CluBERT as they are com-
puted on larger and more updated versions of the
datasets.

6.4 Downstream Task Results

Finally, we assess CluBERT MFS effectiveness
when used as backoff strategy in two off-the-shelf
WSD approaches, i.e., UKB and the BiLSTM
with attention model presented by Raganato et al.
(2017b) (see Section 6). In Table 9 we report the
performance of the two models without MFS, with
WordNet MFS and with CluBERT MFS on the
ALL WSD dataset. As one can see, not only does
our MFS provide a large boost of 4.6 and 5.2 F1
points when compared with the base models with-
out backoff strategy, but it also leads the two sys-
tems to attain better performance than when using
the WordNet MFS. This strengthens our previous
findings and crowns CluBERT as the best backoff
strategy compared to all its alternatives.

These results open up to new scenarios where
the CluBERT MFS might be preferred as backoff
strategy for WSD models to the well-established
WordNet MFS. In fact, CluBERT attains higher re-
sults than WordNet on several WSD datasets, while
at the same time assuring greater flexibility. In fact,
whereas WordNet MFS is static, CluBERT can be
run on different corpora and can therefore adapt
the sense distributions to various circumstances and
different languages.

Method Precision Recall F1

UKB 63.1 63.1 63.1
UKBWN 67.1 67.1 67.1
UKBCluBERT 67.7 67.7 67.7

BiLSTM 68.1 61.6 64.7
BiLSTMWN 69.6 69.6 69.6
BiLSTMCluBERT 69.9 69.9 69.9

Table 9: UKB and BiLSTM Precision, Recall and F1
with and without the MFS backoff strategy on the ALL
test set in Raganato et al. (2017b).

7 Conclusions

In this paper we presented CluBERT, an automatic
multilingual approach which induces the distribu-
tion of word senses in an arbitrary input corpus by
exploiting the contextual information coming from
BERT and the lexical-semantic knowledge avail-
able in BabelNet. CluBERT attains state-of-the-art
results on both intrinsic and extrinsic evaluations,
also beating the widely-used and manually-curated
WordNet MFS.

When considering input corpora that come from
specific domains, CluBERT showed an unmatched
nimbleness in shaping the distributions accord-
ingly, hence outperforming its manual and auto-
matic competitors on most domains. Similarly,
our approach demonstrated its ability to scale well
on different languages, attaining state-of-the-art
results on the multilingual WSD tasks. Finally,
when injecting CluBERT MFS into off-the-shelf
WSD models, we showed that it brings greater
benefits than the WordNet MFS. We release the
sense distributions in five different languages at
https://github.com/SapienzaNLP/clubert.

As future work, we plan to refine our approach
by exploiting other strategies for weighting the
words in the clusters and to leverage them for au-
tomatically building multilingual sense-tagged cor-
pora.
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