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Abstract

Functional Distributional Semantics provides
a linguistically interpretable framework for
distributional semantics, by representing the
meaning of a word as a function (a binary clas-
sifier), instead of a vector. However, the large
number of latent variables means that infer-
ence is computationally expensive, and train-
ing a model is therefore slow to converge. In
this paper, I introduce the Pixie Autoencoder,
which augments the generative model of Func-
tional Distributional Semantics with a graph-
convolutional neural network to perform amor-
tised variational inference. This allows the
model to be trained more effectively, achiev-
ing better results on two tasks (semantic sim-
ilarity in context and semantic composition),
and outperforming BERT, a large pre-trained
language model.

1 Introduction

The aim of distributional semantics is to learn the
meanings of words from a corpus (Harris, 1954;
Firth, 1951, 1957). Many approaches learn a vector
for each word, including count models and em-
bedding models (for an overview, see: Erk, 2012;
Clark, 2015), and some recent approaches learn a
vector for each token in a particular context (for
example: Peters et al., 2018; Devlin et al., 2019).
However, such vector representations do not
make a clear distinction between words and the
things they refer to. This means that such models
are challenging to interpret semantically. In con-
trast, Functional Distributional Semantics (Emer-
son and Copestake, 2016) aims to provide a frame-
work which can be interpreted in terms of model
theory, a standard approach to formal semantics.
Furthermore, this framework supports first-order
logic, where quantifying over logical variables is
replaced by marginalising out random variables
(Emerson and Copestake, 2017b; Emerson, 2020b).

This connection to logic is a clear strength over
vector-based models. Even the linguistically in-
spired tensor-based framework of Coecke et al.
(2010) and Baroni et al. (2014) cannot model quan-
tifiers, as shown by Grefenstette (2013).

However, the linguistic interpretability of Func-
tional Distributional Semantics comes at a compu-
tational cost, with a high-dimensional latent vari-
able for each token. Training a model by gradient
descent requires performing Bayesian inference
over these latent variables, which is intractable to
calculate exactly. The main theoretical contribution
of this paper is to present an amortised variational
inference algorithm to infer these latent variables.
This is done using a graph-convolutional network,
as described in §3.

The main empirical contribution of this paper is
to demonstrate that the resulting system, the Pixie
Autoencoder, improves performance on two seman-
tic tasks, as described in §4. I also present the
first published results of applying a large language
model (BERT) to these tasks, showing that results
are sensitive to linguistic detail in how the model
is applied. Despite being a smaller model trained
on less data, the Pixie Autoencoder outperforms
BERT on both tasks.

While the proposed inference network is de-
signed for Functional Distributional Semantics, the
proposed techniques should also be of wider inter-
est. From a machine learning perspective, amor-
tised variational inference with graph convolutions
(§3.3) could be useful in other tasks where the input
data is a graph, and the use of belief propagation
to reduce variance (§3.4) could be useful for train-
ing other generative models. However, the most
important contribution of this work is from a com-
putational semantics perspective. This paper takes
an important step towards truth-conditional distri-
butional semantics, showing that truth-conditional
functions can be efficiently learnt from a corpus.
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Figure 1: An example model structure with 14 individ-
vals. Subscripts distinguish individuals with identical
features, but are otherwise arbitrary. The pepper predi-
cate is true of individuals inside the orange line, but the
positions of individuals are otherwise arbitrary.
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2 Functional Distributional Semantics

In this section, I summarise previous work on Func-
tional Distributional Semantics. I begin in §2.1 by
introducing model-theoretic semantics, which mo-
tivates the form of the machine learning model. 1
then explain in §2.2 how the meaning of a word
is represented as a binary classifier, and finally
present the probabilistic graphical model in §2.3.

2.1 Model-Theoretic Semantics

The basic idea of model-theoretic semantics is to
define meaning in terms of fruth, relative to model
structures. A model structure can be understood
as a model of the world. In the simplest case, it
consists of a set of individuals (also called entities),
as illustrated in Fig. 1. The meaning of a content
word is called a predicate, and is formalised as a
truth-conditional function, which maps individuals
to truth values (either truth or falsehood).

Because of this precisely defined notion of truth,
model theory naturally supports logic, and has be-
come a prominent approach to formal semantics.
For example, if we know the truth-conditional func-
tions for pepper and red, we can use first-order
logic to calculate the truth of sentences like Some
peppers are red, for model structures like Fig. 1.

For detailed expositions, see: Cann (1993); Al-
lan (2001); Kamp and Reyle (2013).

2.2 Semantic Functions

Functional Distributional Semantics (Emerson and
Copestake, 2016; Emerson, 2018) embeds model-
theoretic semantics into a machine learning model.
An individual is represented by a feature vector,
called a pixie." For example, all three red pepper
individuals in Fig. 1 would be represented by the

1Terminology introduced by Emerson and Copestake

(2017a). This provides a useful shorthand for “feature repre-
sentation of an individual”.

same pixie, as they have the same features. A pred-
icate is represented by a semantic function, which
maps pixies to probabilities of truth. For example,
the function for pepper should map the red pepper
pixie to a probability close to 1. This can be seen
in formal semantics as a truth-conditional function,
and in a machine learning as a binary classifier.

This ties in with a view of concepts as abilities,
as proposed in some schools of philosophy (for
example: Dummett, 1976, 1978; Kenny, 2010; Sut-
ton, 2015, 2017), and some schools of cognitive sci-
ence (for example: Labov, 1973; McCloskey and
Glucksberg, 1978; Murphy, 2002, pp. 1-3, 134—
138; Zentall et al., 2002). In NLP, some authors
have suggested representing concepts as classifiers,
including Larsson (2013), working in the frame-
work of Type Theory with Records (Cooper, 2005;
Cooper et al., 2015). Similarly, Schlangen et al.
(2016) and ZarrieB and Schlangen (2017a,b) train
image classifiers using captioned images.

We can also view such a classifier as defining a
region in the space, as argued for by Gérdenfors
(2000, 2014). This idea is used for distributional
semantics by Erk (2009a,b), for colour terms by
McMahan and Stone (2015), and for knowledge
base completion by Bouraoui et al. (2017).

For a broader survey motivating the use of classi-
fiers to represent meaning, see: Emerson (2020a).

2.3 Probabilistic Graphical Model

To learn semantic functions in distributional se-
mantics, Emerson and Copestake define a prob-
abilistic graphical model that generates semantic
dependency graphs, shown in Fig. 3. The basic
idea is that an observed dependency graph is true
of some unobserved situation comprising a number
of individuals. Given a sembank (a corpus parsed
into dependency graphs), the model can be trained
unsupervised, to maximise the likelihood of gener-
ating the data. An example graph is shown in Fig. 2,
which corresponds to sentences like Every picture
tells a story or The story was told by a picture (note
that only content words have nodes).

More precisely, given a graph topology (a de-
pendency graph where the edges are labelled but
the nodes are not), the model generates a predi-
cate for each node. Rather than directly generating
predicates, the model assumes that each predicate
describes an unobserved individual.> The model

This assumes a neo-Davidsonian approach to event se-

mantics (Davidson, 1967; Parsons, 1990), where verbal predi-
cates are true of event individuals. It also assumes that a plural
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Figure 2: A dependency graph, which could be gener-
ated by Fig. 3. Such graphs are observed in training.

ARG1 ARG2

X

@

)
S%

Figure 3: Probabilistic graphical model for Functional
Distributional Semantics. Each node is a random vari-
able. The plate (box in middle) denotes repeated nodes.
Top row: individuals represented by jointly distributed
pixie-valued random variables X, Y, Z, in a space X.
This is modelled by a Cardinality Restricted Boltzmann
Machine (CaRBM), matching the graph topology.
Middle row: for each individual, each predicate 7 in
the vocabulary V is randomly true (T) or false (L), ac-
cording to the predicate’s semantic function. Each func-
tion is modelled by a feedforward neural net.
Bottom row: for each individual, we randomly gener-
ate one predicate, out of all predicates true of the indi-
vidual. Only these nodes are observed.

first generates a pixie to represent each individual,
then generates a truth value for each individual and
each predicate in the vocabulary, and finally gen-
erates a single predicate for each individual. The
pixies and truth values can be seen as a probabilis-
tic model structure, which supports a probabilistic
first-order logic (Emerson and Copestake, 2017b;
Emerson, 2020b). This is an important advantage
over other approaches to distributional semantics.
A pixie is defined to be a sparse binary-valued
vector, with D units (dimensions), of which ex-
actly C are active (take the value 1).> The joint
distribution over pixies is defined by a Cardinality
Restricted Boltzmann Machine (CaRBM) (Swer-
sky et al., 2012), which controls how the active
units of each pixie should co-occur with the active

noun corresponds to a plural individual, which would be com-
patible with Link (1983)’s approach to plural semantics.

3 Although a pixie is a feature vector, the features are all
latent in distributional semantics, in common with models like
LDA (Blei et al., 2003) or Skip-gram (Mikolov et al., 2013).

units of other pixies in the same dependency graph.

A CaRBM is an energy-based model, meaning
that the probability of a situation is proportional
to the exponential of the negative energy of the
situation. This is shown in (1), where s denotes a
situation comprising a set of pixies with semantic
dependencies between them, and F(s) denotes the

energy. The energy is defined in (2),* where KN Y
denotes a dependency from pixie x to pixie y with
label I. The CaRBM includes a weight matrix w(")
for each label [. The entry wg-) controls how likely
it is for units ¢ and j to both be active, when linked
by dependency [. Each graph topology has a cor-
responding CaRBM, but the weight matrices are
shared across graph topologies. Normalising the
distribution in (2) is intractable, as it requires sum-
ming over all possible s.

P (s) o exp (—E(s)) (1)
P (s) o exp Z wg»)afiyj (2)
xéy in s

The semantic function ¢(") for a predicate  is
defined to be one-layer feedforward net, as shown
in (3), where o denotes the sigmoid function. Each
predicate has a vector of weights v(").

@) =0 (v, 3

Lastly, the probability of generating a predicate r
for a pixie z is given in (4). The more likely 7 is
to be true, the more likely it is to be generated.
Normalising requires summing over the vocabulary.

P (r|=) oc t)(2) (4)

In summary, the model has parameters w® (the
world model), and v(™) (the lexical model). These
are trained on a sembank using the gradients in (5),
where g is a dependency graph. For w("), only the
first term is nonzero; for v("), only the second term.

59 logP (g) = (Es|g - ES> [59 (—E(S))}

P (&)
+ IEs|g |: logP (g ’ S):|

00

“I follow the Einstein summation convention, where a re-
peated subscript is assumed to be summed over. For example,
x;9; is a dot product. Furthermore, I use uppercase for random
variables, and lowercase for values. I abbreviate P (X =x) as
P (x), and I abbreviate P (T, x =T) as P (¢, x ).
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3 The Pixie Autoencoder

A practical challenge for Functional Distributional
Semantics is training a model in the presence of
high-dimensional latent variables. In this section,
I present the Pixie Autoencoder, which augments
the generative model with an encoder that predicts
these latent variables.

For example, consider dependency graphs for
The child cut the cake and The gardener cut the
grass. These are true of rather different situations.
Although the same verb is used in each, the pixie
for cut should be different, because they describe
events with different physical actions and different
tools (slicing with a knife vs. driving a lawnmower).
Training requires inferring posterior distributions
for these pixies, but exact inference is intractable.

In §3.1 and §3.2, I describe previous work: amor-
tised variational inference is useful to efficiently
predict latent variables; graph convolutions are use-
ful when the input is a graph. In §3.3, I present the
encoder network, to predict latent pixies in Func-
tional Distributional Semantics. It uses the tools
introduced in §3.1 and §3.2, but modified to better
suit the task. In §3.4, I explain how the encoder
network can be used to train the generative model,
since training requires the latent variables. Finally,
I summarise the architecture in §3.5, and compare
it to other autoencoders in §3.6.

3.1 Amortised Variational Inference

Calculating the gradients in (5) requires taking ex-
pectations over situations (both the marginal ex-
pectation E;, and the conditional expectation E,
given a graph). Exact inference would require
summing over all possible situations, which is in-
tractable for a high-dimensional space.

This is a general problem when working with
probabilistic models. Given an intractable distribu-
tion P(x), a variational inference algorithm ap-
proximates this by a simpler distribution Q(x),
parametrised by ¢, and then optimises the param-
eters so that Q is as close as possible to [P, where
closeness is defined using KL-divergence (for a
detailed introduction, see: Jordan et al., 1999).

However, variational inference algorithms typi-
cally require many update steps in order to optimise
the approximating distribution Q. An amortised
variational inference algorithm makes a further ap-
proximation, by estimating the parameters ¢ using
an inference network (Kingma and Welling, 2014;
Rezende et al., 2014; Titsias and Lazaro-Gredilla,

2014). The inference network might not predict
the optimal parameters, but the calculation can be
performed efficiently, rather than requiring many
update steps. The network has its own parame-
ters ¢, which are optimised so that it makes good
predictions for the variational parameters q.

3.2 Graph Convolutions

For graph-structured input data, a standard feedfor-
ward neural net is not suitable. In order to share
parameters across similar graph topologies, an ap-
propriate architecture is a graph-convolutional net-
work (Duvenaud et al., 2015; Kearnes et al., 2016;
Kipf and Welling, 2017; Gilmer et al., 2017). This
produces a vector representation for each node in
the graph, calculated through a number of layers.
The vector for a node in layer & is calculated based
only on the vectors in layer £—1 for that node and
the nodes connected to it. The same weights are
used for every node in the graph, allowing the net-
work to be applied to different graph topologies.

For linguistic dependency graphs, the depen-
dency labels carry important information. Marcheg-
giani and Titov (2017) propose using a different
weight matrix for each label in each direction. This
is shown in (6), where: h(*-X) denotes the vector
representation of node X in layer k; w(*") denotes
the weight matrix for dependency label [ in layer k;
f is a non-linear activation function; and the sums
are over outgoing and incoming dependencies.’
There is a separate weight matrix w®™) for a de-
pendency in the opposite direction, and as well as a
matrix w*!) for updating a node based on itself.
Bias terms are not shown.

(k,X) (k,self) ; (k—1,X)
oY) = f(wzj h

n Z w@(f,l)hgk—l,Y)
v x

(k1) ; (k—1,Y)
+ Y wg hy >

v4x

(6)

3.3 Predicting Pixies

For Functional Distributional Semantics, Emerson
and Copestake (2017a) propose a mean-field varia-
tional inference algorithm, where Q has an indepen-
dent probability ql(X) of each unit ¢ being active,
for each node X. Each probability is optimised
based on the mean activation of all other units.

SFor consistency with Fig. 3, T write X for a node (a
random variable), rather than x (a pixie).
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Figure 4: Graph-convolutional inference network for
Fig. 3. The aim is to predict the posterior distribution
over the pixie nodes X, Y, Z, given the observed pred-
icates p, ¢, r. Each edge indicates the weight matrix
used in the graph convolution, as defined in (6). In the
bottom row, the input at each node is an embedding
for the node’s predicate. The intermediate representa-
tions h do not directly correspond to any random vari-
ables in Fig. 3. Conversely, the truth-valued random
variables in Fig. 3 are not directly represented here.

This makes the simplifying assumption that the
posterior distribution can be approximated as a sin-
gle situation with some uncertainty in each dimen-
sion. For example, for a dependency graph for The
gardener cut the grass, three mean vectors are in-
ferred, for the gardener, the cutting event, and the
grass. These vectors are “contextualised”, because
they are jointly inferred based on the whole graph.

I propose using a graph-convolutional network to
amortise the inference of the variational mean-field
vectors. In particular, I use the formulation in (6),
with two layers. The first layer has a tanh activa-
tion, and the second layer has a sigmoid (to output
probabilities). In addition, if the total activation in
the second layer is above the total cardinality C,
the activations are normalised to sum to C. The
network architecture is illustrated in Fig. 4.

The network is trained to minimise the KL-
divergence from P (s |g) (defined by the genera-
tive model) to Q(s) (defined by network’s output).
This is shown in (7), where E@(S) denotes an ex-
pectation over s under the variational distribution.

D(Q||P) = —Eqs) [log <P&L)g)>] (7)

To minimise the KL-divergence, we can differen-

tiate with respect to the inference network param-
eters ¢. This gives (8), where H denotes entropy.

0 0
%D(@HP) = — %EQ(S) [log P(s)]

0
- %E@@) [logP(g]s)] (®

0
)

The first term can be calculated exactly, because
the log probability is proportional to the negative
energy, which is a linear function of each pixie,
and the normalisation constant is independent of s
and Q. This term therefore simplifies to the energy
of the mean-field pixies, %E (E [s]).

The last term can be calculated exactly, because
@ was chosen to be simple. Since each dimension
is independent, it is Zq qloggq+ (1—q)log(1—gq),
summing over the variational parameters.

The second term is more difficult, for two rea-
sons. Firstly, calculating the probability of gener-
ating a predicate requires summing over all predi-
cates, which is computationally expensive. We can
instead sum over a random sample of predicates
(along with the observed predicate). However, by
ignoring most of the vocabulary, this will over-
estimate the probability of generating the correct
predicate. I have mitigated this by upweighting this
term, similarly to a 5-VAE (Higgins et al., 2017).

The second problem is that the log probability of
a predicate being true is not a linear function of the
pixie. The first-order approximation would be to
apply the semantic function to the mean-field pixie,
as suggested by Emerson and Copestake (2017a).
However, this is a poor approximation when the
distribution over pixies has high variance. By ap-
proximating a sigmoid using a probit and assuming
the input is approximately Gaussian, we can de-
rive (9) (Murphy, 2012, §8.4.4.2). Intuitively, the
higher the variance, the closer the expected value
to 1/2. For a Bernoulli distribution with probabil-
ity g, scaled by a weight v, the variance is v?q(1—q).

Elx]
1 + % Var[z] > ®

With the above approximations, we can calcu-
late (4) efficiently. However, because the distribu-
tion over predicates in (4) only depends on relative
probabilities of truth, the model might learn to keep
them all close to 0, which would damage the log-
ical interpretation of the model. To avoid this, I

E[o(z)] = O'<
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have modified the second term of (5) and second
term of (8), using not only the probability of gener-
ating a predicate for a pixie, P (r | ), but also the
probability of the truth of a predicate, P (¢, x | x).
This technique of constraining latent variables to
improve interpretability is similar to how Rei and
S@gaard (2018) constrain attention weights.

Finally, as with other autoencoder models, there
is a danger of learning an identity function that gen-
eralises poorly. Here, the problem is that the pixie
distribution for a node might be predicted based
purely on the observed predicate for that node, ig-
noring the wider context. To avoid this problem,
we can use dropout on the input, a technique which
has been effective for other NLP models (Iyyer
et al., 2015; Bowman et al., 2016), and which is
closely related to denoising autoencoders (Vincent
etal., 2008). More precisely, we can keep the graph
topology intact, but randomly mask out the predi-
cates for some nodes. For a masked node X, I have
initialised the encoder with an embedding as shown
in (10), which depends on the node’s dependencies
(only on the label of each dependency, not on the
predicate of the other node).

e(X) _ e(drop)+ze(dr0p,l)+Ze(drop,lfl) (10)

v x v5x

3.4 Approximating the Prior Expectation

The previous section explains the inference net-
work and how it is trained. To train the generative
model, the predictions of the inference network
(without dropout) are used to approximate the con-
ditional expectations E, in (5). However, the
prior expectation [E, cannot be calculated using the
inference network. Intuitively, the prior distribu-
tion encodes a world model, and this cannot be
summarised as a single mean-field situation.

Emerson and Copestake (2016) propose an
MCMC algorithm using persistent particles, sum-
ming over samples to approximate the expectation.
Many samples are required for a good approxima-
tion, which is computationally expensive. Taking
a small number produces high variance gradients,
which makes training less stable.

However, we can see in (5) that we don’t need
the prior expectation E; on its own, but rather the
difference ES|Q—ES. So, to reduce the variance
of gradients, we can try to explore the prior dis-
tribution only in the vicinity of the inference net-
work’s predictions. In particular, I propose taking
the inference network’s predictions and updating

this mean-field distribution to bring it closer to the
prior under the generative model. This can be done
using belief propagation (for an introduction, see:
Yedidia et al., 2003), as applied to CaRBMs by
Swersky et al. (2012). For example, given the pre-
dicted mean-field vectors for a gardener cutting
grass, we would modify these vectors to make the
distribution more closely match what is plausible
under the generative model (based on the world
model, ignoring the observed predicates).

This can be seen as the bias-variance trade-off:
the inference network introduces a bias, but reduces
the variance, thereby making training more stable.

3.5 Summary

The Pixie Autoencoder is a combination of the
generative model from Functional Distributional
Semantics (generating dependency graphs from la-
tent situations) and an inference network (inferring
latent situations from dependency graphs), as il-
lustrated in Figs. 3 and 4. They can be seen as an
decoder and encoder, respectively.

It is trained on a sembank, with the generative
model maximising the likelihood of the depen-
dency graphs, and the inference network minimis-
ing KL-divergence with the generative model. To
calculate gradients, the inference network is first
applied to a dependency graph to infer the latent
situation. The generative model gives the energy
of the situation and the likelihood of the observed
predicates (compared with random predicates). We
also calculate the entropy of the situation, and ap-
ply belief propagation to get a situation closer to
the prior. This gives us all terms in (5) and (8).

A strength of the Pixie Autoencoder is that it
supports logical inference, following Emerson and
Copestake (2017a). This is illustrated in Fig. 5. For
example, for a gardener cutting grass or a child
cutting a cake, we could ask whether the cutting
event is also a slicing event or a mowing event.

3.6 Structural Prior

I have motivated the Pixie Autoencoder from the
perspective of the generative model. However, we
can also view it from the perspective of the encoder,
comparing it with a Variational Autoencoder (VAE)
which uses an RNN to generate text from a latent
vector (Bowman et al., 2016). The VAE uses a
Gaussian prior, but the Pixie Autoencoder has a
structured prior defined by the world model.
Hoffman and Johnson (2016) find that VAEs
struggle to fit a Gaussian prior. In contrast, the

3987



i

K3

i
.

Figure 5: An example of logical inference, building on
Fig. 4. Given an observed semantic dependency graph
(here, with three nodes, like Fig. 2, with predicates
D, ¢, ), we would like to know if some predicate is true
of some latent individual (here, if a is true of Y'). We
can apply the inference network to infer distributions
for the pixie nodes, and then apply a semantic function
to a pixie node (here, the function for a applied to ).

Pixie Autoencoder learns the prior, fitting the world
model to the inference network’s predictions. Since
the world model makes structural assumptions,
defining energy based only on semantic dependen-
cies, we can see the world model as a “structural
prior”: the inference network is encouraged, via
the first term in (8), to make predictions that can be
modelled under these structural assumptions.

4 Experiments and Evaluation

I have evaluated on two datasets, chosen for two
reasons. Firstly, they allow a direct comparison
with previous results (Emerson and Copestake,
2017b). Secondly, they require fine-grained se-
mantic understanding, which starts to use the ex-
pressiveness of a functional model.

More open-ended tasks such as lexical substitu-
tion and question answering would require combin-
ing my model with additional components such as a
semantic parser and a coreference resolver. Robust
parsers exist which are compatible with my model
(for example: Buys and Blunsom, 2017; Chen et al.,
2018), but this would be a non-trivial extension,
particularly for incorporating robust coreference
resolution, which would ideally be done hand-in-
hand with semantic analysis. Incorporating fine-
grained semantics into such tasks is an exciting
research direction, but beyond the scope of the cur-
rent paper.

When reporting results, significance tests follow
Dror et al. (2018).

4.1 Training Details

I trained the model on WikiWoods (Flickinger
etal., 2010; Solberg, 2012), which provides DMRS
graphs (Copestake et al., 2005; Copestake, 2009)
for 55m sentences (900m tokens) from the English
Wikipedia (July 2008). It was parsed with the En-
glish Resource Grammar (ERG) (Flickinger, 2000,
2011) and PET parser (Callmeier, 2001; Toutanova
et al., 2005), with parse ranking trained on We-
Science (Ytrestgl et al., 2009). It is updated with
each ERG release; I used the 1212 version. I pre-
processed the data following Emerson and Copes-
take (2016), giving 31m graphs.

I implemented the model using DyNet (Neubig
etal., 2017) and Pydmrs (Copestake et al., 2016).6 1
initialised the generative model following Emerson
and Copestake (2017b) using sparse PPMI vectors
(QasemiZadeh and Kallmeyer, 2016). I first trained
the encoder on the initial generative model, then
trained both together. I used L2 regularisation and
the Adam optimiser (Kingma and Ba, 2015), with
separate L2 weights and learning rates for the world
model, lexical model, and encoder. I tuned hyper-
parameters on the RELPRON dev set (see §4.3),
and averaged over 5 random seeds.

4.2 BERT Baseline

BERT (Devlin et al., 2019) is a large pre-trained
language model with a Transformer architecture
(Vaswani et al., 2017), trained on 3.3b tokens from
the English Wikipedia and BookCorpus (Zhu et al.,
2015). It produces high-quality contextualised em-
beddings, but its architecture is not motivated by
linguistic theory. I used the version in the Trans-
formers library (Wolf et al., 2019). To my knowl-
edge, large language models have not previously
been evaluated on these datasets.

4.3 RELPRON

The RELPRON dataset (Rimell et al., 2016) con-
sists of terms (such as telescope), paired with up to
10 properties (such as device that astronomer use).
The task is to find the correct properties for each
term. There is large gap between the state of the art
(around 50%) and the human ceiling (near 100%).

The dev set contains 65 terms and 518 proper-
ties; the test set, 73 terms and 569 properties. The
dataset is too small to train on, but hyperparameters
can be tuned on the dev set. The dev and test terms
are disjoint, to avoid high scores from overtuning.

*https://gitlab.com/guyemerson/pixie
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Model Dev | Test
Vector addition (Rimell et al., 2016) 496 | 472
Simplified Practical Lexical Function (Rimell et al., 2016) 496 | 497
Previous work Vector addition (Czarnowska et al., 2019) 485 | 475
Dependency vector addition (Czarnowska et al., 2019) 497 | 439

Semantic functions (Emerson and Copestake, 2017b) 20 | .16
Sem-func & vector ensemble (Emerson and Copestake, 2017b) | .53 49

Vector addition 488 | 474
Baselines BERT (masked prediction) .206 | .186
BERT (contextual prediction) 093 | .134
BERT (masked prediction) & vector addition ensemble 498 | 479
Proposed approach P%x?e Autoencoder N 261 | .189
Pixie Autoencoder & vector addition ensemble 532 | .489

Table 1: Mean Average Precision (MAP) on RELPRON development and test sets.

Previous work has shown that vector addition
performs well on this task (Rimell et al., 2016;
Czarnowska et al., 2019). I have trained a Skip-
gram model (Mikolov et al., 2013) using the Gen-
sim library (Rehiifek and Sojka, 2010), tuning
weighted addition on the dev set.

For the Pixie Autoencoder, we can view the task
as logical inference, finding the probability of truth
of a term given an observed property. This follows
Fig. 5, applying the term a to either X or Z, ac-
cording to whether the property has a subject or
object relative clause.

BERT does not have a logical structure, so there
are multiple ways we could apply it. I explored
many options, to make it as competitive as possible.
Following Petroni et al. (2019), we can rephrase
each property as a cloze sentence (such as a device
that an astronomer uses is a [MASK] .). However,
RELPRON consists of pseudo-logical forms, which
must be converted into plain text query strings. For
each property, there are many possible cloze sen-
tences, which yield different predictions. Choices
include: grammatical number, articles, relative pro-
noun, passivisation, and position of the mask. I
used the Pattern library (Smedt and Daelemans,
2012) to inflect words for number.

Results are given in Table 1. The best perform-
ing BERT method uses singular nouns with a/an,
despite sometimes being ungrammatical. My most
careful approach involves manually choosing ar-
ticles (e.g. a device, the sky, water) and number
(e.g. plural people) and trying three articles for the
masked term (a, an, or no article, taking the high-
est probability from the three), but this actually
lowers dev set performance to .192. Using plurals
lowers performance to .089. Surprisingly, using

BERT large (instead of BERT base) lowers perfor-
mance to .165. As an alternative to cloze sentences,
BERT can be used to predict the term from a con-
textualised embedding. This performs worse (see
Table 1), but the best type of query string is similar.

The Pixie Autoencoder outperforms previous
work using semantic functions, but is still outper-
formed by vector addition. Combining it with vec-
tor addition in a weighted ensemble lets us test
whether they have learnt different kinds of infor-
mation. The ensemble significantly outperforms
vector addition on the test set (p < 0.01 for a per-
mutation test), while the BERT ensemble does not
(p > 0.2). However, it performs no better than
the ensemble in previous work. This suggests that,
while the encoder has enabled the model to learn
more information, the additional information is al-
ready present in the vector space model.

RELPRON also includes a number of con-
founders, properties that are challenging due to
lexical overlap. For example, an activity that soil
supports is farming, not soil. There are 27 con-
founders in the test set, and my vector addition
model places all of them in the top 4 ranks for the
confounding term. In contrast, the Pixie Autoen-
coder and BERT do not fall for the confounders,
with a mean rank of 171 and 266, respectively.

Nonetheless, vector addition remains hard to
beat. As vector space models are known to be good
at topical relatedness (e.g. learning that astronomer
and telescope are related, without necessarily learn-
ing how they are related), a tentative conclusion is
that relatedness is missing from the contextualised
models (Pixie Autoencoder and BERT). Finding
a principled way to integrate a notion of “topic”
would be an interesting task for future work.
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Model Separate | Averaged
Vector addition (Milajevs et al., 2014) - .348
Categorical, copy object (Milajevs et al., 2014) - 456
Categorical, regression (Polajnar et al., 2015) 33 -
Previous | Categorical, low-rank decomposition (Fried et al., 2015) 34 -
work Tensor factorisation (Van de Cruys et al., 2013) 37 -
Neural categorical (Hashimoto et al., 2014) 41 .50
Semantic functions (Emerson and Copestake, 2017b) 25 -
Sem-func & vector ensemble (Emerson and Copestake, 2017b) 32 -
Baselines BERT (contextual similarity) 337 446
BERT (contextual prediction) 233 317
Proposed | Pixie Autoencoder (logical inference in both directions) .306 374
approach | pixie Autoencoder (logical inference in one direction) 406 504

Table 2: Spearman rank correlation on the GS2011 dataset, using separate or averaged annotator scores.

44 GS2011

The GS2011 dataset evaluates similarity in context
(Grefenstette and Sadrzadeh, 2011). It comprises
pairs of verbs combined with the same subject and
object (for example, map show location and map
express location), annotated with similarity judge-
ments. There are 199 distinct pairs, and 2500 judge-
ments (from multiple annotators).

Care must be taken when considering previous
work, for two reasons. Firstly, there is no devel-
opment set. Tuning hyperparameters directly on
this dataset will lead to artificially high scores, so
previous work cannot always be taken at face value.
For example, Hashimoto et al. (2014) report results
for 10 settings. I nonetheless show the best result in
Table 2. My model is tuned on RELPRON (§4.3).

Secondly, there are two ways to calculate corre-
lation with human judgements: averaging for each
distinct pair, or keeping each judgement separate.
Both methods have been used in previous work,
and only Hashimoto et al. (2014) report both.

For the Pixie Autoencoder, we can view the task
as logical inference, following Fig. 5. However,
Van de Cruys et al. (2013) point out that the sec-
ond verb in each pair is often nonsensical when
combined with the two arguments (e.g. system visit
criterion), and so they argue that only the first verb
should be contextualised, and then compared with
the second verb. This suggests we should apply
logical inference only in one direction: we should
find the probability of truth of the second verb,
given the first verb and its arguments. As shown
in Table 2, this gives better results than applying
logical inference in both directions and averaging
the probabilities. Logical inference in both direc-
tions allows a direct comparison with Emerson and

Copestake (2017b), showing the Pixie Autoencoder
performs better. Logical inference in one direction
yields state-of-the-art results on par with the best
results of Hashimoto et al. (2014).

There are multiple ways to apply BERT, as
in §4.3. One option is to calculate cosine simi-
larity of contextualised embeddings (averaging if
tokenised into word-parts). However, each subject-
verb-object triple must be converted to plain text.
Without a dev set, it is reassuring that conclusions
from RELPRON carry over: it is best to use singu-
lar nouns with a/an (even if ungrammatical) and
it is best to use BERT base. Manually choosing
articles and number lowers performance to .320
(separate), plural nouns to .175, and BERT large
to .226. Instead of using cosine similarity, we can
predict the other verb from the contextualised em-
bedding, but this performs worse. The Pixie Au-
toencoder outperforms BERT, significantly for sep-
arate scores (p < 0.01 for a bootstrap test), but
only suggestively for averaged scores (p = 0.18).

5 Conclusion

I have presented the Pixie Autoencoder, a novel en-
coder architecture and training algorithm for Func-
tional Distributional Semantics, improving on pre-
vious results in this framework. For GS2011, the
Pixie Autoencoder achieves state-of-the-art results.
For RELPRON, it learns information not captured
by a vector space model. For both datasets, it out-
performs BERT, despite being a shallower model
with fewer parameters, trained on less data. This
points to the usefulness of building semantic struc-
ture into the model. It is also easy to apply to these
datasets (with no need to tune query strings), as it
has a clear logical interpretation.
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