
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3974–3981
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

3974

Autoencoding Keyword Correlation Graph for Document Clustering

Billy Chiu Sunil Kumar Sahu Derek Thomas Neha Sengupta Mohammady Mahdy
Inception Institute of Artificial Intelligence,

Abu Dhabi, United Arab Emirates
{hon.chiu|sunil.sahu|neha.sengupta}@inceptioniai.org,

derek.thomas@pax-ai.ae, mohammady.mahdy@inceptioniai.org

Abstract

Document clustering requires a deep under-
standing of the complex structure of long-
text; in particular, the intra-sentential (local)
and inter-sentential features (global). Exist-
ing representation learning models do not fully
capture these features. To address this, we
present a novel graph-based representation for
document clustering that builds a graph au-
toencoder (GAE) on a Keyword Correlation
Graph. The graph is constructed with top-
ical keywords as nodes and multiple local
and global features as edges. A GAE is em-
ployed to aggregate the two sets of features
by learning a latent representation which can
jointly reconstruct them. Clustering is then
performed on the learned representations, us-
ing vector dimensions as features for induc-
ing document classes. Extensive experiments
on two datasets show that the features learned
by our approach can achieve better clustering
performance than other existing features, in-
cluding term frequency-inverse document fre-
quency and average embedding.

1 Introduction

Text classification is a core task in natural language
processing (NLP) with a variety of applications,
such as news topic labeling and opinion mining.
Supervised methods for text classification gener-
ally perform better than unsupervised clustering
methods, at the cost of heavy annotation efforts. In
contrast, unsupervised clustering methods have the
advantage in terms of requiring less prior knowl-
edge and can be used to discover new classes when
relevant training data is not available.

The performance of text clustering is closely re-
lated to the quality of its feature representation.
While sentence-level clustering relies primarily on
the local, intra-sentential features, document-level
clustering also needs the global, inter-sentential

features. Existing representation learning meth-
ods that model text as a bag-of-words (e.g., term
frequency-inverse document frequency, TFIDF) or
as sequences of variable-length units (e.g., Bidirec-
tional Encoder Representations from Transformers,
BERT) (Devlin et al., 2019) are ineffective in cap-
turing global features across long sequences – suf-
fering from heavy computational cost as a result of
high dimensionality and complex neural network
architectures, as reported by Ye et al. (2017) and
Jawahar et al. (2019).

Recently, graph neural networks have been used
to provide features for NLP applications, including
text classification (Yao et al., 2019) and relation
extraction (Sahu et al., 2019). By modeling text
in a topological structure, these models can en-
code global information in long-range words. De-
spite their usefulness, graph models remain under-
explored in document clustering.

In this work, we propose a novel graph-based
representation for document clustering by utiliz-
ing a graph autoencoder (GAE) (Kipf and Welling,
2016) on a Keyword Correlation Graph (KCG).
Our KCG represents a document as a weighted
graph of topical keywords. Each graph node is
a keyword, and sentences in the document are at-
tached to the nodes they are related to. The edges
between nodes indicate their correlation strength,
which is determined by comparing their corre-
sponding sets of sentences. The node and edge
features in the KCG are encoded using a GAE, and
the encoded features are used to infer document
classes.

Our contribution is threefold. First, we propose
a KCG, which can capture the complex relations
among words and sentences in long text. Second,
we propose a new graph-based representation for
document clustering. To the best of our knowledge,
this is the first attempt to use GAEs to jointly learn
local and global features for document clustering.

3975

Last, an analysis of the individual model compo-
nents indicates that our model can effectively en-
code both sets of features. This distinguishes us
from existing sequence-level representations which
generally better encode the former than the latter.

2 Related Work

In the literature, three common neural methods,
Convolutional neural network (CNN), Recurrent
neural network (RNN) and Transformer, have been
proposed to model the sequence-level features be-
tween words. CNNs have been shown to be more
effective in capturing features in short text (e.g.
phrases) than in long sequences (Xu et al., 2015).
In contrast, RNN is suitable for handling sequential
input (Zhou et al., 2019). It aims at modelling the
relations between the current word and all the pre-
vious ones in the sequence as a whole. Unlike RNN
and CNN, which model a text sequence either from
left to right or combined left-to-right and right-
to-left, Transformer operates on the masked lan-
guage model that predicts randomly-masked words
in consecutive sentence pair. Nonetheless, these
approaches only model the context on consecutive
words/sentences, neglecting many global features
that span across non-consecutive text units in mul-
tiple sentences.

Several methods have been proposed to repre-
sent documents as graphs. These document graphs
can be induced directly from the input document,
using its words, sentences, paragraphs or even the
document itself as nodes (Defferrard et al., 2016),
and establishing edges according to the distribu-
tional information such as, word co-occurrence
frequencies (Yao et al., 2019; Peng et al., 2018),
text similarities (Putra and Tokunaga, 2017) and
hyperlinks between documents (Page et al., 1999).
Alternatively, document graphs can be constructed
indirectly with the use of NLP pipelines and knowl-
edge bases such as WordNet (Miller, 1995) for
identifying the entities in the document, as well as
their syntactic and semantic relations (Sahu et al.,
2019; Li et al., 2019). However, such type of ap-
proaches are limited to resource-rich languages.

3 Methodology

We describe our model architecture in Figure 1. It
includes three steps. Given a document, the model
first constructs a KCG with keywords as nodes and
edges correspond to their local and global features.
Next, it uses a GAE to encode the two feature sets

Figure 1: Proposed model architecture.

Figure 2: An example showcases a document, its key-
words (red) and KCG representation. Example adapted
from the Reuters dataset (Lewis et al., 2004)

by jointly reconstructing them. Finally, clustering
is performed on the encoded representations, using
vector dimensions as features for inducing docu-
ment classes.

3.1 KCG Construction

The KCG construction involves 4 steps: Given a
document, KCG first uses Non-Negative Matrix
Factorization (NMF) (Févotte and Idier, 2011; Ci-
chocki and Phan, 2009) to extract the top-50 key-
words of each document as nodes.1 Second, each
sentence in the document are mapped to the node
it is most related to.2 Thus, each node will have
its own sentence sets. An example is shown in
Figure 2. Then, we generate embeddings for each
sentence in the set (referred to as sentence set em-
beddings henceforth). They will be served as fea-
tures of the nodes. Last, edges between nodes are
established by measuring the correlations of their
corresponding sentence sets.

1Earlier approaches used mature NLP pipelines (e.g.,
named entity recognizer) for keyword extraction (Li et al.,
2019; Liu et al., 2019). Instead, we use unsupervised NMF for
keyword extraction. We tested with top-10, 20, 50, 100 key-
words on Latent Dirichlet allocation (LDA) (Blei et al., 2003;
Hoffman et al., 2010) and NMF. We found that using NMF to
extract top-50 keywords gives the best clustering result.

2We map sentences and keywords based on the cosine
similarity between their TFIDF features

3976

Node Feature: We represent each keyword node
as the average of its sentence set embeddings. A
range of word- and sentence-level embeddings, in-
cluding Global Vector (GloVe) (Pennington et al.,
2014), BERT, Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019) and Embeddings from Lan-
guage Models (ELMo) (Peters et al., 2018), are
tested (see Section 5.1).

Word co-occurrence edge: The distributional
hypothesis suggests that similar (key)words ap-
pear in similar contexts (Firth, 1957). Thus, the
co-occurrence rate between two keywords reveals
helpful clues for their relatedness. For this, we
connect two keywords by their co-occurrence fre-
quencies in sentences.

Sentence similarity edge: To estimate the
global correlation between two keywords, we calcu-
late the mean pairwise (cosine) similarity between
their sentence embedding sets. Two keywords will
have a high edge weight if their sentence set em-
beddings are similar.

Sentence position edge: The position of a word
in the document can be an indicator of its im-
portance. For example, topical keywords and
sentences tend to appear in the beginning of the
text (Lin and Hovy, 1997). Hence, we connect two
keywords by computing the average position of
their sentence sets in text. If two keywords both
appear early in text, they will have a high edge
weight. Details are described in the Appendix.

3.2 Graph Autoencoders (GAEs)

KCG captures the local and global features in
documents using text embeddings and adjacency
edges. After that, we compute the representa-
tion of each document by applying a GAE on the
KCG. The GAE is an advanced version of the au-
toencoder for graph encoding, under an encoder-
decoder framework. For each node in the KCG,
the encoder aims to extract the latent features
that can reconstruct the graph using the decoder.
This way, the GAE learns to encode global infor-
mation about (keyword) nodes that are multiple-
hops away in the KCG. To capture the global fea-
tures, while preserving the local ones, we use a
Multi-Task GAE (MTGAE), whose objective is to
jointly learn the latent representation that can recon-
struct both the input graph and node features (Tran,
2018a,b). In Section 5.1, we will compare MT-
GAE performance with the GAE, the Variational

Dataset Size #Classes Avg. length #Tokens

20ng 18,612 20 245 55,970
Reuters 7,316 10 141 27,792

Table 1: Datasets statistics

GAE (VGAE) (Kipf and Welling, 2016), and a
generic sequence-level autoencoder (AE) (Hinton
and Salakhutdinov, 2006). The model settings are
described in the Appendix.

3.3 Clustering Algorithm

After we encode the KCG features for each node,
we employ global average pooling over the node
sequence to get a fixed-length representation of the
document. We then apply the Spectral Clustering
algorithm, on these representations to group docu-
ments into classes.3 Spectral Clustering has wide
applications in similar NLP tasks that involve high-
dimensional feature spaces (Xu et al., 2015; Belkin
and Niyogi, 2002; Xie and Xing, 2013).

4 Experiments

4.1 Datasets and Evaluation Metrics

We use two preprocessed datasets, Reuters-21578
(Reuters) (Lewis et al., 2004) and 20Newsgroups
(20NG) (Lang, 1995), as provided by Ye et al.
(2017) for long-text clustering. Their statistics are
listed in Table 1. Following previous work (Ye
et al., 2017; Xie and Xing, 2013; Xu et al., 2015),
we use two sets of metrics to assess the qual-
ity of clusters: (1) Adjusted Mutual Information
(AMI) (Vinh et al., 2010); and (2) Accuracy (ACC).
Their descriptions are included in the Appendix.

4.2 Baseline Models

We compare our model with multiple cutting-edge
text clustering and representation models, as re-
ported by Ye et al. (2017) and Xie and Xing (2013).
These include K-means on TFIDF models, Discrete
Distribution Clustering on Skipgram embeddings
(D2C) (Mikolov et al., 2013a; Ye et al., 2017);

3To emphasize the effect of the GAE on learning graphical
information, we avoid using more advanced clustering meth-
ods, such as Deep clustering (Caron et al., 2018), which jointly
learn feature representations and fine-tune the clustering per-
formance during training. While this causes the performance
of our model to fall notably below the state-of-the-art, we
believe this minimal approach to be an effective way to focus
on the quality of the document representations as they are
created by our method, and we will leave the exploration of
new clustering methods for future work.

3977

Variable MTGAE AE
Batch size 20 20
Dim. of word emb 300 300
No. of layers 4 4
Input dropout 0.5 0.5
layer dropout 0.5 0.5
Learning rate 0.01 0.01
error proportion 1:1:1 –

Table 2: Hyper-parameters used in proposed model

NMF, LDA, Latent Semantic Indexing (LSI) (Deer-
wester et al., 1990), Locality Preserving Projection
(LPP) (He and Niyogi, 2004; Cai et al., 2005), aver-
age of word embeddings (AvgDoc) and Paragraph
Vectors (PV) (Mikolov et al., 2013b). Details on
their settings can be found in Ye et al. (2017).

In addition to the aforementioned models, we
also generate document embeddings using GloVe,
BERT, ELMo and SBERT. Here, a document is
represented as the average of the words/sentence
embeddings in that document (AvgEmb).

5 Model Training

For embeddings, we use GloVe-300d, BERT-base-
uncased, ELMo-original and SBERT-bert-large-nli-
stsb-mean-tokens in our experiments. In all AEs,
the ReLU activation function is employed in all
layers. Parameters of all the models are optimized
using the Adam optimisation algorithm with an
initial learning rate of 0.01 (Kingma and Ba, 2014).
We used early stopping with patience equal to 10
epochs in order to determine the best training epoch.
Unless specific, other hyper-parameters are kept
default as provided om their corresponding studies.
The hyper-parameter values are shown in Table 2.

5.1 Results
Test Performance In Table 3, we show the re-
sults4 of our main model (SS-SB-MT). It is created
using Sentence Similarity (edge), SBERT (node)
and MTGAE (autoencoder). From Table 3, our
model is notably better than the baseline models,
which showcases the effectiveness of topological
features on long-text datasets. The main reasons
our model performs well are twofold: first, the
KCG can capture both the local and global features
using text embeddings and adjacency edges (resp.).
Second, the MTGAE is able to aggregate the two
sets of features by jointly reconstructing them. To

4We report the scores of cutting-edge models without any
additional enhancements, such as joint training with topic
modeling, to avoid any effects from them in the comparison.

20NG Reuters
Model AMI ACC AMI ACC

TFIDF 0.417† 0.337* 0.456† 0.350*
LSI 0.398† 0.323* 0.400† 0.420*
LPP 0.515† 0.117* 0.426† 0.331*
NMF 0.453† 0.319* 0.438† 0.496*
LDA 0.288† 0.372* 0.503† 0.549*
AvgDoc 0.376† – 0.413† –
PV 0.275† – 0.471† –
D2C 0.493† – 0.534† –
AvgEmb
– GloVe 0.210 0.217 0.371 0.385
– ELMo 0.460 0.402 0.510 0.526
– BERT 0.405 0.419 0.426 0.471
– SBERT 0.451 0.441 0.524 0.514
SS-SB-MT (Ours) 0.530 0.474 0.584 0.563

Table 3: Performance of SS-SB-MT in comparison to
various baseline models. * denotes performance re-
ported by Xie and Xing (2013), † denotes performance
reported by Ye et al. (2017). Bold: the best score for a
dataset.

better analyze the behaviour of our model, we ex-
periment with different edges, node features and
autoencoders individually. We vary one variable
at a time and keep others constant. We report the
results in the next section.

20NG Reuters
Model AMI ACC AMI ACC

SS-SB-MT 0.530 0.474 0.584 0.563

Edge Types
– Word co-occurrence 0.466 0.440 0.524 0.500
– Sentence position 0.501 0.451 0.550 0.491

Embeddings
– GloVe 0.336 0.387 0.431 0.455
– ELMo 0.481 0.421 0.582 0.579
– BERT 0.421 0.433 0.540 0.521

Autoencoders
– VGAE 0.481 0.431 0.533 0.531
– GAE 0.493 0.414 0.484 0.523
– AE 0.487 0.417 0.550 0.537

Table 4: Performance of SS-SB-MT with different edge
types, text embeddings as node features and autoen-
coders. Default: Sentence Similarity (Edge Types),
SBERT (Embeddings) and MTGAE (Autoencoders).
Bold: the best score for a dataset.

Impact of Edge Types, Node Features and Au-
toencoders We first analyze the performance of
SS-SB-MT using different edge types5, and report
them in Table 4 (upper rows). Here, we see that the
sentence-level edges perform better than the word-
level edge. One possible reason is that text embed-

5Currently, our model only supports encoding one edge
type at a time, we leave the exploration of multi-edge GAEs
for future work

3978

AE VGAE Ours Examples

0 1 1 A question in general about displaying NTSC through a Mac. If I understand correctly, the Video
Spigot can display NTSC in a small window as well as capture the data in Quicktime format.
However, if I want to use a larger window, what are my options? Perhaps I misunderstood the
Video Spigot Also, I am not interested in Quicktime. I would merely like to use my Mac as a
television from time to time. I have a nice Sony 1430 monitor, and I would like to use it as a
second TV when my wife is watching sitcoms on our regular TV. Perhaps some of the video
cards for the Mac accept NTSC input? I have a IIsi, and I am willing to buy a NuBus adapter.

1 0 1 The Duo Powerbooks seem to park the heads after a few seconds of is that builtin into the drive
logic or is it being programmed via software, any way to tune the idle timeout that makes the
heads park I think the heads are being parked since after a few seconds of inactivity you can hear
the clunk of heads parking.

0 0 1 I have a Logitech 256 grays hand scanner from a PC. I’m wondering if anyone has been successful
in connecting the scanner to a Mac? It has the same connector and is a serial device on the PC.
I can imagine the pins configuration would need to changed, but I’m not sure if the signal levels
would be correct, and if the Mac would work with it. Of course the manuals say nothing about
the interface, connector layout or anything! Any ideas?

Table 5: Examples of error analysis in 20NG dataset. All examples are drawn from comp.sys.mac.hardware. 1:
Text is correctly clustered; and 0: Text is wrongly clustered. “Ours” is our best proposed models (i.e., SS-SB-MT).

dings (e.g., SBERT) have already encoded the local
semantic relations between adjacency words and
sentences. An additional word co-occurrence edge
may thus be less helpful.

We then analyze the performance of SS-SB-MT
using different text embeddings to generate node
features. From Table 4 (middle rows), we observe
that sentence-level embeddings – SBERT (i.e., SB
in SS-SB-MT) consistently outperforms the other
word-level embeddings (GloVe, ELMo and BERT),
suggesting that it can better represent the node fea-
tures in the KCG.

We additionally conduct an analysis on different
autoencoders. Results are shown in Table 4 (bottom
rows). While graph-level autoencoders (GAE and
VGAE) generally perform better than the sequence-
level one (AE), the better results come when we
use MTGAE (i.e., MT in SS-SB-MT) to aggregate
local and global features, indicating the important
roles of both features in document clustering.

Qualitative Analysis of Autoencoders. Ta-
ble 5 showcases some prediction errors from
AE and VGAE. All examples describe the
hardware issues specifically about Mac (i.e.,
comp.sys.mac.hardware). We find that VGAE per-
forms better when the document class is determined
by the entire document or a long-range semantic
relation that spans over multiple sentences, rather
than some local relation in consecutive keywords.
Example (1) contains both the “hardware-related”
phrases (e.g., Sony monitor), as well as the “Mac-
related” ones (e.g., Mac), but the whole document
clearly refers to Mac if one explicitly considers
the related context around the first and the last sen-
tences; thus, an architecture likes VGAE is needed
to fully utilize the semantic structures over long-

sequences. In contrast, AE has a competitive ad-
vantage over VGAE in modelling the local depen-
dencies among consecutive words, as shown in
example (2). Here, VGAE captures the semantic
features of some key-phrases such as drive logic
and heads and misclusters the example to other
group that talk about general hardware issues. But
AE can effectively model consecutive features and
capture the information about Duo Powerbooks.
Similar to the previous two examples, example (3)
also has a mixed keywords across different sen-
tences, but neither the local features nor the global
features alone are informative enough to interpret
the topic of the document: AE may capture some
local key-phrases such as scanner and PC, whereas
VGAE may capture the non-local relations like
scanner from a PC and connecting the scanner to
a Mac. A scenario of this nature highlights the
need for aggregating the two feature sets, and in
essence, an effective model likes our MTGAE, that
can exploit the synergy between them.

6 Conclusion

In this paper, we propose a document clustering
model based on features induced unsupervisedly
from a GAE and KCG. Our model offers an ele-
gant way to learn features directly from large cor-
pora, bypassing the dependence on mature NLP
pipelines. Thus, it is not limited to resource-rich
languages and can be used by any applications that
operate on text. Experiments show that our model
achieves better performance than the sequence-
level representations, and we conduct a series of
analyses to further understand the reasons behind
such a performance gain.

3979

References
Mikhail Belkin and Partha Niyogi. 2002. Laplacian

eigenmaps and spectral techniques for embedding
and clustering. In Advances in neural information
processing systems, pages 585–591.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Deng Cai, Xiaofei He, and Jiawei Han. 2005. Docu-
ment clustering using locality preserving indexing.
IEEE Transactions on Knowledge and Data Engi-
neering, 17(12):1624–1637.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. 2018. Deep clustering for unsuper-
vised learning of visual features. In European Con-
ference on Computer Vision.

Andrzej Cichocki and Anh-Huy Phan. 2009. Fast local
algorithms for large scale nonnegative matrix and
tensor factorizations. IEICE transactions on fun-
damentals of electronics, communications and com-
puter sciences, 92(3):708–721.

Scott Deerwester, Susan T Dumais, George W Fur-
nas, Thomas K Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American society for information science,
41(6):391–407.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In
Advances in neural information processing systems,
pages 3844–3852.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Cédric Févotte and Jérôme Idier. 2011. Algorithms
for nonnegative matrix factorization with the β-
divergence. Neural computation, 23(9):2421–2456.

John Rupert Firth. 1957. A synopsis of linguistic the-
ory 1930-1955 in studies in linguistic analysis, philo-
logical society.

Xiaofei He and Partha Niyogi. 2004. Locality preserv-
ing projections. In Advances in neural information
processing systems, pages 153–160.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. science, 313(5786):504–507.

Matthew Hoffman, Francis R Bach, and David M Blei.
2010. Online learning for latent dirichlet allocation.
In advances in neural information processing sys-
tems, pages 856–864.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In 57th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), Florence,
Italy.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. nternational
Conference on Learning Representations.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. stat, 1050:1.

Thomas N Kipf and Max Welling. 2016. Variational
graph auto-encoders. NIPS Workshop on Bayesian
Deep Learning.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 331–339.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. Journal of machine
learning research, 5(Apr):361–397.

Wei Li, Jingjing Xu, Yancheng He, Shengli Yan,
Yunfang Wu, and Xu Sun. 2019. Coherent com-
ment generation for chinese articles with a graph-to-
sequence model. In ACL.

Chin-Yew Lin and Eduard Hovy. 1997. Identifying top-
ics by position. In Fifth Conference on Applied Nat-
ural Language Processing, pages 283–290.

Bang Liu, Di Niu, Haojie Wei, Jinghong Lin, Yancheng
He, Kunfeng Lai, and Yu Xu. 2019. Matching arti-
cle pairs with graphical decomposition and convo-
lutions. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6284–6294.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation rank-
ing: Bringing order to the web. Technical report,
Stanford InfoLab.

Christos Papadimitriou and Kenneth Steiglitz. 1982.
Combinatorial Optimization: Algorithms and Com-
plexity, volume 32.

https://doi.org/10.1109/TASSP.1984.1164450
https://doi.org/10.1109/TASSP.1984.1164450

3980

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 World Wide Web Conference,
pages 1063–1072. International World Wide Web
Conferences Steering Committee.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Jan Wira Gotama Putra and Takenobu Tokunaga. 2017.
Evaluating text coherence based on semantic simi-
larity graph. In Proceedings of TextGraphs-11: the
Workshop on Graph-based Methods for Natural Lan-
guage Processing, pages 76–85.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3973–3983.

Sunil Kumar Sahu, Fenia Christopoulou, Makoto
Miwa, and Sophia Ananiadou. 2019. Inter-sentence
relation extraction with document-level graph convo-
lutional neural network. In ACL.

Phi Vu Tran. 2018a. Learning to make predictions on
graphs with autoencoders. In 2018 IEEE 5th Inter-
national Conference on Data Science and Advanced
Analytics (DSAA), pages 237–245. IEEE.

Phi Vu Tran. 2018b. Multi-task graph autoencoders.
NIPS 2018 Workshop on Relational Representation
Learning.

Nguyen Xuan Vinh, Julien Epps, and James Bailey.
2010. Information theoretic measures for cluster-
ings comparison: Variants, properties, normaliza-
tion and correction for chance. Journal of Machine
Learning Research, 11(Oct):2837–2854.

Pengtao Xie and Eric P. Xing. 2013. Integrating docu-
ment clustering and topic modeling. In Proceedings
of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, UAI’13, pages 694–703, Ar-
lington, Virginia, United States. AUAI Press.

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun
Zhao, Fangyuan Wang, and Hongwei Hao. 2015.
Short text clustering via convolutional neural net-
works. NAACL HLT 2015, pages 62–69.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370–7377.

Jianbo Ye, Yanran Li, Zhaohui Wu, James Z Wang,
Wenjie Li, and Jia Li. 2017. Determining gains
acquired from word embedding quantitatively us-
ing discrete distribution clustering. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1847–1856.

Jie Zhou, Xingyi Cheng, and Jinchao Zhang. 2019. An
end-to-end neural network framework for text clus-
tering. arXiv preprint arXiv:1903.09424.

A Supplemental Material

Sentence Position Edge

We connect a keyword pair by considering the aver-
age position of their sentence sets in text. Formally,
for a keyword node a with a sentence set of size m,
its position score Pa is computed as:

Pa =

∑m
t=0 exp(−λ ∗ SentPost)

m
(1)

SentPos denotes the position of the sentence in
which the keyword a appears (e.g. 0 implies that
a is in the first sentence of the document). λ is
a decay parameter pre-defined, we use λ = 0.2
throughout the study. The final position weight
between a keyword pair (Pab) is calculated by the
average of their position scores (i.e. Pab = Pa+Pb

2).

Graph Autoencoder (GAE), Multi-Task
GAE (MTGAE) and Variational GAE
(VGAE)

Given a graph G = (A,X) where A is the
weighted adjacency matrix, denoting the correla-
tion between the keyword nodes and X is the node
feature matrix, the encoder aims at learning the
latent representation (Z) that can effectively recon-
struct A by the decoder. For a 2-layer encoder, its
output is given by Z2 = Z = q

(
Z|Z,A),

Z1 = frelu
(
Z0, XA|W 0

)
Z2 = flinear

(
Z1, XA|W 1

) (2)

where f
(
Z,XA|W

)
is a spectral convolutional op-

eration for feature extraction, and Z is the set of
latent features extracted for the nodes. The decoder
reconstructs an adjacency matrix Â by computing
an inner product between these latent features, its
output is given by Â = p

(
A|Z

)
,

Â = σ
(
ZZT

)
(3)

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://dl.acm.org/citation.cfm?id=3023638.3023709
http://dl.acm.org/citation.cfm?id=3023638.3023709

3981

During training, GAE learns to minimize the
reconstruction loss (LR), as measured by the cross
entropy between its input A and its reconstructed
Â,

LR = Eq(Z|X,A)
[
log p(A|Z)

]
(4)

At inference time, we use the latent representa-
tion Z for document clustering and disregard the
reconstructed part Â.

To encode more content information from the
graph, one can reconstruct both the input adjacency
matrix (A) and feature matrix (X). Regarding
this, Tran (2018a,b) proposed the Multi-Task GAE
(MTGAE). Here, the MT-reconstruction loss is de-
fined as:

LR = L(ai, âi) + L(xi, x̂i) (5)

where L(ai, âi) and L(xi, x̂i) both are is the standard
cross-entropy loss with sigmoid function σ (·), as,

L(ai, âi)=−ai log(σ(âi))− (1− ai) log(1−σ(âi))

L(xi, x̂i)=−xi log(σ(x̂i))− (1−xi) log(1−σ(x̂i))
(6)

Variational Graph Autoencoder (VGAE) is an ex-
tension of the GAE architecture proposed by Kipf
and Welling (2016). VGAE extends GAE by in-
troducing an inference encoder, which is defined
as:

q(Z|X,A) =
n∏
i=1

q(zi|X,A)

q(zi|X,A) = N (xi|µi, diag(σ2))
(7)

µ = Z2 is a matrix of mean vectors zi, σ =
flinear(Z

1, A|W 1) is the covariance matrix. Dur-
ing training, the VGAE optimizes the variational
lower bound as:

LR = LR +KL(q(Z|X,A)||p(Z)) (8)

KL(q(·)||p(·)) denotes the Kullback-Leibler di-
vergance and p(Z) =

∏
iN (zi|0, I) denotes the

Gaussian prior for the latent data distribution. We
perform the reparameterization trick (Kingma and
Welling, 2014) to train the variational model.

Adjusted Mutual Information (AMI), and
Accuracy (ACC)

Here, we describe the details of AMI and ACC.
AMI is formally defined as:

AMI(U,C) = MI(U,C)−E{MI(U,C)}
avg{H(U),H(C)}−E{MI(U,C)} (9)

U and C are the ground truth and predict classes
(resp.). MI and H stand for Mutual Information
and Entropy (resp.). E {MI} stands for the ex-
pected mutual information.

ACC is formally defined as:

ACC =

∑N
i=1 δ(yi = map(ci))

N
(10)

where δ(·) is an indicator function, ci is the pre-
dicted label for xi, map(·) transforms the pre-
dicted label ci to its group label by the Hungarian
algorithm (Papadimitriou and Steiglitz, 1982), and
yi is the ground truth of xi.

