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Abstract

In Ordinal Classification tasks, items have to
be assigned to classes that have a relative order-
ing, such as positive, neutral, negative in sen-
timent analysis. Remarkably, the most popu-
lar evaluation metrics for ordinal classification
tasks either ignore relevant information (for in-
stance, precision/recall on each of the classes
ignores their relative ordering) or assume ad-
ditional information (for instance, Mean Aver-
age Error assumes absolute distances between
classes). In this paper we propose a new met-
ric for Ordinal Classification, Closeness Evalu-
ation Measure, that is rooted on Measurement
Theory and Information Theory. Our theoreti-
cal analysis and experimental results over both
synthetic data and data from NLP shared tasks
indicate that the proposed metric captures qual-
ity aspects from different traditional tasks si-
multaneously. In addition, it generalizes some
popular classification (nominal scale) and er-
ror minimization (interval scale) metrics, de-
pending on the measurement scale in which it
is instantiated.

1 Introduction

In Ordinal Classification (OC) tasks, items have
to be assigned to classes that have a relative or-
dering, such as positive, neutral, negative in sen-
timent analysis. It is different from n-ary classifi-
cation, because it considers ordinal relationships
between classes. It is also different from ranking
tasks, which only care about relative ordering be-
tween items, because it requires category matching;
and it is also different from value prediction, be-
cause it does not assume fixed numeric intervals
between categories.

Most research on Ordinal Classification, how-
ever, evaluates systems with metrics designed for

those other problems. But classification measures
ignore the ordering between classes, ranking met-
rics ignore category matching, and value prediction
metrics are used by assuming (usually equal) nu-
meric intervals between categories.

In this paper we propose a metric designed to
evaluate Ordinal Classification systems which re-
lies on concepts from Measurement Theory and
from Information Theory. The key idea is defining
a general notion of closeness between item value
assignments (system output prediction vs gold stan-
dard class) which is instantiated into ordinal scales
but can be also be used with nominal or interval
scales. Our approach establishes closeness between
classes in terms of the distribution of items per
class in the gold standard, instead of assuming pre-
defined intervals between classes. We provide a
formal (Section 4) and empirical (Section 5) com-
parison of our metric with previous approaches,
and both analytical and empirical evidence indi-
cate that our metric suits the problem best than the
current most popular choices.

2 State of the Art

In this section we first summarize the most popular
metrics used in OC evaluation campaigns, and then
discuss previous work on OC evaluation.

2.1 OC Metrics in NLP shared tasks
OC does not match traditional classification, be-
cause the ordering between classes makes some
errors more severe than others. For instance, mis-
classifying a positive opinion as negative is a more
severe error than as a neutral opinion. Classifica-
tion metrics, however, have been used for OC tasks
in several shared tasks (see Table 1). For instance,
Evalita-16 (Barbieri et al., 2016) uses F1, NTCIR-
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Table 1: Metrics used for OC in evaluation campaigns
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NTCIR-7 3
REPLAB-13 3
SEM15-T11 3
EVALITA-16 3
STS-16 3
SEM17-T4 3 3

7 (Kando, 2008) uses Accuracy, and Semeval-17
Task 4 (Rosenthal et al., 2017) uses Macro Average
Recall.

OC does not match ranking metrics either:
three items categorized by a system as very
high/high/low, respectively, are perfectly ranked
with respect to a ground-truth high/low/very_low,
but yet no single item is correctly classified. How-
ever, ranking metrics have been applied in some
campaigns, such as R/S for reputation polarity and
priority in Replab-2013 (Amigó et al., 2013a).

OC has also been evaluated as a value predic-
tion problem – for instance, SemEval 2015 Task
11 (Ghosh et al., 2015) – with metrics such as
Mean Average Error (MAE) or Mean Squared Er-
ror (MSE), usually assuming that all classes are
equidistant. But, in general, we cannot assume
fixed intervals between classes if we are dealing
with an OC task. For instance, in a paper reviewing
scale strong_accept/ accept /weak_accept / unde-
cided/ weak_reject/ reject/ strong_reject, the dif-
ferences in appreciation between each ordinal step
do not necessarily map into predefined numerical
intervals.

Finally, OC has been also considered as a linear
correlation problem. as in the Semantic Textual
Similarity track (Cer et al., 2017). An OC output,
however, can have perfect linear correlation with
the ground truth without matching any single value.

This diversity of approaches – which do not hap-
pen in other types of tasks – indicates a lack of
consensus about what tasks are true Ordinal Classi-
fication problems, and what are the general require-
ments of OC evaluation.

2.2 Studies on Ordinal Classification

There is a number of previous formal studies on
OC in the literature. First, the problem has been
studied from the perspective of loss functions for
ordinal regression Machine Learning algorithms.

In particular, in a comprehensive work, Rennie and
Srebro (2005) reviewed the existing loss functions
for traditional classification and they extended them
to OC. Although they did not try to formalize OC
tasks, in further sections we will study the implica-
tion of using their loss function for OC evaluation
purposes.

Other authors analyzed OC from a classification
perspective. For instance, Waegeman et al. (2006)
presented an extended version of the ROC curve
for ordinal classification, and Vanbelle and Al-
bert (2009) studied the properties of the Weighted
Kappa coefficient in OC.

Other authors applied a value prediction perspec-
tive. Gaudette and Japkowicz (2009) analysed the
effect of using different error minimization metrics
for OC. Baccianella et al. (2009) focused on im-
balanced datasets. They imported macro averaging
(from classification) to error minimization metrics
such as MAE, MSE, and Mean Zero-One Error.

Remarkably, a common aspect of all these contri-
butions is that they all assume predefined intervals
between categories. Rennie and Srebro assumed,
for their loss function, uniform interval distribu-
tions across categories. In their probabilistic ex-
tension, they assume predefined intervals via pa-
rameters in the join distribution model. Waegeman
et al. explicitly assumed that “the misclassification
costs are always proportional to the absolute dif-
ference between the real and the predicted label”.
The predefined intervals are defined by Vanbelle
and Albert via weighting parameters in Kappa. The
MAE and MSE metrics compared by Gaudette and
Japkowicz also assume predefined (uniform) inter-
vals. Finally, the solution proposed by Baccianella
et al. is based on “a sum of the classification errors
across classes”.

In our opinion, assuming and adding intervals
between categories to estimate misclassification er-
rors violates the notion of ordinal scale in Measure-
ment Theory (Stevens, 1946), which establishes
that intervals are not meaningful relationships for
ordinal scales. Our measure and our theoretical
analysis are meant to address this problem.

3 Closeness Evaluation Measure (CEM)

3.1 Measure Definition

Evaluation metrics establish proximity between a
system output and the gold standard (Amigó and
Mizzaro, 2020). In ordinal classification we have
to compare the classes assigned by the system with
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Figure 1: In the left distribution, weak accept vs. weak reject would be a strong disagreement between reviewers
(i.e., the classes are distant), because in practice these are almost the extreme cases of the scale (reviewers rarely
go for accept or reject). In the right distribution the situation is the opposite: reviewers tend to take a clear stance,
which makes weak accept and weak reject closer assessments than in the left case.

the true classes in the gold standard.
A key idea in our metric is to establish a notion of

informational closeness that depends on how items
are distributed in the rank of classes. The idea is
that two items a and b are informationally close if
the probability of finding an item between the two
is low. As an example, Figure 1 illustrates the intu-
ition of how item distribution affects informational
closeness in the context of paper reviewing. This
is similar in spirit to, for instance, comparing the
quality of two journals according to their quartiles
in the rank of journals of comparable topics. With
this notion of informational closeness, proximity
between classes adapts to the way in which classes
are used in a given dataset.

This idea of informational closeness can be im-
plemented using Information Theory: the more
unexpected it is to find an item between a and
b, the more information such event provides, and
the more a and b are informationally closer. Let
P (x �b

ORD a) be the probability that, sampling an
item x from the space of items, x is closer to b
than a in the ordinal scale of classes. Then we
can define Closeness Information Quantity (CIQ)
between a and b as the Information Quantity of the
event x �b

ORD a, as follows:

CIQORD(a, b) ≡ − log(P (x �b
ORD a)). (1)

Let us now apply this concept for the evalua-
tion of system outputs. Let D be the item col-
lection, C = {c1, . . . , cn} a set of sorted classes
such that c1 < c2 < . . . < cn, and g, s :
D −→ C the gold standard and a system out-
put. Given the classes g(d), s(d) assigned to an

item d ∈ D by the gold standard and the system
output, CIQORD(s(d), g(d)) measures the closeness
between the assigned class and the gold standard
class:

CIQORD(s(d), g(d)) = − log(P (x �g(d)
ORD s(d))).

Our proposed evaluation measure consists in
adding CIQ values for all items d ∈ D, and nor-
malizing the sum by its maximal value, which is
the one obtained by a system output that matches
the gold standard perfectly. This is what we call
Closeness Evaluation Measure, CEMORD:

CEMORD(s, g) =

∑
d∈D CIQORD(s(d), g(d))∑
d∈D CIQORD(g(d), g(d))

.

In an ordinal scale, the condition x �b
ORD a (x is

closer to b than a) implies that x is between a and
b (a ≥ x ≥ b or a ≤ x ≤ b). Therefore, if ni is
the amount of items assigned to class ci in the gold
standard, and N is the total amount of items, the
formula above turns into:

CEMORD(s, g) =

∑
d∈D prox(s(d), g(d))∑
d∈D prox(g(d), g(d))

where prox(ci, cj) = − log

(
ni
2
+
∑j

k=i+1 nk

N

)
.

Note that the term prox(ci, cj), which is the core
of the metric, reflects the informational closeness
that the metric assigns to a pair of classes ci, cj .
Note also that half of the ties (elements in the class
i) are included in the computation. Every time the
system assigns the class ci and the ground truth is
cj , the contribution of that assignment to the final
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value of CEMORD is proportional to the informa-
tional closeness between both classes.

As an example, let us consider the two ground
truth distributions in Figure 1. The proximity be-
tween the classes weak_accept and weak_reject for
the left distribution is:

− log

(
90/2 + 193 + 105

402

)
= 0.23

and for the right distribution is:

− log

(
10/2 + 3 + 10

376

)
= 4.38.

A mistake between these two classes is more
heavily penalized by the metric in the left distri-
bution. Note also that correct predictions have
different weights – prox(ci, ci) – which are higher
for infrequent classes. For instance, a correct guess
for a reject ground truth in the left distribution has
a weight of prox(reject,reject)= 6.84, because it
is a rare class (7/402 items); but a correct guess
for an undecided item has only a weight of 2.06
because the class is very frequent in the ground
truth (193/402 items). This is an effect of using
Information Theory to characterize closeness: an
infrequent class has more information than a fre-
quent class.

Overall, CEMORD rewards exact matches, con-
siders ordinal relationships, and does not assume
predefined intervals between classes (instead, inter-
vals depend on the distribution of items into classes
in the gold standard). Appendix A shows detailed
examples of how to compute CEMORD from the
confusion matrix for a system output.

3.2 Formalization of CEM on Different
Scales

We have specified our measure CEMORD at ordinal
scale to address OC tasks, but it could be used at
any scale. In this section we briefly investigate this
generalization. In Measurement Theory, at least in
Stevens’s model (1946), all measures map items to
real numbers, and measurement equivalence at dif-
ferent scales is determined by permissible transfor-
mation functions. Permissible transformations are
bijective functions in nominal scale (FNOM), strictly
increasing functions in ordinal scale (FORD), and
linear functions for the interval scale (FINT).

Starting from the notion of |a − b| as the stan-
dard algebraic distance between numbers, we de-
fine closeness at a certain measurement scale T if

it fits for at least one permissible transformation in
FT.

Definition 1 (Closeness for a Scale Type) Being
three numbers x, a, and b, we say that x is closer
to b than a, (x �b

T a) for a certain scale type T, if
and only if:

∃f ∈ FT (|f(x)− f(b)| ≤ |f(a)− f(b)|) .

The conditions for x �b
T a at ordinal scale (T =

ORD) are (b ≥ x ≥ a) ∨ (a ≥ x ≥ b) (see proof
in the supplementary material). That is, at ordinal
scale, x must be located between a and b to be
closer to a than b. The condition for nominal scale
(T = NOM) is (b = x ∨ b 6= a). At interval scale
(T = INT), the condition matches the standard
algebraic closeness between numbers: (|b− x| ≤
|b− a|).

We can generalize CIQORD and CEMORD to con-
sider closeness at any scale T, simply replacing
x �b

ORD a with x �b
T a. We denote these gen-

eralizations as CIQT, CEMT. The CEMT metric
generalizes some of the most popular metrics in
classification.

Proposition 1 Assuming that categories in g fol-
low a uniform distribution, then Accuracy is propor-
tional to CEM at nominal scale. Formally, when-
ever P (g(d) = c) is equal for all categories c ∈ C,
then:

Acc(s, g) ∝ CEMNOM(s, g).

Macro Average Accuracy can be also defined by ag-
gregating CIQNOM(s(d), g(d)) in the corresponding
manner. Also, under the same statistical assump-
tions, Precision and Recall for a category c can be
defined in terms of aggregated CIQs of items in
the system or gold category respectively.
Proposition 2 Whenever P (g(d) = c) is equal for
all categories c ∈ C, then:

Preg,c(s) ∝
∑

d∈D:s(d)=c

CIQNOM(s(d), g(d))

Recg,c(s) ∝
∑

d∈D:g(d)=c

CIQNOM(s(d), g(d)).

Exact match between Precision, Recall and the
CIQ aggregation is achieved when values are nor-
malized with respect to the maximum.

On the other hand, if we do not assume a
uniform distribution of items into classes in the
gold standard, then we obtain a classification met-
ric CEMNOM(s, g) which gives more (logarithmic)
weight to errors in infrequent classes.
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Finally, at interval scale, CEMINT would be
equivalent to a logarithmic version of MAE when-
ever items are uniformly distributed across classes.

We leave a more detailed formal and empirical
analysis of CEM at other scales for future work, as
it is not the primary scope of this paper.

4 Theoretical Evidence

Following a methodology previously applied for
Classification (Sebastiani, 2015; Sokolova, 2006),
Clustering (Dom, 2001; Meila, 2003; Amigó et al.,
2009), and document ranking tasks (Moffat, 2013;
Amigó et al., 2013b), here we define a formal
framework for OC via desirable properties to be
satisfied, which are illustrated in Figure 2 and in-
troduced below.

4.1 Metric Properties

The first property states that an effectiveness met-
ric Eff(s, g) should not assume predefined inter-
vals between classes, i.e., it should be invariant
under permissible transformation functions at ordi-
nal scale.

Property 1 (Ordinal Invariance) An effective-
ness metric Eff has ordinal invariance if it is
invariant under strictly increasing functions
fORD ∈ FORD applied to both the system output and
the gold standard:

Eff(s, g) = Eff(fORD(s), fORD(g)).

For instance, Eff((1, 2, 2), (1, 2, 3)) should be
equivalent to Eff((11, 24, 24), (11, 24, 39)), by
considering the (strictly increasing) permissible
transformation function fORD(x) = 10x+ x2.

Although we can not compare intervals at ordi-
nal scale, we know, e.g., that “neutral” is closer to
“positive” than “negative”. Therefore we need an-
other property to verify monotonicity with respect
to category closeness.

Property 2 (Ordinal Monotonicity) Changing
system predictions closer to the true category
should result in a metric increase:

If ∃d.(s(d) 6= s′(d))∧
(∀d.((s(d) > s′(d) ≥ g(d)) ∨ (s(d) = s′(d))))

then Eff(s′, g) > Eff(s, g).

The formalization of ordinal monotonicity states
that if all predictions by system s′ are better or
equal than predictions by s, and at least one is

Figure 2: Illustration of desirable formal properties for
Ordinal Classification. Each bin is a system output,
where columns represent ordered classes assigned by
the system, and colors represent the items’ true classes,
ordered from black to white. "=" means that both out-
puts should have the same quality, and ">" that the left
output should receive a higher metric value than the
right output.

strictly better, then the metric score of s′ must be
higher.

Finally, in order to manage the effect of im-
balanced data sets, another desirable property is
that an item classification error in a frequent class
should have less effect than a classification error
in a small class (Fatourechi et al., 2008). In order
to formalize this property, we use gd→c to denote
the result of moving the item d to the class c in the
gold standard.

Property 3 (Imbalance) Distancing items from a
small class has more effect than distancing items
from a large class. Let (c1, c2, c3) be three contigu-
ous classes such that c1 is larger than c3, and d1, d3
two items such that g(d1) = c1 and g(d3) = c3.
Then

Eff(gd1→c2 , g) > Eff(gd3→c2 , g).

4.2 Metric Analysis
Table 2 displays the properties satisfied by metrics
grouped by families.1 Classification metrics are
ordinal invariant, but they do not satisfy ordinal
monotonicity. Attempts to mitigate this limitation
include (i) Accuracy at n (Gaudette and Japkow-
icz, 2009) which relaxes Accuracy with an ordinal
margin error, and (ii) ignoring the neutral class
(Rosenthal et al., 2014). However, both approaches
are insensitive to some types of error. Some clas-
sification metrics such as MAAC, Cohen’s Kappa
or F-measure averaged across classes satisfy the
imbalance constraint.

1See the supplementary material for proofs and counter
examples where appropriate.
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Table 2: Constraint-based Metric Analysis

Constraints
Metric family Metrics Ord. Ord. Imb.

Inv. Mon.

Acc 3 - -
Classification Acc with n 3 - -
Metrics Macro Avg Acc, Cohen’s κ 3 - 3

F-measure avg. across classes 3 - 3

MAE, MSE - 3 -
Value Macro Avg. MAE/MSE - 3 3
Prediction Weighted κ - 3 3

Rennie & Srebro loss function - 3 -
Cosine similarity - 3 -

Linear correlation - - -
Correlation Ordinal: Kendall (tau-b), Spea. 3 - 3
Coefficients Kendall-(Tau-a) 3 - -

Reliability and Sensitivity 3 - 3

Clustering MI, Purity and Inv. Purity 3 - 3

Path based Ordinal Classification Index 3 - -

CEMNOM 3 - 3
CEM CEMINT - 3 3

CEMORD 3 3 3

The most popular Value Prediction metrics are
Mean Absolute Error (MAE) and Mean Square Er-
ror (MSE). They both assume a predefined fixed
numerical value for each category. Therefore, ordi-
nal invariance is violated. The imbalance property
is satisfied by the Macro Average versions MAEm

MSEm (Baccianella et al., 2009). The weighted
Kappa can be monotonic whenever the accumu-
lated weights are consistent with the ordinal struc-
ture (Vanbelle and Albert, 2009). In addition, it
can satisfy imbalance depending on the weight-
ing scheme. However, ordinal invariance is not
satisfied. The loss function for ordinal classifi-
cation proposed by Rennie and Srebro (2005) is,
in the same way as MAE, grounded on category
differences, and therefore does not satisfy ordinal
invariance. Finally, the cosine similarity has also
been employed to evaluate OC (Ghosh et al., 2015),
where documents are dimensions and categories
are vector values. Just like any other geometric
measure, it is not ordinal invariant and it does not
satisfy imbalance.

In general, correlation coefficients do not sat-
isfy monotonicity, given that exact matching of
gold standard values is not required to achieve the
maximum score. Unlike linear correlation, ordinal
correlation coefficients (i.e., Kendall or Spearman)
are ordinal invariant. Kendall can be computed
in different ways depending on how ties are man-

aged. In Tau-a, only discordant pairs are considered
(g(d1) > g(d2) and s(d1) < s(d2)) and imbalance
is not satisfied. The most popular Kendall coeffi-
cient approach (Tau-b) and Spearman both satisfy
imbalance. Pearson coefficient does not, due to the
interval effect. Reliability and Sensitivity metrics,
which extend the clustering metric BCubed, are es-
sentially an ordinal correlation metric, being invari-
ant but failing in monotonicity, with the advantage
of satisfying imbalance due to the precision/recall
notions.

By definition, clustering metrics are ordinal in-
variant, because they are not affected by the cluster
of category descriptors. In addition, most of them,
such as Mutual Information (MI) or Purity and In-
verse Purity, satisfy imbalance. However, they are
not ordinal monotonic, given that they do not con-
sider any ordinal relationship between categories.

Finally, we must include the approach by Car-
doso and Sousa (2011), a path based metric called
Ordinal Classification Index which is designed
specifically for OC problems. This is a metric
that integrates aspects from the previous three met-
ric families, including two parameters β1 and β2
to combine different components. Therefore, this
metric can capture the different quality aspects in-
volved in the OC process. However, the metric
inherits the lack of invariance of MAE and MSE
when computing the ordinal distance between cate-
gories, and monotonicity can be violated depending
on the effect of discordant item pairs.

The table ends with our proposed metric CEM,
which is either a classification, error minimization,
or OC metric depending if it is instantiated into
nominal (CEMNOM), interval (CEMINT), or ordinal
measurement scale (CEMORD). CEMORD is the only
metric that satisfies the three properties, provided
that there are no empty classes in the gold standard
(see Appendix A.2).

5 Empirical Study

Meta-evaluating metrics is not straightforward. A
common criterion is robustness, defined as consis-
tence (correlation) of system rankings across data
sets. However, although robustness is relevant –
and we do report it at the end of this section – it
does not reflect to what extent a metric captures the
quality aspects of systems.

As many authors have pointed out, an OC metric
should capture diverse aspects of systems: class
matching, ordering, and imbalance. In our exper-
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iments, in addition to robustness, we select three
complementary metrics, each focused on one of
these partial aspects, and we evaluate to what ex-
tent existing OC metrics are able to capture all
these aspects simultaneously.

The selected metrics are: (i) Accuracy, as
a partial metric which captures class matching;
(ii) Kendall’s correlation coefficient Tau-a (without
counting ties), in order to capture class ordering2;
and (iii) Mutual Information (MI), a clustering met-
ric which reflects how much knowing the system
output reduces uncertainty about the gold standard
values. This metric accentuates the effect of small
classes (imbalance property).

5.1 Meta-evaluation Metric
In order to quantify the ability of metrics to capture
the aspects reflected by these three metrics, we use
the Unanimous Improvement Ratio (UIR) (Amigó
et al., 2011). While robustness focuses on consis-
tence across data sets, UIR focuses on consistence
across metrics. It essentially counts in how many
test cases an improvement is observed for all met-
rics simultaneously. BeingM a set of metrics, and
T a set of test cases, and st a system output for
the test case t, the Unanimous Improvement Ratio
UIRM(s, s′) between two systems is defined as:∣∣{t ∈ T : st ≥M s′t

}∣∣− ∣∣{t ∈ T : s′t ≥M st
}∣∣∣∣T ∣∣ ,

where st ≥M s′t represents that system s improves
system s′, on the test case t, unanimously for every
metric:

st ≥M s′t ≡
(
∀m ∈M

(
m(st) ≥ m(s′t

))
.

Therefore, UIR reflects to what extent a system
outperforms another system for several metrics si-
multaneously. Then, we define our meta-evaluation
measure Coverage for a single metric m as the
Spearman correlation (over system output pairs
s, s′ in the set of system outputs) between differ-
ences in m and unanimous improvements over the
reference metric set. BeingM the reference metric
set:3

CovM(m) = Spea
(
m(s)−m(s′),UIRM(s, s′)

)
.

2en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
3We use the non parametric coefficient Spearman instead

of Pearson. This focuses the meta-evaluation on system score
ordering rather than particular scale properties of metrics.

The more the coverage of a metric m is high with
respect to a reference metric setM, the more an
improvement according to m reflects all quality
aspects represented byM.

5.2 Compared Metrics
We evaluate the coverage of CEMORD and other
metrics with respect to the reference metric set Ac-
curacy, Kendall, and MI. In the empirical study we
have considered most metrics used in practice to
evaluate OC problems; we have excluded a few
metrics which are included in the theoretical study,
either because they have not been used previously
to evaluate OC problems (such as clustering met-
rics) or because they have internal parameters and
therefore a range of variability that requires a dedi-
cated study (such as weighted Kappa and Ordinal
Index). In order to check the need for the log-
arithmic scaling in CEMORD (which comes from
the application of Information Quantity), we also
include an alternative metric CEMORD

flat, which is
similar to CEM but without the logarithmic scaling.

5.3 Experiments on Synthetic Data
In order to play with a representative and controlled
amount of classes and distributions, we first ex-
periment with synthetic data. Let us consider a
synthetic dataset with 100 test cases and 200 doc-
uments per test case, classified into 11 categories.
In order to study different degrees of imbalance,
we assign ground truth labels to documents accord-
ing to a normal distribution with average 4 and a
typical deviation between 1 and 3. The imbalance
grade (deviation) varies uniformly across topics.
The majority class is therefore the fourth class.4

Finally, we discretize the resulting values into their
closest category in {1, 2, . . . , 11}.

We generate synthetic system outputs according
to the following behaviour: each system makes
mistakes in a certain ratio r of value assignments,
where r ∈ {0.1, 0.2, . . . , 0.9, 1}. Then we distin-
guish between five kinds of mistakes, thus obtain-
ing 10×5 possible system configurations. The five
alternative mistakes are:

1. Majority class assignment: Assign the most
frequent category: smaj(d) = 4.

2. Random assignment: Assign classes ran-
domly: srand(d) = v with v ∼ U(1, 11).

4We selected class 4 instead of 6 in order to have asymme-
try in the distribution.



3945

Table 3: Metric Coverage: Spearman Correlation between single metrics and the UIR combination of Mutual
Information, Accuracy, and Kendall across system pairs in both the synthetic and real data sets.

Synthetic data Real data

all minus minus minus minus minus Replab SEM-2014 SEM-2015
systems sRand sprox smaj stDisp soDisp 2013 T9-A T9-B T10-A T10-B T10-C

Reference Accuracy 0.81 0.77 0.78 0.78 0.94 0.77 0.75 0.90 0.98 0.85 0.94 0.80
metrics in Kendall 0.84 0.81 0.82 0.82 0.93 0.82 0.88 0.94 0.98 0.84 0.97 0.88
UIR MI 0.84 0.82 0.84 0.82 0.93 0.82 0.91 0.97 0.99 0.93 0.98 0.93

F-measure 0.83 0.80 0.82 0.81 0.93 0.81 0.66 0.90 0.98 0.91 0.98 0.92
Classification MAAC 0.83 0.81 0.82 0.79 0.91 0.81 0.84 0.86 0.97 0.84 0.95 0.82
metrics Kappa 0.81 0.78 0.79 0.77 0.94 0.77 0.44 0.95 0.99 0.93 0.98 0.97

Acc with 1 0.79 0.75 0.77 0.80 0.85 0.79 0.23 0.82 0.60 0.31 0.35 -0.19

MAE 0.84 0.82 0.83 0.87 0.86 0.84 0.81 0.96 0.95 0.95 0.87 0.56
Error MAEm 0.74 0.73 0.74 0.80 0.76 0.73 0.73 0.95 0.88 0.91 0.74 0.30
minimization MSE 0.89 0.87 0.87 0.88 0.93 0.88 0.28 0.87 0.98 0.63 0.97 0.93

MSEm 0.83 0.80 0.80 0.82 0.90 0.83 0.10 0.85 0.94 0.48 0.91 0.52

Correlation Pearson 0.77 0.79 0.74 0.73 0.83 0.79 0.91 0.97 0.98 0.96 0.97 0.79
coefficients Spearman 0.72 0.67 0.69 0.77 0.76 0.70 0.07 0.96 0.98 0.97 0.98 0.80

Measurement CEMORD 0.91 0.89 0.90 0.90 0.95 0.89 0.94 0.96 0.99 0.98 0.99 0.96
theory CEMORD

flat 0.87 0.84 0.86 0.88 0.89 0.87 0.82 0.96 0.96 0.94 0.92 0.65

3. Tag displacement: Assign the next category:
stDisp(d) = g(d) + 1.

4. Ordinal displacement: Being ord(d) the
ordinal position of d in a sorting of docu-
ments in concordance with category values
(g(d) > g(d′) ⇒ ord(d) > ord(d′)), the
system displaces the document n

10 positions:

soDisp(di) = g
(
d′ : ord(d′) = ord(d) +

n

10

)
.

5. Proximity assignment: The assignment is
closer to the gold standard than a random one:
it assigns a category between a randomly se-
lected one and the gold standard:

sprox(d) = g

(
d′ : ord(d′) =

ord(d) + rPos

2

)

with rPos ∼ U(1, n) (a random position
between 1 and n).

We discretize the resulting values in the same
way than the gold standard. The synthetic outputs
are designed to produce trade-offs between evalu-
ation metrics. For instance, a total displacement
(sr=1

tDisp) achieves the maximal Kendall correlation
but the lowest Accuracy. On the contrary, a 30%
of random assignments s{r=0.3,rand} can decrease
substantially the ordinal relationships, but keep-
ing a 70% of Accuracy. Also, sr=0.3

rand outperforms
sr=0.5
prox in terms of accuracy, but not necessarily

in terms of error minimization metrics. Finally,
sr=0.3
rand can be outperformed by sr=0.4

maj given that

the second system assigns documents to the major-
ity class, but not in terms of MI, which accounts
for the imbalance effect.

Table 3 (left part) shows the results. The met-
ric coverage can vary substantially when changing
the distribution of systems. For this reason, we
first consider every synthetic output and then we
repeat the experiment removing each of the system
types. As the table shows, CEMORD improves all
other metrics, including the individual metrics used
as a reference via UIR (MI, Kendall, and Accu-
racy). Note that the flat (not logarithmic) version
CEMORD

flat performs systematically worse than the
original metric, which supports the use of the loga-
rithmic, information-theoretic formula to compute
similarity.

5.4 Experiments on NLP shared tasks

Let us now study how metrics behave with actual
data from evaluation campaigns, where we cannot
control the amount and types of error. We use
data from six OC evaluation campaigns for which
system outputs are publicly available.

The first data set comes from the Replab 2013
reputational polarity task (Amigó et al., 2013a). It
consists of 61 companies with 1,500 tweets each;
tweets are annotated as positive, negative, or neu-
tral for the company’s reputation.

All the other five datasets are sentiment analy-
sis subtasks from SemEval for which system out-
puts are available online: SemEval-2015 task 10A
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(1680 samples, 13 systems), task 10B (8985 sam-
ples, 51 systems) and task 10C (3097 samples, 11
systems) (Rosenthal et al., 2015); and SemEval-
2014, tasks 9A (2392 samples, 48 systems) and 9B
(2396 samples, 7 systems). All these tasks contain
three categories. Given that SemEval tasks do not
distribute samples in test cases, we emulate 10 test
cases by dividing randomly the data sets into 10
partitions in order to compute UIR.

Table 3 (right part) shows the results. CEMORD is
the top performer in four datasets, and the second
best (with a minimal difference of 0.01 with re-
spect to the best metric) in the other two. The non-
logarithmic version of CEMORD is, again, worse
than the logarithmic version in all cases (except
one, SemEval 2014 task 9A, where they both give
the same result).

Some metrics are able to achieve a high coverage
in some data sets, but not in a consistent manner.
For instance, Kappa maximizes the coverage in the
last dataset in the table, but achieves an extremely
low result for RepLab. In general, the table also
shows that the relative coverage performance of
metrics varies depending on the dataset character-
istics.

Finally, we also computed metrics robustness
in terms of Spearman correlation between system
rankings produced by the metric for topics (or data
set partition) pairs in the campaigns. The highest ro-
bustness (0.57) is achieved by CEMORD, Accuracy
and F-measure; and the lowest robustness (0.49)
is achieved by Accuracy with 1 and Macro Aver-
age MAE. CEMORD is more robust than its non-
logarithmic version CEMORD

flat (0.57 vs 0.55), again
supporting the use of the information-theoretic log-
arithmic formula.

6 Conclusions

Our findings can be summarized as follows: (i) met-
rics commonly used for Ordinal Classification prob-
lems are highly heterogeneous and, in general, in-
consistent with the notion of ordinal scale in Mea-
surement Theory; (ii) the notion of closeness be-
tween classes can be modelled in terms of Measure-
ment Theory and Information Theory and particu-
larized for different scales; and (iii) our proposed
Ordinal Closeness Evaluation Measure (CEMORD)
is the only one that satisfies all desirable formal
properties, it is as robust as the best state-of-the-art
metrics, and it is the one that better captures the
different quality aspects of OC problems in our ex-

perimentation, with both synthetic and naturalistic
datasets.

From a methodological perspective, the evidence
that we have presented covers the four approaches
pointed out in Amigó et al. (2018): we have com-
pared metrics in terms of desirable formal proper-
ties to be satisfied (theoretic top-down), we have
generalized existing approaches (theoretic bottom-
up), and we have compared effectiveness on human
assessed and on synthetic data (empirical bottom-
up and top-down). Future work includes the appli-
cation of CEM at scales other than the ordinal.

Code to compute CEM will be available at
github.com/EvALLTEAM/EvALLToolkit.
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Appendix A. Example computation of
CEM

Figure 3 illustrates the computation of CEM for
two systems (A and B) on the same ground truth
with the three usual classes in sentiment analysis:
negative, neutral, positive. The ground truth distri-
bution is 10, 60 and 30 items, respectively, which
is all the information needed to compute proxim-
ity between classes. Note that proximity of one
class with respect to other is − log of the amount
of items that lie between them (including all items
in the ground truth class and half of the items in the
system-predicted class) divided by the total num-
ber of items. The lowest score corresponds to the
proximity between the two extreme cases (in the ex-
ample, the negative and positive classes), because
all items except half of the items in the system-
predicted class lie between them, and therefore the
− log value is minimal.

System A and System B in the figure both have
the same accuracy (0.70), but system B receives a
higher CEMORD score (0.76 vs 0.71). The main rea-
son is that system A makes more mistakes between
distant classes (positive and negative). Another rea-
son is that system A makes more positive/neutral
than negative/neutral mistakes; and positive/neutral
errors are more penalized by the metric than nega-
tive/neutral. The reason is that, together, the posi-
tive and neutral classes represent 90% of the items
in the dataset, and therefore are considered less
close from an information-theoretic point of view.

Appendix B. Metric Properties Counter
Examples

Here we provide examples of how certain metrics
fail to satisfy some of the properties proposed in
the paper.
Ordinal Monotonicity. Let us consider the set of
categories C = {1, 2, 3, 4, 5}. All classification
metrics and correlation coefficients fail to satisfy
ordinal monotonicity, given that for all of them:

Eff((1, 2, 3), (3, 4, 5)) = Eff((2, 3, 4), (3, 4, 5)).

But, according to the ordinal monotonicity prop-
erty, the system output (2, 3, 4) should receive a
higher value than (1, 2, 3), because all predicted
classes are closer to the ground truth labels.
Ordinal Invariance Pearson correlation, and ev-
ery error minimization metric fails to satisfy ordi-

nal invariance, given that for all of them:

Eff((1, 2, 3), (3, 4, 5)) 6=
Eff((f(1), f(2), f(3)), (f(3), f(4), f(5))

being f , for instance, the strict (not linear) increas-
ing function f(x) = 10 + x3.
Imbalance. According to the imbalance property,

Eff((1,2, 2, 3),(1, 1, 2, 3)) >

Eff((1, 1, 2,2), (1, 1, 2, 3)).

Metrics that do not satisfy this restriction are Ac-
curacy

(
3
4 ,

3
4

)
, Accuracy with 1 (1, 1), MAE and

MSE
(
−1

4 ,−
1
4

)
, cosine similarity (0.973, 0.979)

and Pearson (0.85,0.9).

Appendix C. Proofs

Here we provide proofs for the properties satisfied
by metrics in our study. For the sake of brevity, we
do not include formal complete proofs, but their
explanations.
Proof for closeness conditions at ordinal scale:
Focusing on the ordinal scale, if x is located be-
tween y and r (y ≤ x ≤ r or r ≤ x ≤ y),
then |f(x)− f(r)| ≤ |f(y)− f(r)| for any strict
increasing function f . In other case, that is, if
x < y ∧ x < r or y < x ∧ r < x we can de-
fine a strict increasing function that invalidates
|f(x) − f(r)| ≤ |f(y) − f(r)|. The reasoning
for the strict case is similar.
Proof for CEMORD properties: CEMORD is com-
puted over ordinal comparisons (g(d′) �g(d)

ORD s(d)).
By definition, closeness at ordinal scale is invariant
under ordinal transformation. Therefore, CEMORD

is ordinal invariant. Monotonicity is also satisfied
given that approaching the predicted category to
the ground truth category necessarily reduces the
amount of documents appearing in intermediate
categories (provided there is no empty category in
the gold standard), and therefore increases the simi-
larity weight used by the metric. Finally, imbalance
is also satisfied given that, being g(di) = ci and
being ci and cj contiguous classes:

CEMORD(gdi→cj , g)− CEMORD(g, g)

∝ − log

(
ni +

nj

2

N

)
−
(
− log

( ni
2

N

))
.
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sy
st

em
A

ground truth
neg neu pos total

negA 5 5 7 17

neuA 1 50 8 59

posA 4 5 15 24

total 10 60 30 100

sy
st

em
B

ground truth
neg neu pos total

negB 7 12 4 23

neuB 1 45 8 54

posB 2 3 18 23

total 10 60 30 100

class proximity
neg neu pos

neg 4.32 0.62 0.07

neu 1.32 1.74 0.74

pos 0.23 0.42 2.74

prox(neg, neg) = − log 10/2
100

= 4.32 prox(neg, neu) = − log 10/2+60
100

= 0.62 prox(neg, pos) = − log 10/2+90
100

= 0.07

prox(neu, neg) = − log 60/2+10
100

= 1.32 prox(neu, neu) = − log 60/2
100

= 1.74 prox(neu, pos) = − log 60/2+30
100

= 0.74

prox(pos, neg) = − log 30/2+60+10
100

= 0.23 prox(pos, neu) = − log 30/2+60
100

= 0.42 prox(pos, pos) = − log 30/2
100

= 2.74

CEMORD(A, g) =
5 ∗ 4.32 + 5 ∗ 0.62 + 7 ∗ 0.07 + 1 ∗ 1.32 + 50 ∗ 1.74 + 8 ∗ 0.74 + 4 ∗ 0.23 + 5 ∗ 0.42 + 15 ∗ 2.74

10 ∗ 4.32 + 60 ∗ 1.74 + 30 ∗ 2.74 = 0.71

CEMORD(B, g) =
7 ∗ 4.32 + 12 ∗ 0.62 + 4 ∗ 0.07 + 1 ∗ 1.32 + 45 ∗ 1.74 + 8 ∗ 0.74 + 2 ∗ 0.23 + 3 ∗ 0.42 + 18 ∗ 2.74

10 ∗ 4.32 + 60 ∗ 1.74 + 30 ∗ 2.74 = 0.76

Figure 3: Example computation of CEMORD values for two hypothetical systems A and B with respect to the same
dataset. The first two tables represent the confusion matrices for both systems. The third table shows prox(ci, cj)
for the ground truth, according to the distribution of items in the negative, positive and neutral classes (10, 60 and
30, respectively). The rest of the equations illustrate how proximity values between classes are computed, and the
resulting CEMORD values for both systems.

Therefore,

Eff(gd1→c2 , g)− Eff(gd3→c2 , g)

∝ Eff(g, g)− log

(
n1 +

n2
2

N

)
−
(
− log

( n1
2

N

))
−
(
Eff(g, g)− log

(
n3 +

n2
2

N

)
−
(
− log

( n3
2

N

)))
∝ log

( n1
2 (n3 +

n2
2 )

(n1 +
n2
2 )n3

2

)
,

which is larger than 0 whenever n1 > n3.


