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Abstract

Sparse models require less memory for storage
and enable a faster inference by reducing the
necessary number of FLOPs. This is relevant
both for time-critical and on-device computa-
tions using neural networks. The stabilized lot-
tery ticket hypothesis states that networks can
be pruned after none or few training iterations,
using a mask computed based on the unpruned
converged model. On the transformer archi-
tecture and the WMT 2014 English—German
and English—French tasks, we show that stabi-
lized lottery ticket pruning performs similar to
magnitude pruning for sparsity levels of up to
85%, and propose a new combination of prun-
ing techniques that outperforms all other tech-
niques for even higher levels of sparsity. Fur-
thermore, we confirm that the parameter’s ini-
tial sign and not its specific value is the pri-
mary factor for successful training, and show
that magnitude pruning cannot be used to find
winning lottery tickets.

1 Introduction

Current neural networks are heavily growing in
depth, with many fully connected layers. As ev-
ery fully connected layer includes large matrices,
models often contain millions of parameters. This
is commonly seen as an over-parameterization
(Dauphin and Bengio, 2013; Denil et al., 2013).
Different techniques have been proposed to decide
which weights can be pruned. In structured prun-
ing techniques (Voita et al., 2019), whole neurons
or even complete layers are removed from the net-
work. Unstructured pruning only removes individ-
ual connections between neurons of succeeding lay-
ers, keeping the global network architecture intact.
The first technique directly results in smaller model
sizes and faster inference, while the second offers
more flexibility in the selection of which parame-
ters to prune. Although the reduction in necessary
storage space can be realized using sparse matrix

representations (Stanimirovi and Tasic, 2009), most
popular frameworks currently do not have sufficient
support for sparse operations. However, there is ac-
tive development for possible solutions (Liu et al.,
2015; Han et al., 2016; Elsen et al., 2019). This
paper compares and improves several unstructured
pruning techniques. The main contributions of this
paper are to:

o verify that the stabilized lottery ticket hypoth-
esis (Frankle et al., 2019) performs similar to
magnitude pruning (Narang et al., 2017) on
the transformer architecture (Vaswani et al.,
2017) with 60M parameters up to a sparsity
of 85%, while magnitude pruning is superior
for higher sparsity levels.

e demonstrate significant improvements for
high sparsity levels over magnitude pruning
by using it in combination with the lottery
ticket hypothesis.

o confirm that the signs of the initial parameters
are more important than the specific values to
which they are reset, even for large networks
like the transformer.

e show that magnitude pruning cannot be used
to find winning lottery tickets, i.e., the final
mask reached using magnitude pruning is no
indicator for which initial weights are most
important.

2 Related Work

Han et al. (2015) propose the idea of pruning
weights with a low magnitude to remove connec-
tions that have little impact on the trained model.
Narang et al. (2017) incorporate the pruning into
the main training phase by slowly pruning parame-
ters during the training, instead of performing one
big pruning step at the end. Zhu and Gupta (2018)
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provide an implementation for magnitude pruning
in networks designed using the tensor2tensor soft-
ware (Vaswani et al., 2018).

Frankle and Carbin (2018) propose the lottery
ticket hypothesis, which states that dense networks
contain sparse sub-networks that can be trained to
perform as good as the original dense model. They
find such sparse sub-networks in small architec-
tures and simple image recognition tasks and show
that these sub-networks might train faster and even
outperform the original network. For larger mod-
els, Frankle et al. (2019) propose to search for the
sparse sub-network not directly after the initializa-
tion phase, but after only a few training iterations.
Using this adapted setup, they are able to success-
fully prune networks having up to 20M parameters.
They also relax the requirement for lottery tickets
so that they only have to beat randomly initialized
models with the same sparsity level.

Zhou et al. (2019) show that the signs of the
weights in the initial model are more important
than their specific values. Once the least important
weights are pruned, they set all remaining param-
eters to fixed values, while keeping their original
sign intact. They show that as long as the original
sign remains the same, the sparse model can still
train more successfully than one with a random
sign assignment. Frankle et al. (2020) reach con-
tradicting results for larger architectures, showing
that random initialization with original signs hurts
the performance.

Gale et al. (2019) compare different pruning
techniques on challenging image recognition and
machine translation tasks and show that magnitude
pruning achieves the best sparsity-accuracy trade-
off while being easy to implement.

In concurrent work, Yu et al. (2020) test the sta-
bilized lottery ticket on the transformer architecture
and the WMT 2014 English—German task, as well
as other architectures and fields.

This paper extends the related works by demon-
strating and comparing the applicability of differ-
ent pruning techniques on a deep architecture for
two translation tasks, as well as proposing a new
combination of pruning techniques for improved
performance.

3 Pruning Techniques

In this section, we give a brief formal definition
of each pruning technique. For a more detailed
description, refer to the respective original papers.

In the given formulas, a network is assumed to
be specified by its parameters §. When training the
network for 7 iterations, 6, for t € [0,7T] repre-
sents the parameters at timestep ¢.

Magnitude Pruning (MP) relies on the magni-
tude of parameters to decide which weights can
be pruned from the network. Different techniques
to select which parameters are selected for prun-
ing have been proposed (Collins and Kohli, 2014;
Han et al., 2015; Guo et al., 2016; Zhu and Gupta,
2018). In this work, we rely on the implementation
from Zhu and Gupta (2018) where the parameters
of each layer are sorted by magnitude, and during
training, an increasing percentage of the weights
are pruned. It is important to highlight that MP is
the only pruning technique not requiring multiple
training runs.

Lottery Ticket (LT) pruning assumes that for
a given mask m, the initial network 6y already
contains a sparse sub-network 6y ® m that can be
trained to the same accuracy as 6. To determine m,
the parameters of each layer in the converged model
07 are sorted by magnitude, and m is chosen to
mask the smallest ones such that the target sparsity
st is reached. We highlight that even though m is
determined using A7, it is then applied to 8y before
the sparse network is trained. To reach high sparsity
without a big loss on accuracy, Frankle and Carbin
(2018) recommend to prune iteratively, by training
and resetting multiple times.

Stabilized Lottery Ticket (SLT) pruning is an
adaptation of LT pruning for larger models. Frankle
et al. (2019) propose to apply the computed mask
m not to the initial model 6, but to an intermediate
checkpoint 6; where 0 < ¢t < T is chosen to be
early during the training. They recommend to use
0.0017 < t < 0.077 and refer to it as iterative
magnitude pruning with rewinding. We highlight
that Frankle et al. (2019) always choose 6; from
the first, dense model, while this work choses 8;
from the last pruning iteration.

Constant Lottery Ticket (CLT) pruning as-
sumes that the specific random initialization is not
important. Instead, only the corresponding choice
of signs affects successful training. To show this,
Zhou et al. (2019) propose to compute 6; © m as
in SLT pruning, but then to train f(6; ® m) as the
sparse model. Here, f sets all remaining parame-
ters p in each layer [ to sign(p) - oy, i.e., all param-
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eters in each layer have the same absolute value,

but their original sign. In all of our experiments,

6
nlin +nlout

and n;,, are the respective incoming and outgoing
connections to other layers.

SLT-MP is a new pruning technique, proposed
in this work. It combines both SLT pruning and
MP in the following way: First, SLT pruning is
used to find a mask m with intermediate sparsity
s;. This might be done iteratively. 6; ® m with
sparsity s; is then used as the initial model for
MP (i.e., 6 = 6; © m). Here, in the formula for
MP, so = s;. We argue that this combination is
beneficial, because in the first phase, SLT pruning
removes the most unneeded parameters, and in the
second phase, MP can then slowly adapt the model
to a higher sparsity.

MP-SLT is analogue to SLT-MP: First, MP is ap-
plied to compute a trained sparse network 67 with
sparsity s;. This trained network directly provides
the corresponding mask m. 6; ® m is then used
for SLT pruning until the target sparsity is reached.
This pruning technique tests whether MP can be
used to find winning lottery tickets.

«; 18 chosen to be o = where ny,,,

4 Experiments

We train the models on the WMT 2014
English—German and English—French datasets,
consisting of about 4.5M and 36M sentence pairs,
respectively. newstest2013 and 2014 are cho-
sen to be the development and test sets.

All experiments have been performed using
the base transformer architecture as described in
(Vaswani et al., 2017).! The models are trained for
500k iterations on a single v3-8 TPU, saving check-
points every 25k iterations. For all experiments,
we select the best model based on the BLEU score
on the development set. For MP, we only evaluate
the last 4 checkpoints, as earlier checkpoints do not
have the targeted sparsity. Intermediate MP sparsity
levels s; are computed as s; = sp + min{0, (sp —
s7)(1 — 50505)°} (Zhu and Gupta, 2018). For
efficiency reasons, weights are only pruned every
10k iterations. Unless stated otherwise, we start
with initial sparsity sp = 0. The final sparsity
s is individually given for each experiment.

''Using the hyperparameters in t ransformer_base_v3
in https://github.com/tensorflow/tensor2tensor/
blob/838f1a99¢24a9391a8faf6603e90d476444110a0/

tensor2tensor/models/transformer.py with the corresponding
adaptations for TPUs.

We prune only the matrices, not biases. We re-
port the approximate memory consumption of all
trained models using the Compressed Sparse Col-
umn (CSC) format (Stanimirovi and Tasic, 2009),
which is the default for sparse data storage in the
SciPy toolkit (Virtanen et al., 2020).

Our initial experiments have shown that Adafac-
tor leads to an improvement of 0.5 BLEU compared
to Adam. Hence, we select it as our optimizer with
a learning rate of Ir(t) = m for w = 10k
warmup steps. We note that this differs from the im-
plementation by Gale et al. (2019), in which Adam
has been used. We highlight that for all experiments
that require a reset of parameter values (i.e., LT,
SLT, CLT, SLT-MP, and MP-SLT), we reset t to 0,
to include the warmup phase in every training run.

A shared vocabulary of 33k tokens based on
word-pieces (Wu et al., 2016) is used. The reported
case-sensitive, tokenized BLEU scores are com-
puted using SacreBLEU (Post, 2018), TER scores
are computed using MultEval (Clark et al., 2011).
All results are averaged over two separate training
runs. For all experiments that require models to be
reset to an early point during training, we select a
checkpoint after 25k iterations.

All iterative pruning techniques except SLT-MP
are pruned in increments of 10 percentage points
up to 80%, then switching to 5 points increments,
and finally pruning to 98% sparsity. SLT-MP is di-
rectly trained using SLT pruning to 50% and further
reduced by SLT to 60%, before switching to MP.

5 [Experimental Results

In this section, we evaluate the experimental re-
sults for English—German and English—French
translation given in Tables 1 and 2 to provide a com-
parison between the different pruning techniques
described in Section 3.

MP Tables 1 and 2 clearly show a trade-off be-
tween accuracy and network performance. For ev-
ery increase in sparsity, the performance degrades
accordingly. We especially note that even for a
sparsity of 50%, the baseline performance cannot
be achieved. In contrast to all other techniques in
this paper, MP does not require any reset of param-
eter values. Therefore, the training duration is not
increased.

LT Frankle and Carbin (2018) test the LT hypoth-
esis on the small ResNet-50 architecture (He et al.,
2016) which is applied to ImageNet (Russakovsky
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Sparsity Memory MP LT SLT CLT SLT-MP  MP-SLT
BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

0% 234 MB | 26.8 64.5 26.8 64.5 26.8 645 26.8 645 268 64.5 268 64.5
10% 226 MB | 26.8 64.5 26.7 64.6 26.8 649 269 647 n/a n/a 268 64.5
20% 206 MB | 26.7 64.5 262 653 269 646 27.0 645 n/a n/a 26.7 64.5
30% 184 MB | 264 65.0 26.0 65.3 269 64.8 269 647 n/a n/a 264 65.0
40% 161 MB | 26.5 64.8 25.8 65.7 27.1 65.1 26.8 650 n/a n/a 265 64.8
50% 137MB | 26.4 65.0 254 663 26.6 652 26.7 652 264" 64.9" 264 650
60% 112MB | 259 655 249 66.5 264 657 26.8 65.0 264" 65.17 259 655
70% 86MB | 25.7 658 242 67.6 256 669 262 658 26.2% 65.3F 25.6 66.0
80% S9MB | 24.8 66.8 23.2 684 24.8 67.7 24.1 679 25.6' 659" 246 67.2
85% 46MB | 239 67.7 223 69.8 23.7 68.5 23.7 68.0 24.9% 66.4' 239 67.9
90% 31MB | 229 69.0 209 720 21.7 714 21.6 70.6 23.5' 68.4% 224 69.8
95% 17MB | 202 729 18.1 754 17.4 77.1 182 73.3 20.5% 72.3% 18.5 755
98% 7MB | 158 789 133 812 11.0 869 14.6 78.2 16.1% 79.2% 13.5 826

Table 1: En—De translation: BLEU[%] and TER[%] scores of the final model at different sparsity levels, evaluated
on newstest2014. For SLT-MP, models marked with { are trained with SLT pruning, models marked with I are
trained with MP. For MP-SLT, the MP model with 60% sparsity was used for SLT pruning. For each sparsity level,

the best score is highlighted.

Sp.| MP SLT CLT SLT-MP

BLEU TER BLEU TER BLEU TER BLEU TER

0% 39.3 57.2 39.3 57.2 39.3 57.2 39.3 57.2
10% | 39.3 57.2 39.3 57.4 39.4 574 n/a nla
20%| 39.3 57.2 39.3 57.1 39.3 57.2 n/a n/a
30%| 39.3 57.1 39.8 56.7 39.7 56.9 n/a n/a
40% | 38.8 57.8 39.7 56.9 39.2 57.3 n/a n/a
50% | 38.8 57.7 39.2 57.4 39.4 57.4 39.0757.31
60% | 38.5 57.9 39.0 57.6 39.2 57.5 39.2157.41
70% | 38.2 58.4 38.4 58.3 38.9 57.8 38.5758.2¢
80% | 37.5 59.1 37.4 59.3 37.3 59.2 38.0%58.7*
85%| 37.0 59.6 36.9 59.6 35.7 61.1 37.4¥59.6!
90% | 35.6 61.4 34.7 62.1 33.7 62.9 35.9¥60.4*
95% | 32.7 63.8 28.5 68.0 29.6 65.7 33.1763.1*
98% | 27.1 69.6 21.8*73.9*19.6 75.9 27.3%68.9*

Table 2: En—Fr translation: BLEU[%] and TER[%]
scores of the final model at different sparsity levels,
evaluated on newstest2014. For SLT-MP, models
marked with { are trained with SLT pruning, models
marked with § are trained with MP. (x) indicates a re-
sult of a single run, as the second experiment failed.
For each sparsity level, the best score is highlighted.

et al., 2015). Gale et al. (2019) apply LT pruning
to the larger transformer architecture and the trans-
lation task WMT 2014 English—German, noting
that it has been outperformed by MP. As seen in
Table 1, simple LT pruning is outperformed by MP
at all sparsity levels. Because LT pruning is an
iterative process, training a network with sparsity
98% requires to train and reset the model 13 times,

causing a big training overhead without any gain in
performance. Therefore, simple LT pruning cannot
be recommended for complex architectures.

SLT The authors of the SLT hypothesis (Frankle
et al., 2019) state that after 0.1-7% of the training,
the intermediate model can be pruned to a sparsity
of 50-99% without serious impact on the accuracy.
As listed in Tables 1 and 2, this allows the network
to be pruned up to 60% sparsity without a signif-
icant drop in BLEU, and is on par with MP up to
85% sparsity.

As described in Section 4, for resetting the mod-
els, a checkpoint after ¢ = 25k iterations is used.
For a total training duration of 500k iterations, this
amounts to 5% of the training and is therefore
within the 0.1-7% bracket given by Frankle et al.
(2019). For individual experiments, we have also
tried ¢t € {12.5k,37.5k,500k} and have gotten
similar results to those listed in this paper. It should
be noted that for the case ¢ = 500k, SLT pruning
becomes a form of MP, as no reset happens any-
more. We propose a more thorough hyperparameter
search for the optimal ¢ value as future work.

Importantly, we note that the magnitude of the
parameters in both the initial and the final models
increases with every pruning step. This causes the
model with 98% sparsity to have weights greater
than 100, making it unsuitable for checkpoint aver-
aging, as the weights become too sensitive to minor
changes. Yu et al. (2020) report that they do suc-
cessfully apply checkpoint averaging. This might
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be because they choose 6, from the dense training
run for resetting, while we choose 6; from the most
recent sparse training.

CLT The underlying idea of the LT hypothesis
is, that the untrained network already contains a
sparse sub-network which can be trained individ-
ually. Zhou et al. (2019) show that only the signs
of the remaining parameters are important, not
their specific random value. While Zhou et al.
(2019) perform their experiments on MNIST and
CIFAR-10, we test this hypothesis on the WMT
2014 English—German translation task using a
deep transformer architecture.

Surprisingly, CLT pruning outperforms SLT
pruning on most sparsity levels (see Table 1). By
shuffling or re-initializing the remaining parame-
ters, Frankle and Carbin (2018) have already shown
that LT pruning does not just learn a sparse topol-
ogy, but that the actual parameter values are of
importance. As the good performance of the CLT
experiments indicates that changing the parameter
values is of little impact as long as the sign is kept
the same, we verify that keeping the original signs
is indeed necessary. To this end, we randomly as-
sign signs to the parameters after pruning to 50%
sparsity. After training, this model scores 24.6%
BLEU and 67.5% TER, a clear performance degra-
dation from the 26.7% BLEU and 65.2% TER given
in Table 1. Notably, this differs from the results by
Frankle et al. (2020), as their results indicate that
the signs alone are not enough to guarantee good
performance.

SLT-MP Across all sparsity levels, the combi-
nation of SLT pruning and MP outperforms all
other pruning techniques. For high sparsity values,
SLT-MP models are also superior to the SLT mod-
els by Yu et al. (2020), even though they start of
from a better performing baseline. We hypothesize
that by first discarding 60% of all parameters using
SLT pruning, MP is able to fine-tune the model
more easily, because the least useful parameters
are already removed.

We note that the high weight magnitude for
sparse SLT models prevents successful MP training.
Therefore, we have to reduce the number of SLT
pruning steps by directly pruning to 50% in the first
pruning iteration. However, as seen by comparing
the scores for 50% and 60% sparsity on SLT and
SLT-MP, this does not hurt the SLT performance.

For future work, we suggest trying different spar-
sity values s; for the switch between SLT and MP.

MP-SLT Switching from MP to SLT pruning
causes the models to perform worse than for pure
MP or SLT pruning. This indicates that MP cannot
be used to find winning lottery tickets.

6 Conclusion

In conclusion, we have shown that the stabilized
lottery ticket (SLT) hypothesis performs similar
to magnitude pruning (MP) on the complex trans-
former architecture up to a sparsity of about 85%.
Especially for very high sparsities of 90% or more,
MP has proven to perform reasonably well while
being easy to implement and having no additional
training overhead. We also have successfully veri-
fied that even for the transformer architecture, only
the signs of the parameters are important when ap-
plying the SLT pruning technique. The specific ini-
tial parameter values do not significantly influence
the training. By combining both SLT pruning and
MP, we can improve the sparsity-accuracy trade-
off. In SLT-MP, SLT pruning first discards 60% of
all parameters, so MP can focus on fine-tuning the
model for maximum accuracy. Finally, we show
that MP cannot be used to determine winning lot-
tery tickets.

In future work, we suggest performing a hyper-
parameter search over possible values for ¢ in SLT
pruning (i.e., the number of training steps that are
not discarded during model reset), and over s; for
the switch from SLT to MP in SLT-MP. We also
recommend looking into why CLT pruning works
in our setup, while Frankle et al. (2020) present
opposing results.
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